
Chapter 23

PARSING

John Carroll

Abstract

This chapter introduces key concepts and techniques for natural language parsing; that is, find-

ing the grammatical structure of sentences. The chapter introduces the fundamental algorithms

for parsing with context-free (CF) phrase structure grammars, how these deal with ambiguous

grammars, and how CF grammars and associated disambiguation models can be derived from

syntactically annotated text. It reviews dependency analysis, and outlines the main approaches

to dependency parsing based both on manually written grammars and on learning from depen-

dency treebanks. It also describes techniques used for parsing with grammars that use feature

structures to encode linguistic information.
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23.1 Introduction

Parsing is an important technology used in many language processing tasks. Parsing has always

been an active area of research in computational linguistics, and many different approaches have

been explored over the years. More recently, many aspects of parser development and evaluation

methodology have become standardised, and shared tasks and common datasets for evaluation

have helped to drive progress forward. However, there is still a diverse range of techniques being

investigated. The diversity is along a number of dimensions, the main ones being:

• Representation of the set of possible sentences of the language and their parses—is this

through a formal grammar, and if so how is it encoded and where is it derived from?

• Type of parser output—are parses phrase structure trees, dependency structures, fea-

ture structures, or some other kind of linguistic description?

• Parsing algorithm—is processing deterministic or non-deterministic, and what opera-

tions does the parser perform?

• Ambiguity resolution—at what stage in processing is disambiguation attempted, what

type of disambiguation method is used, and how is search over possible parses managed?

2



The latter dimension is particularly important, since arguably the most significant problem

faced in parsing is ambiguity. Church and Patil (1982) observe that there may be hundreds or

thousands of parses for perfectly natural sentences. (Indeed, as the research field has developed

and computers have become more powerful, some current approaches to parsing represent and

process numbers of potential parses many orders of magnitude larger than this). Consider the

sentence (23.1).

(23.1) They saw some change in the market.

Although to a human there is a single, obvious meaning for this sentence, there are a number

of ‘hidden’ ambiguities which stem from multiple ways in which words can be used (lexical

ambiguity), and in which words and phrases can be combined (syntactic ambiguity). When

considered in isolation many of these possibilities may be quite plausible, but in the context

of the rest of the sentence they contribute to very unlikely meanings. Sources of lexical and

syntactic ambiguity in this sentence include the following.

• The word saw has two possible readings, as a past tense verb or a singular common noun.

• Some can be a determiner, preceding a noun and denoting an amount of it; it can act as

a pronoun, meaning some people or things; or it can be an adverb meaning the same as

somewhat (as in The market always changes some).

• Change can be a noun or a verb; for example it would be a verb when following They saw

some in sentences such as They saw some change their strategies.

• The prepositional phrase in the market may relate either to change or to the action of
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Figure 23.1: Ambiguity in natural language: fragments of multiple phrase structure trees for the
sentence They saw some change in the market.

seeing, corresponding respectively to the paraphrases They saw some change that was in

the market and In the market, they saw some change.

Of these ambiguities, those that can contribute to full parses are illustrated in Figure 23.1, pro-

ducing a total of 6 distinct parses for the whole sentence.

Early parsing systems often used manually-developed heuristics to resolve ambiguities (for

example ‘prefer to attach prepositional phrases low’—i.e. to the most recent noun rather than

a preceding verb) sometimes encoding these in metrics used to score and rank complete parses

(Heidorn 1982). Another approach involved making disambiguation decisions based on infer-

ence over semantic relationships between words, with data either coming from a hand-coded

‘semantic lexicon’ or from automatic processing of dictionary and encyclopaedia entries (Binot

and Jensen 1987). Such approaches have several shortcomings. In particular, heuristics can only

cover a very small proportion of lexical and syntactic ambiguities, inference breaks down if any
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piece of relevant information is missing, and building semantic lexicons is very labour-intensive

so is only practical for a system targeted at a limited domain.

However, from the late 1980s, drawing on work in the field of corpus linguistics and in-

spired by significant advances in speech recognition resulting from statistical and machine learn-

ing techniques, parsing research turned to approaches based on information learned from large

amounts of text that had been manually annotated with syntactic structure. This type of annotated

text is called a treebank. The first widely used treebank was the Penn Treebank (Marcus et al.

1993); the major part of this consists of around one million words of text from the Wall Street

Journal, each sentence associated with a phrase structure tree representing its syntactic structure.

