
The ACQUILEX Lexical Database System:
System Description and User Manual

John Carroll
jac@cl.cam.ac.uk

University of Cambridge Computer Laboratory
Pembroke Street, Cambridge CB2 3QG, UK

The Lexical Database System (LDB) is a computer system which provides efficient and
flexible database-like access to multiple mono- and bilingual machine-readable
dictionaries. It is configurable to new dictionaries, and supports a user in formulating
queries to retrieve subsets of entries from one or more dictionaries. It forms part of the
basic infrastructure software of the Esprit ACQUILEX project.

1. Introduction

The Lexical Database System (LDB) is a computer system which provides efficient and flexible database-
like access to machine-readable dictionaries. The system has been in development at the University of
Cambridge Computer Laboratory since 1986. The first version, described by Alshawi et al. (1988), was
implemented in InterLisp-D on Xerox workstations and supported access exclusively to the Longman
Dictionary of Contemporary English (LDOCE) (Procter, 1978). A number of studies which used this
system are reported in Boguraev and Briscoe (1988).

In 1989 the system was re-implemented: it was necessary to move away from specialised
workstations to general-purpose hardware, and to take account of the needs of the ACQUILEX project (a
collaborative multilingual research project using both mono- and bilingual machine-readable
dictionaries) which was about to start. The new system builds on the experience of using the first version,
and also uses some of its basic implementational techniques. This second version of the LDB forms part of
the basic infrastructure software of the ACQUILEX project.
As part of the re-implementation, the LDB was restructured to form a ‘shell’ for accessing machine-
readable dictionaries (MRDs). This freed the LDB from being tied to a particular instance of a single
MRD (as was the first version of the LDB to LDOCE), and enabled it to be configured to access new ones.
Groups in the ACQUILEX project have set up several MRDs for access by the LDB1. Several further
dictionaries containing information derived from these base MRDs (but augmented and enriched with
new information) have been created and also set up for access.

The LDB is designed to be easy to use and user-friendly. On appropriate machines it may be driven
almost entirely by mouse, using graphical displays, windows and pop-up menus to display data, results,
user commands and choices. It has powerful look-up options (including conjunction, disjunction and
negation operators, and wildcarding) making it easy to extract desired classes of words from an MRD. The
LDB also provides a programmatic interface, allowing applications conveniently to retrieve data from
dictionaries.

1.1 Looking up by Headword

The most straightforward way of accessing a dictionary with the LDB is to look up entries by headword.
(Look-up by headword is similar to the traditional way of using printed dictionaries). Given a word, the
LDB locates all entries which have that word as part of their homograph field, and displays them all, or just
one that the user chooses. There may be several such entries since the same word may have more than one

2

1 MRDs set up for access to date include LDOCE, the Longman Lexicon, the Oxford Advanced Learner’s
Dictionary of Current English, the MRC psycholinguistic database, monolingual Dutch and bilingual Dutch-
English and English-Dutch dictionaries published by Van Dale, and the Vox Spanish, Spanish-English and
English-Spanish dictionaries.

homograph, part of speech, or be part of one or more compounds. For example, the word sound in LDOCE
has 1 adjective, 1 adverb, 2 noun and 2 verb homographs, and forms part of 5 compounds (e.g. sound
barrier , sound off).

The LDB performs headword look-up efficiently using a (tree-structured) index file, since the size of
MRDs (typically of the order of 10 Megabytes upwards) renders inadequate ad hoc methods of access
such as sequential scanning of dictionary files in secondary storage. (A powerful virtual memory system
might be able to manage simple modes of access by reading entire dictionaries into memory; however, this
is not a general solution and is expensive in machine resources, particularly when having to deal
simultaneously with more than a couple of average sized MRDs).

Look-up by headword is adequate for some applications, such as on-line extraction of syntactic or
semantic information by a parser; however, a more flexible mode of access is usually required which is
sensitive to the contents of entries rather than just to their headwords. Here the MRD is viewed as a
database , from which entries may be retrieved in response to queries.