Treebanks for languages other than English have followed, and there are now large treebanks for

most of the world’s major languages.

The first work using treebanks demonstrated three main ways in which the information in a

treebank may be used by a parser; each of these ways is still under active investigation.

• A hand-crafted grammar already exists, and the information in the treebank is used for dis-

ambiguating the analyses produced by the grammar (Briscoe and Carroll 1993; Toutanova

et al. 2002).

• A grammar is extracted from the syntactic structures in the treebank, together with asso-

ciated statistical information which is used to disambiguate the analyses produced by the

grammar (Charniak 1996; Xia 1999).

• There is no explicit grammar, and the search for the best parse is constrained only by

information about numbers of occurrences of various types of syntactic configurations in
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the treebank (Sampson 1986; Magerman 1995).

As well as being used for developing parsers, treebanks are also used for evaluating their ac-

curacy, by providing a gold standard set of parses for some set of test inputs. However, the most

obvious evaluation metric of exact match of parses against the gold standard is usually not ap-

propriate because (i) apparent differences between parses might not ultimately correspond to any

real differences in meaning, and also (ii) the parser might have been designed to analyse certain

constructions differently than the standard. Instead, parser accuracy is usually measured as the

percentage of phrases or grammatical relationships between words correctly identified (Carroll

et al. 1998). However, differences between the syntactic representations output by different types

of parser mean that comparative evaluations have to be interpreted carefully (Clark and Curran

2007).

Although a number of treebanks are now available, they are very expensive in terms of human

effort to produce and can therefore cover only a limited range of genres, topic domains and lan-

guages. Even within a single language there are significant differences in language use between

genres (e.g. newspaper text and mobile phone text messages) and domains (e.g. finance news

and biomedical abstracts), which causes parsers developed for one genre or domain to perform

poorly in another. These issues have motivated a number of strands of research including: un-

supervised learning of syntax from unannotated text (Ponvert et al. 2011; Scicluna and Higuera

2014); projecting syntactic annotations from a treebank in one language to another (Tiedemann

2014); and adapting parsers trained on text in a (source) domain to deal effectively with text in

another (target) domain (Yu et al. 2015).
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23.2 Context-free grammar parsing

Context-free phrase structure grammars form the basis of many natural language parsing

systems. Chapter 4 introduces these grammars, explains how they group sequences of words

into phrases, and how the phrase structure can be represented as a tree. The task of a phrase

structure parser is to find the tree (or trees) corresponding to a given input string (sentence).

Context-free (CF) parsing algorithms are also fundamental in that parsing techniques for other

grammar frameworks are often based on them. The following sections describe the two CF

parsing algorithms of most relevance to natural language processing, shift-reduce parsing and

the CYK tabular parsing algorithm.

23.2.1 Shift-reduce parsing

The shift-reduce algorithm is conceptually one of the simplest parsing techniques. The algorithm

comprises two main steps, shift and reduce, which are applied to a buffer and a stack of partial

analyses. Initially the buffer holds the complete input sentence and the stack is empty. Words

are shifted from the buffer onto the stack; when the top items of the stack match the right side

of a rule in the CF grammar (Chapter 4), the reduce step replaces these with the category on the

left side of the rule. This process is depicted in Figure 23.2 (assuming analogous application of

the reduce operation for rules with other numbers of daughters). In the case of grammars that

are unambiguous (no string has more than one analysis), as long as the algorithm always carries

out a reduce when there is an applicable rule it will successfully analyse any input string in the

language defined by the grammar.
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Figure 23.2: Steps in the shift-reduce algorithm; note that the top-most item of the stack is on
the right hand end

The shift-reduce algorithm—and variants of it—are applied widely in compilers for program-

ming languages for parsing the source code of computer programs, since grammars for these are

designed to be unambiguous or to contain only ambiguities that can be disambiguated using lim-

ited contextual information. However, natural language is highly ambiguous, and attempting to

use the algorithm as described above with natural language grammars would usually result in

the algorithm choosing to shift or reduce wrongly at some point and failing to find a complete

analysis when one existed. In addition, the algorithm would have to backtrack to find further

analyses in case the one found first was not the most plausible interpretation of the input. The

algorithm therefore has to be adapted in order to make it applicable for natural language parsing.

One way of dealing with ambiguity in shift-reduce parsing is to look ahead at unprocessed

words in the buffer to decide what the next step should be; Marcus (1980) used this approach in

a study which attempted to model human sentence understanding, investigating the question of

whether it could be deterministic. In the generalized LR parsing technique (Tomita 1985), the

stack (which would normally hold a linear sequence of words and phrasal constituents) becomes

a graph which is able to represent all possible ways of analysing the words processed so far,

allowing all possible parses to be computed efficiently. Finally, more recent work on data-driven
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Figure 23.3: Steps in the CYK algorithm

dependency parsing (section 23.3 below) uses the shift-reduce algorithm together with a machine

learning classifier to deterministically select the next step the parser should perform.

23.2.2 Tabular parsing

For ambiguous grammars, tabular parsing algorithms overcome some of the drawbacks of the

basic shift-reduce parsing algorithm. The most basic tabular parsing algorithm is the Cocke-

Younger-Kasami (CYK) algorithm (Cocke and Schwartz 1970; Younger 1967; Kasami 1965).

Strictly, it requires that the grammar be expressed in Chomsky Normal Form (Chomsky 1959):

the right side of each rule must either be a single word or exactly two non-terminal categories

(left hand categories of other rules). Figure 23.3 illustrates the operation of the algorithm.

First, in the the initialise step, each word wj is recorded as a constituent of length 1 covering

input positions j −1 to j. Then, successively processing larger segments of the input, complete

steps form a new higher-level constituent for every pair of contiguous constituents of categories

x and y and rule A → x y. This process continues until no further complete steps can be

performed. Taking the sentence (23.1) as an example, one of the complete steps might involve
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a rule PP→ Prep NP being applied to the category Prep corresponding to the word in between

input positions 4 and 5, and an NP (the market) between 5 and 7, producing a PP (prepositional

phrase) between positions 4 and 7. With minor changes the CYK algorithm can be adapted to

parse with any 2-normal-form grammar, in which no rule has more than two daughters (Lange

and Leiß 2009). The algorithm can also be extended to work with any arbitrary CF grammar

without restriction on the rule right sides; this variant is known as bottom-up passive chart parsing

(Kay 1986).

The ambiguity inherent in natural language means that a given segment of the input string

may end up being analysed as a constituent of a given category in several different ways. With

any parsing algorithm, each of these different ways must be recorded, of course, but subsequent

parsing steps must treat the set of analyses as a single entity, otherwise the computation becomes

theoretically intractable. Tomita (1985) coined the terms:

• local ambiguity packing for the way in which analyses of the same type covering the

same segment of the input are conceptually ‘packed’ into a single entity; and

• subtree sharing where if a particular sub-analysis forms part of two or more higher level

analyses then there is only a single representation of the sub-analysis, and this is shared

between them.

The final representation produced by the parser is called a parse forest (see e.g. Billot and Lang

1989), and is produced quite naturally if each step records back-pointers to the phrases and

words contributing to it. Figure 23.4 shows a fragment of the parse forest that might be con-

structed for (23.1), which would unpack into two distinct parse trees (one in which in the market
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... saw some change in the market

Figure 23.4: A fragment of a parse forest

modifies the noun phrase some change, and another in which it modifies the verb phrase saw

some change).

Many further tabular parsing algorithms exist. Some, like CYK, only record complete con-

stituents, whereas others (for example the active chart parsing algorithm) also store partial con-

stituents which record that a particular category has been found and that further ones must also

be found in specified locations relative to it. Some algorithms build all sub-analyses possible for

the input, whereas others—for example Earley’s (1970) algorithm—use top-down information

derived from the grammar to avoid producing some partial analyses that could not contribute to

a complete parse. The common factor between these algorithms is that they cope efficiently with

ambiguity by not deriving the same constituent by the same set of steps more than once; they do

this by storing derived constituents in a well-formed substring table (Sheil 1976), or chart, and

retrieving entries from the table as needed, rather than recomputing them.

23.2.3 Data-driven phrase structure parsing

As mentioned in Section 23.1, grammars and information for making disambiguation decisions

can be extracted from treebanks. The Penn Treebank contains phrase structure trees with atomic
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categories (see Chapter 4), which means that a CF treebank grammar can be created from it by

constructing a CF rule for each distinct local (one-level) tree in the treebank. The probability that

a particular rule should be applied can be estimated directly from the treebank by accumulating

a frequency count for each rule and then normalising frequency counts so that the probabilities

of each set of rules with the same left hand category sum to one (Figure 23.5). This results in

a Probabilistic CF Grammar (PCFG). When parsing with a PCFG, the probability of a parse

tree is the product of the probabilities of the rules in the tree. A version of the CYK algorithm

that computes the probability of constituents on each complete step can be used to find the parse

with the highest probability efficiently.