1.2 The Two-Level Dictionary Model

Boguraev et al. (1991) identify four classes of dictionary database models. The first of these follows the
well-established notion of relational databases, mapping dictionary entries into a set of tables. Although
this relational model of the lexicon can take advantage of established database technology, it is argued
that it is unsuitable for mapping dictionaries into, given the intricate nature of, and subtle interactions
within, lexical data. The second class is the hierarchical model which employs a structured representation
to encode the complex structural relationships between the fields of entries (exploiting the insight that
dictionary entries can naturally be regarded as shallow hierarchies with an indefinite number of attributes
at each level). The third class is the tagged model; in contrast to the hierarchical model which fails to
preserve the visual, human-readable interrelationships amongst the contents of dictionary entries, this
model places the emphasis on preserving all of the information associated with the original printed form
of the dictionary entry, but in the process fails to offer a natural way of making explicit statements
concerning the implicit structural relationships of the elements within the entry.

The fourth class of dictionary model, the two-level model, combines the advantages of the
hierarchical and tagged models and in doing so avoids their main drawbacks. This is the model
implemented in the LDB. In the two-level model, the source dictionary is the primary repository of lexical
data, and, separately from the dictionary source, sets of interrelated indices encode all statements about
the structure and content of the data held in the dictionary. In the LDB, setting up (or ‘mounting’) a new
MRD for access consists mainly of defining what these indices are, how they are to be extracted from
entries, and the relationship between the information held in the indices and the high-level query interface
presented to the user. The LDB automatically creates special files to hold the index information.

3

Thus, for example, the entry for the word cobra appears in the printed version of LDOCE as:

co·bra /'kQbrE, 'kEu- || 'kEu / n a type of African or
Asian poisonous snake that can spread the skin of
its neck to make itself look bigger and more
dangerous

The internal ASCII text representation of this in the MRD source file is:

((cobra) (1 C0173300 < co *80 bra) (3 "kQbrE , "kEU- = "kEU-) (5 n <)

(7 0 < < AMX- < ----A--V) (8 a type of African or Asian poisonous

snake that can spread the skin of its neck to make itself look bigger

and more dangerous))

Mounting the dictionary could extract the following constraints (on syntactic category, ‘subject code’ and
definition words) from this entry; they would be added to an index file and associated with a pointer to the
entry for cobra :

(@C n) (@S AM X-)

(@W A) (@W T Y P E) (@W O F) (@W A F R I C A N) (@W O R) ...

The two-level organisation means that the information about the definition word (type) occurring in the
entry (for cobra) is stored in an index file and kept separate from the entry itself. The index explicitly
represents the structural relationship between definition words and the entries in which they appear; this
relationship would be absent in an implementation using the tagged model. The human-readable
interrelationships within the entry stay visible, though, in contrast to an hierarchical model
implementation, since the entry itself is still available.

In fact, since the original dictionary text remains available after initially mounting an MRD, the
opportunity exists for the incremental addition of further indices, perhaps taking into account types of data
in entries which had been ignored in previous indices, or expressing more complex structural
relationships between data already encoded in them. Such additions can even be opportunistic, with more
detailed analyses of the dictionary data (and the creation of the indices and associated constraints resulting
from these analyses) being driven by the needs of the current research activity.

4

1.3 Looking up by Query

Once a dictionary has been mounted, it may be ‘loaded’ into an LDB session. Loading a dictionary causes
its index files to be located and prepared for use, and menus of possible values for query attributes to be
constructed. Once a dictionary has been loaded, the user may interactively formulate queries relating to
that dictionary, and then for each query ask for all the entries which satisfy the query to be retrieved.
(Section 3 outlines the extensive facilities the LDB provides for creating and modifying queries). Several
dictionaries can be loaded in the same session: they are all available for access concurrently.

A query consists of a hierarchical collection of attributes with associated values; for example the
query whose textual representation is

[[syn [cat n]]

[sem [word type]]]

and graphical representation is

n

cat

syn

type

word

sem

query

has two attributes at the top level: syn and sem ; the attribute cat is beneath syn with value n , and word
beneath sem with value type . The query means “return all entries which are nouns and whose definition
contains the word type”.

Looking up a query is a two-stage process. The LDB first maps the query onto a collection of
constraints. (As mentioned above, the final stage in mounting an MRD involves defining the format of
queries that the user can construct—that is, the possible attributes and their hierarchical
organisation—and how these queries correspond to the indices created for the dictionary). For the query
above (and following on from the previous example) the constraints would be:

(@C n) (@W T Y P E)

The LDB then determines which of these are the most discriminating (i.e. which have the lowest
frequency, based on statistics which were gathered during the creation of the index files), and finds an
initial set of entries which satisfy this subset of the constraints. In this example, a definition containing

5

the word type would be more discriminating than just the entry being for a noun. The LDB then
retrieves this set of entries from the source dictionary, checks which ones satisfy the remainder of the
(less discriminating) constraints, and returns the ones which do as the final result. In the example,
entries containing the word type might include cobra (as in “a type of African or Asian poisonous
snake ...”) and subsume (“to include as a member of a group or type”). The entry for cobra would
pass the test for being a noun, but subsume would fail, so the final result would contain the former
entry but not the latter. This process is summarised in figure 1 below. One of the index files that the
LDB creates when a dictionary is mounted is a tree-structured file associating each possible constraint
with its frequency of occurrence (and also with the location in a second subsidiary index file of the
pointers to the entries from which it originates). Finding a particular constraint in this file involves
just traversing a disc-resident discrimination network: once the constraint is found, its frequency of
occurrence is immediately available. The portions of the network in the file that have been visited are
cached in main memory for remainder of the LDB session, improving response time for subsequent
queries involving the same constraint.

 [[syn [cat n]]
 [sem [word type]]]

 (@C n) (@W T Y P E)

translate query to constraints

 retrieve entries on: (@W T Y P E)
test retrieved entries on: (@C n)

... cobra ... subsume ...

partition constraints

retrieve entries

... cobra ...

test retrieved entries
 : :
cobra (@C n) ?
 : :
subsume (@C n) ?
 : :

Figure 1. Steps performed during lookup of a query.
The partition of the constraints in the query into those used to form the initial candidate set of

6

entries and those used to test these entries after they have been retrieved has a large influence on
query look-up times. The most efficient strategy involves using the most specific constraints for
looking up entries, more specific constraints ultimately yielding fewer entries. The optimal number of
look-up constraints to use is determined by balancing the expected time taken in reading pointers
(which increases with the number of look-up constraints) against the expected time taken in
subsequently reading entries and testing them against the remaining constraints (which decreases with
the number of look-up constraints2). The expected times depend on the speed of the machine running
the LDB, so when the system starts up it runs a small test to gauge how fast the machine is.

It can take a significant amount of time to look up complex queries that return a large number of
results. The LDB therefore allows the user to ask for just statistics giving counts of the number of
entries satisfying each constraint in the query, the partitioning of the constraints into those that would
be used for look-up and those for testing, and an estimate of the total number of results and time that
it would take to compute them. If this estimate is satisfactory, the user can go ahead and ask for a full
look-up, otherwise the query can be refined and the process repeated. The LDB, by default, computes
the results in a sense-based (rather than an entry-based) fashion: that is, it returns just the senses
which satisfy the query, not the whole entry (unless of course all the senses in the entry satisfy it). The
LDB provides a number of possible ways of presenting results: after informing the user of how many
entries and senses satisfied the query, the LDB can be asked to display the headwords of all the
results, of a sample of them, of the first one, or nothing. In addition, a user-defined option allows any
portion of result entries to be displayed rather than simply the headword, and results can also be
returned as entry pointers to allow arbitrary set operations (e.g. union, intersection, set difference) to
be applied to them.

1.4 Derived Dictionaries

The LDB allows several dictionaries to be loaded in the same session and makes them available for
access concurrently. The user may at any one time have an arbitrary number of queries under
construction for any number of the currently loaded dictionaries. A single query may usually only be
applied to a single dictionary; however, a query may be applied to two or more dictionaries in a single
operation if all of the dictionaries concerned are derived from a single ‘source’ dictionary. (In fact,
one of the dictionaries may be the source itself). Such derived dictionaries will typically consist of an
elaboration of a subset of the information in the source dictionary. Derived dictionaries make it
possible to integrate information from diverse lexical (and non-lexical sources), and when several are

7

2 An entry will only be read if there is a pointer to it in every pointer list. Therefore if n look-up constraints are
used, returning pointer lists of length L1, L2, ... Ln, then the expected number of entries to be read (assuming
statistical independence between lists) is L1L2...Ln/D2...Dn, where D i is the largest possible frequency of L i.
This decreases with n because Li cannot exceed Di and in fact is normally much smaller.