Although Charniak (1996) shows that a PCFG derived from the Penn Treebank can give

moderately accurate results, with around 80% correct identification of phrase boundaries, PCFG

has a number of shortcomings. In particular, it cannot account for the substantial influence

on preferred readings exerted by syntactic context and word choice. For example, in English,

right-branching syntactic structures are more prevalent than left-branching structures, but PCFG

cannot capture this tendency probabilistically. Nor can it model the fact that in the most plausible

reading of (23.2a) below, the prepositional phrase in the market modifies some change, whereas
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in (23.2b) a similar prepositional phrase (with one word different) modifies the main verb, saw.

(23.2) a. They saw some change in the market.

b. They saw some change in the afternoon.

A further anomaly arises from the fact that most treebanks give rise to a very large number of

distinct rules; since the probability associated with each rule is estimated independently of all

others, minor variants of the same rule may be assigned very different probabilities due to data

sparseness.

These problems with PCFG have motivated a lot of research in recent years, leading to sta-

tistical models which are still derived from treebanks but which better capture the interactions

between syntactic constructions and word choice. One successful approach (Collins 1997) mod-

els the derivation of a phrase structure tree as a sequence of steps in which child nodes are added

to a partial analysis of the input sentence, their probabilities being conditioned on properties

of parent and sibling nodes that have already been added, including the input words dominated

by these nodes. Such history-based models require a very large number of probabilities, and

thus rely heavily on obtaining good estimates for the probabilities of events that have not been

observed in the training data. Applying the model is often computationally expensive, so a prag-

matic approach is to use a relatively simple approximation of the model in a first pass in order to

prune the search space sufficiently that the full model can be used.

Further investigation of the types of dependence found to be useful in history-based models

has led to the insight that much of this information can be encoded in a standard PCFG derived

from a transformed version of the original treebank. One particularly effective type of transfor-
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mation involves adding information to tree node labels about the context in which they appear,

for example splitting up node categories into a finer-grained set based on the category of the par-

ent node in the tree improves the parsing accuracy of the derived PCFG substantially (Johnson

1998). Another useful transformation breaks up rules with more than two right hand categories

into equivalent unary and binary rules; this emulates the effect of adding child nodes individually

in the history-based model, and again results in large improvements in accuracy (Klein and Man-

ning 2003). Petrov and Klein (2007) show how these beneficial transformations can be learned

from a treebank and how the parser search space can be managed, leading to one of the best

performing current models for phrase structure parsing.

For reasons of computational tractability, the types of parsing models outlined above have to

make independence assumptions which mean that only close-range syntactic and lexical interac-

tions can be modelled probabilistically. However, if such a parser can return a ranked set of the

top few parse candidates, a second model incorporating global features of syntactic representa-

tions can be used to re-rank them. This can lead to a significant increase in accuracy (Charniak

and Johnson 2005).

23.3 Dependency parsing

In dependency grammar (Mel’čuk 1987), a syntactic analysis takes the form of a set of directed

links between words, each link being labelled with the grammatical function (for example, sub-

ject or object) that relates a dependent word to its governor (Chapter 4). A dependency grammar

analysis of the sentence (23.1) might be (23.3).
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(23.3)
They

� �
?
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saw

� �
?

MOD

some

' $
?

OBJ

change

' $
?

POBJ
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� �
?

DET

the

� �
?

MOD

market

A dependency analysis does not group words into phrases and phrases hierarchically into trees,

but instead encodes relationships between pairs of words. Dependency grammar has been argued

to be more appropriate than phrase structure grammar for languages with relatively free word

order; in many such languages the order in which the arguments of a predicate are expressed

may vary, not being determined by their grammatical roles but rather by pragmatic factors such

as focus and discourse prominence. (In English, word order is constrained so that the subject

almost always precedes its associated main verb and the direct object follows it; this is not the

case in German, for example.) Dependencies that are labelled with their type (as in the example

above) are sometimes termed ‘grammatical relations’, and encode important aspects of predicate-

argument structure without needing to commit to a particular theory of how phrases are structured

hierarchically.

23.3.1 Grammar-based dependency parsing

There are a number of successful approaches to parsing with dependency grammar. In Link

Grammar (Grinberg et al. 1995), a grammarian builds a lexicon in which each word is associated

with a set of possible links, each one marked with an indication of whether the other word in

the dependency relation should appear to the left or right in the sentence; for example in (23.4),

the word change optionally has a modifier to its left (encoded as {MOD–}) and is in either an
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OBJ relation with a word to its left or a SUBJ relation with a word to its right (encoded as

OBJ– or SUBJ+).

(23.4) saw: SUBJ– & OBJ+

some: MOD+

change: {MOD–} & (OBJ– or SUBJ+)

The parsing process consists of pairing up words via their link specifications (e.g. pairing up a

SUBJ+ with a SUBJ– to its right), subject to the constraint that no link should cross another.

Governors are not distinguished from dependents, as in standard dependency grammar, so a

language processing application using link grammar would have to do extra work to infer this

information.

Functional Dependency Grammar parsing (Tapanainen and Järvinen 1997) works by first

labelling each word with all its possible function types (according to a lexicon), and then applying

a collection of hand-written rules that introduce links between specific function types in a given

context, and perhaps also remove other function type readings. One of the rules, for instance,

might add a subject dependency between a noun and an immediately following finite verb, and

remove any other possible functions for that noun. Finally, a further set of rules are applied to

remove unlikely linkages, although some ambiguity may still be left at the end in cases where

the grammar has insufficient information to be able to resolve the ambiguity.

An alternative approach, taken by Constraint Dependency Grammar (Maruyama 1990), is to

view parsing as a constraint satisfaction process. Initially, each word is hypothesised to depend

on every other word, and then a set of constraints are applied which specify restrictions on the
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possible dependencies between a word and the possible governors of that word. For example, one

constraint might be that a preposition requires a preceding verb or noun governor. In Weighted

Constraint Dependency Grammar (Foth et al. 2005), constraints have weights associated with

them to add flexibility to deal with ungrammatical inputs or grammatical constructions that are

more conveniently specified as preferences rather than ‘hard’ rules.

23.3.2 Data-driven dependency parsing

As well as treebanks of phrase structure trees, there are now several treebanks of dependency

analyses available. Much recent research into parsing has focussed on data-driven approaches

to dependency parsing, using the information in these treebanks to direct the parsing and disam-

biguation process.

One approach, transition-based dependency parsing (pioneered by Yamada and Matsumoto

2003; Nivre and Scholz 2004), is based on the shift-reduce algorithm described in Section 23.2.1,

but adapted to build dependency analyses rather than phrase structure. This can consist of replac-

ing the reduce step with operations left-arc and right-arc; these each take the top two words on

the stack, create a dependency link of a specified type between them in a leftwards or rightwards

direction respectively, and leave just the governor on the stack. Dependency links are accumu-

lated as the parse proceeds, and all are returned at the end. Figure 23.6 illustrates some of the

steps that might be performed when parsing the sentence (23.1). Parsing is deterministic, each

step being selected by a machine learning classifier trained on a dependency treebank. The train-

ing procedure consists of determining the steps the parser would take to produce the analyses in
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stack buffer dependencies

They saw some change in the market
⇓ shift

They saw some change in the market
⇓ shift

They saw some change in the market
⇓ left-arc SUBJ

saw some change in the market They

� �
?

SUBJ

saw
⇓ shift

saw some change in the market
⇓ shift

saw some change in the market
⇓ left-arc MOD

saw change in the market
� �
?

MOD

some change
⇓ shift

saw change in the market

...

saw change
⇓ right-arc OBJ

saw
� �

?

OBJ

saw change

Figure 23.6: The first few and the final processing steps in a transition-based dependency parse
of the sentence They saw some change in the market

the treebank, extracting a set of features characterising the state of the parsing process at each

step, and providing these as training data to the classifier (Chapter 13). A typical set of features

would be the words nearest the top of the stack, their left and right dependents (if any), and the

first word in the buffer. For example, in Figure 23.6, when the stack contained saw change and

the buffer in the market, the values of these features would be as in (23.5) and the correct action

would be to shift the next word (in) from the buffer rather than perform a right- or left-arc step.
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(23.5) top of stack: change

2nd in stack: saw

first in buffer: in

left dependent of top of stack: some

right dependent of top of stack: –

left dependent of 2nd in stack: They

right dependent of 2nd in stack: –

With sufficient suitable training examples, the parser would learn that in similar circumstances

it should shift a preposition onto the stack (so it could be linked to the object noun a little later),

rather than linking the object to the main verb (which would force the preposition eventually also

to be linked to the verb).