queried together they essentially behave as a single enriched store of lexical information.
An example of a derived dictionary (called Ldoce_inter) is a lexicon that we have derived semi-

automatically from LDOCE, containing syntactic information in a format and level of detail suitable
for use by a Natural Language parser. Ldoce_inter contains distinctions not explicitly present in
LDOCE, for example marking verbs appropriately as ‘ergative’ or ‘unaccusative’. However, since
Ldoce_inter is derived from LDOCE, a single query can refer sumultaneously both to it and to
LDOCE. Thus the query

[[sem [box 5H]]

[syn

[i1

[Cat V]

[Takes NP NP]

[Type 2 Ergative]]]]

refers to ‘box code’ information in LDOCE (that the subject of a verb must be human) and to
information held in Ldoce_inter (that the verb must take subject and object noun phrases, be ergative
and a two-place predicate).

The LDB also makes it straightforward to create new derived dictionaries automatically based on
the entries returned from looking up a query.

1.5 Hardware Requirements and Distribution

The LDB is written entirely in Common Lisp, and will run on any machine which has an
implementation of this language. There are implementations of Common Lisp for most UNIX
machines, the Apple Macintosh family, and IBM PC-compatibles running Windows 3 or OS/2. To
date the LDB has been tested under Austin Kyoto Common Lisp, Lucid CL, Franz Allegro CL and
Procyon CL. At present, it supports a graphical interface only when running under Procyon CL (on
either the Macintosh or PC), or under Franz Allegro CL with Common Windows; however a textual
TTY-style interface with the same functionality is available in all implementations.

The LDB is currently in use at the ACQUILEX project sites, and also in a number of other
university and commercial research departments. It is available for research purposes in either binary
or source code form. Contact the author at the University of Cambridge Computer Laboratory for
details.

8

2. Queries

2.1 Query Structure

As mentioned above, in the LDB system dictionary queries can be represented in two forms: textual
and graphical. In both forms they are trees whose branches are attribute names and whose leaves are
attribute values. Thus in the query whose textual form is

[[syn

[gcode T5a]]

[pron

[nsylls 2]

[s1 [onset p]]]]

and whose graphical form is

T5a

gcode

syn

2

nsylls

p

onset

s1

pron

query

the attribute names are syn , gcode , pron , nsylls , s1 and onset , (of which gcode , nsylls and
onset are terminal attributes) and the attribute values are T5a , 2 and p.

2.2 Attribute Names

In LDOCE, attribute names form a hierarchy, with syn (syntax), sem (semantics) and pron
(pronunciation) at the top. As an example, at Cambridge when we mounted LDOCE we set up its
attribute name hierarchy as follows:

9

syn

cat syntactic category
c1 first compound field
c2 second compound field
gcode grammar code
label label field
multiple number of words in headword field, and whether hyphenated

sem

antonym from the definition field (after ‘—opposite’) (lower-cased)
box box codes
defn ‘implicit’ x-refs and ‘defining word’ stems in definition (upper-cased)
order order of words in definition
subj subject codes
synonym taken from the definition field (lower-cased)
word actual words (excluding cross-references) in definition (lower-cased)
xref ‘explicit’ x-refs in definition (after ‘—see’ etc.) (upper-cased)

pron

nsylls number of syllables
s1 , s2 , s3 , etc. where si is the ith syllable

stress stress for this syllable
onset phonemes at the syllable onset
peak phonemes at the syllable peak
coda phonemes at the syllable coda

Given this hierarchy, we can now give the interpretation of the query which appears above:that the
grammar code is T5a , there are 2 syllables, and the onset of the first syllable is the single phoneme p.

The basic values for attributes are usually atomic tokens (e.g. numbers, dictionary codes, or
words) as in the example. More complex types of value may be made out of these basic values,
however, in order to express conjunctive and disjunctive queries. A conjunction of values (where this
meaningful) is indicated by a sequence of the individual values; for example

[[syn

[gcode T5a T1]]]

means the co-occurrence of the two grammar codes, T5a and T1 . (An entry which satisfies this query
may, however, contain other grammar codes as well as these). A disjunction of values is indicated in
the textual form of query by the values being enclosed in parentheses, prefixed by OR ; in the graphical
form a disjunction is indicated by the insertion of an node labeled with OR , e.g.