Another approach to data-driven dependency parsing, graph-based dependency parsing (Mc-

Donald et al. 2005), takes a more direct route to finding the best dependency analysis. One

version of the approach starts by constructing a strongly connected weighted directed graph with

the words in the input sentence as the nodes, each arc in the graph holding a score representing

the likelihood of a dependency link between the pair of nodes it connects. These scores are de-

rived from a dependency treebank, and can depend on features of the arc (e.g. the pair of words

involved), as well as features of the rest of the input sentence. Next the ‘maximum spanning

tree’ (the maximum scoring selection of arcs forming a single tree that spans all the vertices)

is computed, from which the best-scoring analysis can be read off. Figure 23.7 shows an ex-

ample of how this works. The way in which this version of graph-based dependency parsing

is parameterised means that the selection of each dependency link is considered independently
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Figure 23.7: A graph representing the score of each possible dependency link for the sentence
They saw some change, and the maximum spanning tree of the graph

of all the others. This is clearly an over-simplification, but even minor extensions in order to

model interactions between adjacent arcs make the computation much more costly. Another

property of the technique is that a maximum spanning tree can correspond to a ‘non-projective’

dependency structure; in such structures there are crossing dependency links. An example of a

non-projective dependency structure is given in (23.6), in which two modifiers fail to follow a

nested arrangement.

(23.6)
They

� �
?

SUBJ

saw

� �
?

MOD

some

' $
?

OBJ

change

' $
?

MOD

yesterday

' $
?

POBJ

in

� �
?

DET

the

� �
?

MOD

market

Non-projective dependencies are relatively rare in English text, but are somewhat more common

in languages with freer word order or syntactic phenomena such as clause-final verb clusters (Ze-

man et al. 2012); however since global link structure cannot be modelled, this parsing algorithm

may create non-projective dependencies even if there are none in the training data. In contrast,

in transition-based dependency parsing, to produce non-projective dependencies the procedure
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outlined at the beginning of this section has to be modified; this is either done by adding further

kinds of parsing operations, or by transforming the parser output to retrieve any non-projective

dependencies (Björkelund and Nivre 2015).

As well as approaches to dependency parsing as outlined above whose primary computations

are over dependency links, there are also parsing systems that take advantage of the fact that

there is a straightforward correspondence between projective dependency analyses and a phrase

structure trees, internally computing phrase structure trees but then converting these to depen-

dency representations for output. Such systems include the RASP system (Briscoe et al. 2006)

and the Stanford Parser (de Marneffe et al. 2006).

23.4 Feature-structure grammar parsing

Although data-driven approaches to parsing in which syntactic information is derived from tree-

banks have been successful, these approaches have some shortcomings. Firstly, most phrase

structure and dependency treebanks encode only surface grammatical information explicitly,

omitting or representing implicitly information such as ‘deep role’ in passive, raising and control

constructions—for example that they is the agent of the verb go in the sentence (23.7).

(23.7) They expect to go.

This means that parsers trained on such treebanks may be unable to return some kinds of predicate-

argument relations reliably. Secondly, although parsers that extract their knowledge of syntactic

structure from a treebank may model the grammar of the text in the treebank well, they often

do not work well on text with different characteristics; for example the Wall Street Journal text
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in the Penn Treebank contains very few questions, so a parser using grammatical information

derived purely from the treebank would not be able to parse questions accurately.

These problems have been addressed by enriching treebanks, transforming them into a more

expressive representation that makes all aspects of predicate-argument structure explicit. Ex-

amples of this approach are: CCGbank, a translation of the Penn Treebank into Combinatory

Categorial Grammar derivations (Hockenmaier and Steedman 2007); Cahill et al.’s (2008) pro-

cedure for automatically annotating a phrase structure treebank with the functional structure of

Lexical Functional Grammar (LFG; Bresnan 2000); and Candito et al.’s (2014) semi-automatic

transformation of the Sequoia French dependency treebank to add a ‘deep’ level of representa-

tion.

Another approach is to manually develop a grammar in a powerful and expressive frame-

work such as LFG or Head-Driven Phrase Structure Grammar (HPSG; Pollard and Sag 1994).

Such grammars produce precise, detailed semantic representations—but at the cost of requir-

ing an expert grammarian to develop the grammar, and the need to integrate a component for

disambiguating the analyses produced by the grammar. Developing such grammars is a labour-

intensive process, but is aided by grammar development environments which provide sophis-

ticated tools for inspecting, testing and debugging the grammar (see e.g. Copestake 2002).

CF parsing algorithms form the basis for parsing with these more expressive formalisms, but

augmented with operations over feature structures, which are used to encode detailed linguistic

information. During parsing, feature structures are combined with the unification operation. For

example, the result of unifying the feature structure (23.8a) with (23.8b) is (23.8c).
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(23.8) a.


SYN



CAT v

AGR

 PER 3

PLU −







b.



ORTH saw

SYN

 CAT v

VFORM past





c.



ORTH saw

SYN



CAT v

AGR

 PER 3

PLU −


VFORM past





Unification would fail if, in this example, the value of the CAT feature in one of the input feature

structures was not v. In contrast to the atomic, unstructured symbols of CF grammar, feature

structures allow a grammar writer to conveniently cross-classify categories and also to leave

features underspecified when appropriate. Unification is used to communicate information in-

troduced by lexical entries and grammar rules in order to validate proposed local and non-local

syntactic dependencies, and also in some grammar theories it is the mechanism through which

semantic representations are constructed.

A key property of unification is that the order in which a set of unifications is performed

does not affect the final result; therefore any parsing strategy appropriate for CF grammars (such

as one of those outlined in Section 23.2.2) is equally applicable to unification-based grammars.
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If each category is represented purely by a feature structure then the test for compatibility of

categories is unification (rather than category symbol equality), and for local ambiguity packing

one category must stand in a subsumption relationship to the other (Oepen and Carroll 2000).

Alternatively, the grammar may consist of a context-free backbone augmented with feature

structures, in which case the parsing process would be driven by the backbone part of the gram-

mar and the appropriate unifications either carried out on each complete step, or after the full

context-free parse forest had been constructed (Maxwell and Kaplan 1993; Torisawa and Tsujii

1996).

Given that treebanks invariably contain a wide variety of local tree configurations with nodes

whose syntactic category labels are only atomic, grammars extracted from treebanks tend to both

overgenerate and overaccept (that is, they return complete parses for ungrammatical input, and

return too many parses for grammatical input, respectively). Any input usually receives some

sort of parse, so coverage is not a problem. Gaps in coverage are often a problem for manually-

developed grammars, though, since they are typically more precise in terms of the fragment of the

language they cover. Coverage—and also overgeneration and overacceptance—can be quantified

with respect to a test suite (Oepen and Flickinger 1998). This is becoming increasingly important

as a quality assurance measure for parsers that are deployed in language processing applications

(Chapters 32–48).
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Further reading and relevant resources

Jurafsky and Martin’s (2008) textbook contains basic descriptions of various parsing techniques.

Manning and Schütze (1999) give a general introduction to data-driven approaches to parsing.

The second part of Roark and Sproat’s (2007) book contains a more in-depth presentation of

techniques for phrase structure parsing.

Sikkel (1997) gives detailed specifications of a large number of phrase structure parsing al-

gorithms, including proofs of their correctness and how they interrelate. Gómez-Rodrı́guez et al.

(2011) similarly present specifications of a number of dependency parsing algorithms. Kübler

et al. (2009) survey approaches to dependency parsing, focussing on data-driven transition-based

and graph-based techniques. A special issue of the journal Natural Language Engineering,

6(1), 2000 contains a number of articles on techniques for parsing with feature-structure gram-

mars.

The Association for Computational Linguistics (ACL) special interest group on parsing,

SIGPARSE, organises biennial conferences, under the title International Conference on Pars-

ing Technologies. The first such event (then titled ‘Workshop’ and with the acronym IWPT) was

held in 1989. Links to online papers and abstracts, and references to books containing published

versions of some of the papers can be found at the SIGPARSE website

http://www.cs.cmu.edu/˜sigparse/

Other, more focussed workshops have been organised on topics such as parser evaluation, parsing

of morphologically rich languages, efficiency of parsing systems, incremental parsing, parsing

with categorial grammars, parsing and semantic role labelling, tabulation in parsing, and syntac-
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tic analysis of non-canonical language.

Research into statistical techniques for parsing is frequently published in the conference se-

ries Empirical Methods in Natural Language Processing sponsored by ACL/SIGDAT, and work-

shops on Computational Natural Language Learning sponsored by ACL/SIGNLL; see

http://www.sigdat.org/

http://ifarm.nl/signll/

Parsing is also always well-represented at the major international computational linguistics con-

ferences.