10

[[syn

[gcode (OR T5a T1)]]]

T5a T1

OR

gcode

syn

query

Negation of a value is indicated by NOT . A conjunction of values for an attribute is meaningful only
when the corresponding field in the dictionary may contain more than one value. Most fields are of
this type in LDOCE, the main exceptions being the pronunciation fields. A disjunction of values,
though, is meaningful for all fields.

2.3 The Constr and Headword Attributes

Independently of any dictionary, two top level attributes, headword and constr (short for
constraint) are always available. The headword attribute may have as value a single word (possibly
containing wildcards), or a negation or disjunction of words. Only entries which have a word in their
headword field which matches the value of the headword attribute will be retrieved.

The attribute constr provides a way of expressing queries which cannot be formulated as a
simple set of attributes and associated values. This attribute can have one or more (conjunctive)
values, each either a dictionary index specification or a call to Lisp. OR and NOT can be used to modify
these values. For example, the query

[[sem

[subj BV]]

[constr (OR "(@S Z A)" "(@W #\a #\l #\c #\o #\h #\o #\l #\i #\c)")]]

in LDOCE would return those entries which had the subject code BV (beverages) and which either had
the subsidiary subject code ZA (alcoholic drinks) or contained the word-form alcoholic in their

11

definition.
Lisp calls as constr attribute values are useful when used to test and compare the values of

‘named’ wildcards described in the next section. Lisp calls may also be used to accept or reject a
complete entry, since during query lookup the Lisp form is called in a lexical environment containing
the variables entry and sense , bound to the entry and sense number currently being considered. The
call returning true indicates that the test has succeeded, and false that it has failed.

2.4 Attribute Values

The attribute values that appear in queries in most cases look exactly like their counterparts in the
actual dictionary. The exceptions to this rule for LDOCE are the box code, subject code and the
pronunciation fields. Pronunciation fields are different because a structure has been imposed on them
which is not made explicit in the dictionary; subject codes are split into two pairs of letters to reflect
the fact that the LDOCE coding system interprets them as two pairs; and box codes are different to
make it easier to type them in and less prone to error. In the dictionary, a box code appears as a ten-
slot vector, for example

--I-H----T

In a query, the slots containing dashes are ignored. Each remaining slot has its index (a number from
1 to 10) paired with the character in it; so the textual query corresponding to the example dictionary
box code value above is

[[sem

[box 3I 5H 10T]]]

(This query would also correspond to a dictionary box code with values for some of the remaining
unspecified slots, e.g. --I-H--X-T, a similar code except for the addition of X in slot 8).

Attribute values may be wildcarded: ? as part of a value matches any single sub-part, and * any
sequence of sub-parts. Additionally, a ‘named’ wildcard starting with ? followed by a number (e.g.
?3) acts like ? in that it matches a single sub-part, but it also ‘captures’ what it matches. Further
occurrences of the same named wildcard in the query will match only what the first one matched3 .

12

3 Matching is non-deterministic, in that if a given named wildcard could match in more than one possible way,
then all of these ways are retained for later attempts to match further occurrences of the wildcard.

2.5 Query Interpretation

The dictionary system by default computes the answers for a query in a sense-based (rather than an
entry-based) fashion: that is, it returns just the senses which satisfy the query, not the whole entry
(unless of course all the senses in the entry satisfy it). This behaviour can be changed, though, by
resetting the value of a flag described later.

Before displaying the results of looking up a query, the system asks how many of the entries
retrieved should be printed out. There are four alternatives: none, the first one (in alphabetic order), a
random sample of one hundred, or all of the entries. In any case, by default, only the headword(s),
homograph number and sense number are shown, not the complete entries.

13

3. The User Interface

Corresponding to the two representations for queries, textual and graphical, there are two modes of
interaction with the dictionary system. In the first, the ‘TTY interface’ (section 3.1), queries are
displayed textually, and commands are issued to the system by typing them. In the second, the
‘graphical interface’ (section 3.2), queries are represented graphically, and commands are issued by
selecting them from menus.

3.1 Using the TTY Interface

The first thing that must be done before using the TTY interface is to load a dictionary, using the
‘new’ command described below.

In all cases, command and attribute names may be shortened to the minimum unambiguous
sequence of characters. For example, when constructing an LDOCE query, syn may be typed as sy ,
since it is the only attribute name which starts with the characters ‘sy’. It may not be shortened to s ,
though, since there would then be an ambiguity between it and sem , s1 etc.

Add <path> <value>

Adds a value for the given path through the tree representing the current query. A path is a list of
attribute names (enclosed in parentheses) starting from the root of the tree and ending at a terminal
attribute. The path to the value of the onset of the first syllable in

[[pron

[nsylls 2]

[s1 [onset p]]]]

is

(pron s1 onset)

A path may be shortened by removing successive elements from the beginning of the list, as long as it
remains unambiguous. In this case, pron may be removed (since s1 is always dominated by pron in
the hierarchy), but s1 may not be removed as well because otherwise there would be nothing to say
which syllable the onset was of. To make typing them easier, a path consisting of a single attribute
name does not have to be enclosed in parentheses. For example, the following commands are
equivalent

14

add (pron s1 onset) p

add (s1 onset) p

Or <path> <value>

Ors a new value into one already existing for the given path. More than one new value may be
specified in this command.

NOt <path>

Negates all atomic values in the given path, i.e. if the value of a path is a conjunction or disjunction,
the negation appears at the lowest level, inside both the conjunction and disjunction.

Delete <path>

Deletes the given path and its associated value from the current query.

Undo

Undoes the last change made to the current query. A further undo restores the query to what it was
before the first undo.

View [<path>]

Displays the current query. The argument to this command is optional: if supplied, just the path
specified is displayed, otherwise the whole query.

Lookup [<path>]

Looks up the current query in the dictionary. If a path argument is given, then the lookup is performed
just on that portion of the query.

FIle [<path>]

Looks up the current query, like the lookup command, but puts the results in a file. The user is
prompted for the name of the file.

15

STatistics [<path>]

Outputs statistics concerning what would happen if the current query were looked up in the
dictionary, but does not perform the actual lookup.

Entry <word>

Finds the dictionary entry for the given word, and prints the definition.

Print

Prints the definition of the last word looked up, by either the entry or the lookup command.

Template

Constructs a new query from all the information in the definition of the last word looked up.

NEw

Loads a new dictionary (together with its index and menu files) into the system. This command must
be issued before a dictionary can be queried or entries looked up in it. Any number of dictionaries can
be loaded in single LDB session: they will all be available for querying, but in the TTY interface only
one query can be under construction at any one time. The ‘switch’ command specifies which (already
loaded) dictionary is to be queried.

SWitch

Allows the user to switch dictionaries if more than one is available. All subsequent queries and
requests for lookup of entries will apply to the dictionary that has been switched to.

Clear

Clears the current query.

16

Read

Reads a query in from a disc file. The user is prompted for the name of the file. If there is an already
existing query, the query in the file is unified with it.

Write

Writes the current query to a disc file, c.f. the file command.

SEt

Sets the value of a dictionary system flag. There are five such flags: ‘typeset entries’, ‘explain tests’,
‘sense-based retrieval’, ‘print query result function’ and ‘derived query result function’ with initial
values ON, OFF, ON, OFF and OFF respectively.

‘Typeset entries’ controls whether entries are printed in the form they appear in the dictionary source
(OFF), or printed more readably (ON)

‘Explain tests’, when ON, causes tracing information to be output by the system about which entries
fail which tests on query lookup.

‘Sense-based retrieval’ controls whether query lookup takes notice of sense divisions in entries. When
OFF, if one sense in an entry satisfies a constraint, then the whole entry is taken as satisfying it.

‘Print query result function’ may be OFF, or have as value the name of a Lisp function. If the value is
a function, the function is called on each entry that results from query lookup; the function is expected
to print part or all of the entry. The function is passed three arguments: the actual entry, a list of the
sense numbers in the entry for which the query succeeds, and the Lisp stream to which the function is
meant to print.

‘Derived query result function’ may be OFF, or have as value the name of a Lisp function. If the
value is a function, it is called in exactly the same way as a ‘print query result function’, the
difference being that the entries it prints are incorporated into a new derived dictionary (section 3.3).
The ‘file’ command should be used to look up the query so that the derived dictionary is output to a
file, rather than to the screen.

FLags

Displays the values of the dictionary system flags.

17

Help

Displays a page of help information about attribute names and dictionary system commands in the
current dictionary.

Quit

Quits from the dictionary system.