There are various sources for parser training and evaluation data. The Linguistic Data Con-

sortium (LDC) distributes the Penn Treebank, large treebanks for Arabic, Chinese, and Czech,

and data from the CoNLL-X shared task on multilingual dependency parsing, covering 10 further

languages (Bulgarian, Danish, Dutch, German, Japanese, Portuguese, Slovene, Spanish, Swedish

and Turkish). Also available is a translation of the Penn Treebank into a corpus of Combinatory

Categorial Grammar derivations (CCGbank).

http://www.ldc.upenn.edu/

Other large treebanks under active development include the French Treebank and the LinGO

Redwoods Treebank.

http://www.llf.cnrs.fr/fr/Gens/Abeille/French-Treebank-fr.php

http://moin.delph-in.net/RedwoodsTop
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The Universal Dependencies (UD) initiative is developing a single coherent framework for anno-

tation of similar syntactic constructions across languages; UD treebanks are available for around

50 languages.

https://universaldependencies.github.io/docs/

The easiest way to gain practical experience with natural language parsing is to obtain one

of the number of publicly-available grammar development/parsing systems. With a little effort

some of them can be retrained on new data or new grammars loaded, and others can be cus-

tomised to some extent by adding new lexical entries for example.

• Berkeley Parser: https://github.com/slavpetrov/berkeleyparser

• Charniak-Johnson Parser: https://github.com/BLLIP/bllip-parser

• Link Grammar Parser: http://www.abisource.com/projects/link-grammar/

• LKB: http://moin.delph-in.net/LkbTop

• MaltParser: http://maltparser.org/

• MSTParser: http://www.seas.upenn.edu/˜strctlrn/MSTParser/MSTParser.html

• RASP: http://users.sussex.ac.uk/˜johnca/rasp/

• Stanford Parser: http://nlp.stanford.edu/software/lex-parser.shtml
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Glossary

backtrack: to explore a new search path by undoing decisions taken previously and choosing

different outcomes.

chart: a table storing completely and/or partially recognised constituents during a parse.

context-free backbone: an approximate context-free representation of a more fine-grained phrase

structure grammar, without feature structure (or other) augmentation.

context-free phrase structure grammar: a way of defining the syntactic structure of a lan-

guage using rewrite rules in which each type of constituent is represented by a symbol

(e.g. ‘NP’).

dependency grammar: a way of defining the syntactic structure of a language by specifying

how words are related each other by directed dependency links.

dependency structure: a representation of the syntactic structure of a sentence in which each

word is linked to the word that syntactically governs it.

deterministic: exploring a single search path and not backtracking.

disambiguation: selecting a plausible analysis for an ambiguous input.

feature structure: a recursively structured matrix of features and values encoding the grammat-

ical properties of a constituent.

gold standard: a collection of test inputs, each manually annotated with the output desired from

a natural language processing system.
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grammar development environment: a computer system that supports a grammarian in writ-

ing, testing and maintaining a computational grammar.

history-based model: a probabilistic model for disambiguation using information from the his-

tory of parse decisions.

local ambiguity packing: representing a set of constituent phrases of the same syntactic type

covering the same part of the input as a single entity in a parse forest.

non-deterministic: exploring more than one search path.

overacceptance: erroneously returning too many parses for a grammatical input.

overgeneration: erroneously returning one or more parses for an ungrammatical input.

parse forest: a compact representation of a set of complete parses, typically using local ambi-

guity packing and subtree sharing.

parsing: the process of analysing an input with the aim of producing one or more syntactic

analyses (parses).

phrase structure tree: a representation of the syntactic structure of a sentence which records

the constituent phrases and how they are structured hierarchically.

probabilistic CF grammar: a CF grammar in which each rule has an associated probability of

being applied, usually derived from a treebank.

subsumption: a test determining whether a feature structure is equivalent to or more general

than another.
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subtree sharing: representing a sub-analysis only once in a parse forest even if it forms part of

more than one higher level constituent phrase.

test suite: a set of test inputs used to monitor progress during development of a natural language

processing system.

treebank: a syntactically annotated text corpus.

unification: a test determining whether two feature structures are compatible; if so, the result of

merging their contents is returned.

well-formed substring table: see chart.
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Abbreviations / Acronyms

CCG: Combinatory Categorial Grammar

CF: context-free

CYK: Cocke-Younger-Kasami

HPSG: Head-Driven Phrase Structure Grammar

LFG: Lexical Functional Grammar

PCFG: probabilistic context-free grammar

WFST: well-formed substring table
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