3.2 Using the Graphical Interface

The graphical interface provides an alternative, and in general, more convenient mode of working
than the TTY interface (although there are facilities such as ‘set’, ‘help’ and ‘quit’ which are available
only in the TTY interface).

Before using the interface, a dictionary has to be loaded: in the pull-down menu ‘Ldb’, the item
‘New Dict’ pops up a further menu asking for the name of the dictionary to be loaded. Selecting one
of these names causes the dictionary of that name to be loaded. When this is completed, two new
items appear on the Ldb menu: one for making a new query, and another for directly looking up an
entry in that dictionary, given its headword. The ‘New Dict’ command can be issued repeatedly to
make several dictionaries available in a single LDB session. For example, after selecting ‘Ldoce’ as
the dictionary to be loaded, the Ldb menu will appear as follows:

Selecting ‘New Ldoce Query’ prompts for a place on the screen to put a window (by drawing a
‘ghost’ window which moves with the mouse, and waiting for the mouse button to be clicked to
indicate that the user is satisfied with the position of the window). This window can contain a query.
The query initially contains just a node called ‘query’. Clicking on this node pops up a menu with
several items on it:

18

The next section describes what the commands in this menu do.

3.2.1 Graphical Interface Query Node Menu Commands

Add

Adds an attribute (selected from a further pop-up menu) to the query.

Lookup

Looks up the query in the dictionary. The user is prompted to position a new window, and lookup
statistics and results are put in that window. The results window is associated with the query window,
and output from subsequent lookups and calls for statistics will automatically go into the window.
Double-clicking on a word in the results window causes a new window to be popped up containing
the definition of that word.

Statistics

Outputs statistics concerning what would happen if the query were looked up in the dictionary, but
does not perform the actual lookup. Prompts for a new window if necessary, as above.

Clear

Clears the query.

19

Undo

Undoes the last change to the query.

Template

Asks for a word in the dictionary, looks it up, extracts all the information in it that is indexed and
makes a query out of this information. The query is the most specific one that would return this word
as a result.

Read, Write

‘Read’ asks for the name of a file, which is expected to contain a query in textual form. The query in
the file is then unified with the query currently in the window. ‘Write’ outputs the query to a file in
textual form.

Print

Prints the query on the currently-selected system printer.

3.2.2 Graphical Interface Attribute Node Menu Commands

Attribute nodes (i.e. nodes below the top ‘query’ node) pop up similar menus when clicked, but with
fewer items: just ‘add’, ‘lookup’, ‘statistics’ and ‘delete’. ‘Lookup’ and ‘statistics’ are similar to the
commands on the query node, except that they apply only to the part of the query below the selected
node. ‘Add’ pops up a menu of the possible values for that attribute. A value which has a sub-menu
may be selected by selecting the top (blank) item in the sub-menu. ‘Delete’ deletes the node (along
with all those which are below it). These menus are illustrated below:

20

3.2.3 Graphical Interface Value Node Menu Commands

Nodes representing the value of an attribute, when clicked, pop up the menu:

21

‘Insert OR’ inserts an OR node between the value node and the attribute node just above it. A
disjunction of several values can then be formed by adding further values below the OR node. ‘Insert
NOT’ similarly inserts a NOT node above a value node. ‘Delete Values’ deletes the value node and
all its siblings; ‘Delete’ deletes just the node itself.

3.2.4 Graphical Interface Shortcuts

On the Macintosh, the generic ‘Cut’, ‘Copy’ and ‘Paste’ clipboard commands can be used in query
windows: they apply to the textual form of the whole query. They allow a complete query to be
copied out of a graphical window and pasted into text window, or indeed into another graphical
window (forming a new query: the result of unifying the query in the clipboard with the query
originally in the window).

A quick way of deleting a node is to click on it with the Command Key (‰ on the keyboard)
depressed. Holding the Option Key down while clicking on a terminal attribute node pops up the
menu of possible values, bypassing the menu containing the lookup and delete commands. If the
Option Key is depressed when double-clicking on a word in the results window (to bring up its entry),
a dialog box pops up asking for an alternative dictionary in which to look up the word.

If the screen is getting cluttered with windows containing entries for words, then a quick way to
close them all is to select one of them and invoke ‘Close All’ from the pull-down ‘File’ menu.

3.3 Derived Dictionaries

The LDB system (in circumstances detailed below) allows the user to apply a query to two or more
dictionaries simultaneously. The facility depends on the concept of a derived dictionary.

A derived dictionary, as the name suggests, is a dictionary which has been created using another
dictionary (the ‘source’ dictionary) as a starting point. Each entry in the derived dictionary will have
been computed from the corresponding entry in the source dictionary (i.e. the first entry in derived
dictionary must correspond to the first entry in the source, and so on; similarly with the senses in each
entry). A derived dictionary entry will consist of the source entry headword and typically an
elaboration of a subset of the information in the source entry, for example a parsed representation of
the text in its definition fields.

To query a source – derived dictionary pair simultaneously, the source dictionary should be
loaded, followed by the derived dictionary. The LDB system shows queries to the dictionary pair as
being to a single, notional, dictionary called <source name>/<derived name> . So when using the
TTY interface, you should ‘switch’ to the dictionary called this before starting to construct a query. In

22

the graphical interface, the LDB system adds to the Ldb menu an appropriate ‘New Query’ command
for this notional dictionary when the derived dictionary is loaded.

As an example, if a dictionary called ‘Ldoce_sem’ has been derived from ‘Ldoce’, then loading
‘Ldoce’ followed by ‘Ldoce_sem’ into an LDB session will result in the Ldb menu appearing as

Selecting ‘New Ldoce /_Sem Query’ from this menu will open a window in which a query can be
built which will be applied simultaneously to both the ‘Ldoce’ and ‘Ldoce_sem’ dictionaries.

23

4. Dictionary-Specific Commands

4.1 LDOCE

4.1.1 Graphical and TTY Interface Commands

All the commands in this section are available both from the TTY interface and from the command
menus of appropriate nodes in the graphical interface.

Rotate Order

Rotates the words in an order constraint. For example, rotating the value of the order attribute in the
query [[order of a type]] would result in [[order a type of]] .

Ordering Constr

Automatically constructs a Lisp call as a constr attribute value specifying the maximum distance (in
units of words in the text of a dictionary definition) between one word and the next given in the
order part of a query. The command prompts for which words in the order part of the query are to be
constrained, and the maximum distance by which they may be separated.

Broaden <path>

Works on the pronunciation part of a query in LDOCE, changing the current value of the terminal
attributes onset, peak and coda into broad class. For example, the command

broaden s1

applied to the query

[[pron

[s1 [onset k w]]]]

would change it into

[[pron

[s1 [onset (OR b d g k p t) (OR r l w j)]]]]

The whole value of the pronunciation attribute, just one syllable, or a single onset, peak or coda may

24

be broadened with a single command, by specifying the path in the command as pron , s1 etc., or
onset etc. respectively.

4.1.2 TTY Interface-Only Commands

eXplain/eXtract <attribute>

Extracts the value of the given attribute from the definition of the last word looked up, and prints it
out with some explanation text. In LDOCE the attribute should be one of gcode , box , subject ,
definition , or word .

Z <attribute> <value>

Given the name of an attribute (in LDOCE, one of gcode , box or subject) and a value for it, the
command prints an explanation of what the value means, e.g. for z gcode T1 , the command would
print

T1:

transitive verb

followed by direct and maybe indirect object

25

Acknowledgements

The LDB adopts several of the DBMS implementation techniques employed by Hiyan Alshawi,
Branimir Boguraev and David Carter in the original LDOCE MRD access system. Some of the code
used to mount LDOCE is a direct translation of InterLisp code written by David Carter. Thanks to
Ted Briscoe, Ann Copestake and Antonio Sanfilippo, other members of the ACQUILEX project, and
to Tara Davis and James McQueen for reporting bugs and suggesting improvements to the LDB.

References

Alshawi, H., B. Boguraev & D. Carter (1988) ‘Placing the dictionary on-line’ in B. Boguraev & E.
Briscoe (eds.) Computational Lexicography for Natural Language Processing , Longman,
London, pp. 41–63.

Boguraev, B. & E. Briscoe (eds.) (1988) Computational lexicography for natural language
processing , Longman, London.

Boguraev, B., J. Carroll, E. Briscoe & A. Copestake (1992) “Database models for computational
lexicography.” In Proceedings of EURALEX-90, Biblograf, Spain, 59–78.

Procter, P. (ed.) (1978) Longman dictionary of contemporary English , Longman, London.

26

