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Abstract
The genetic algorithm is simplified to a minimal form which retains selection, recombination
and mutation. This introduces the idea of bacterial recombination, or infection, as a substitute

for inheritance from parents.



The Microbial Genetic Algorithm

Abstract

The genetic algorithm is simplified to a minimal form which retains selection, recombination and
mutation. This introduces the 1dea of bacterial recombination, or infection, as a substitute for

inheritance from parents.

1 Background

Genetic Algorithms (GAs) come in many shapes and flavours, and it is of interest to work out
the minimalist algorithm which still can be considered a GA.

I shall take the minimum requirements to be the use of a population, with selection such that
later members of the population tend to have inherited genetic material from fitter ancestors; this
genetic material to be subject to recombination and mutation. Evolutionary algorithms can
use mutation only (without recombination, as in some Evolution Strategies) or recombination
only (without mutation as in some Genetic Programming); but T am assuming that a GA uses
both.

Classically this has been achieved through the use of a generational system. From one gener-
ation a parental pool 1s selected with probabilities based on their fitnesses, or scaled fitnesses, or
ranking. Offspring are generated from pairs of parents, using 1-point, 2-point, uniform or some
other variety of crossover. The offspring undergo mutations and then form the next generation.

Steady-state GAs (Whitley, 1989) relax the generational requirement, and produce just one
(or two) offspring at a time from a pair of parents selected according to their fitnesses; the pos-
sibilities for recombination and mutation remain as before. Tournament selection then becomes
an attractive option for those seeking minimalist systems. Each parent can be chosen by taking a
random pair from the population, and selecting the fitter one. The probability of being selected
as a parent 1s then linearly related to ranking, although there is typically much more variance in
the chances of being selected than there are with conventional ranking algorithms (De Jong &
Sharma, 1995)?.

There are several variations on simple binary tournament selection (Harvey, 1993); the choice
of who is to die is just as relevant as the choice of who is to be a parent. One interesting trick
is to choose two parents at random, and use their recombined offspring to replace the loser of a

tournament; this provides elitism for free if the two are different — the current fittest member can

1In that paper the variance is demonstrated experimentally, but it is also simple to show analytically that as
tournament selection is a type of Poisson process, the variance in probability of selection is equal to the probability

itself.
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Figure 1: The basic Microbial tournament: the winner of a randomly picked pair is unchanged, whilst

the loser is infected by a proportion of the winner’s genotype, and further mutated.

never be replaced or mutated. It also avoids the need to have two tournaments, each providing

one parent, and hence is a further step towards minimalism.

2 A Minimalist Tournament

However this method still requires the choice (at random) of a pair of parents, plus the further
choice (at random) of a pair of tournament members so as to select the loser. Whilst trying on
aesthetic grounds to simplify yet further, I realised that it was possible to collapse all this into
one operation, using the same pair twice.

To produce and insert one new offspring, two members should be chosen at random from the
population. From these parents an offspring is generated, using recombination and mutation; the
less fit of the pair is then eliminated and replaced by the offspring. An alternative description
of the same process is to say that a segment of the fitter member of the pair (one ‘parent’) is
picked out by the recombination operator and copied into the corresponding segment of the less
fit member (in its dual role as ‘parent’ and ‘offspring’); the altered individual is then subject to
mutation.

With this radical new method of collapsing several processes into a single tournament, the
normal constraint of standard GA recombination (that the offspring should be equally likely to
inherit genetic material from each of two parents) can be relaxed. Instead of insisting on an
expected 50%, any proportion between 0% and 100% can be transferred from the winner of the
tournament to the loser?. Mutation may then be applied to the loser; as the winner is unchanged
we have elitism for free (unless winner and loser can be the same individual).

The metaphor of parenthood is difficult to sustain with this version of a GA; it makes more
sense to say that the loser is infected with genetic material from the winner. It can be seen that

nevertheless the Schema Theorem still applies.

2A distinction should be made between the rate of recombination used in conventional GAs (the probability
of using recombination in reproduction), and the rate discussed here (the probability of recombinatorial transfer

from a particular individual at any locus).



3 The Microbial GA

In the following C code we assume that the population is held in a 2-D array of binary charac-
ters, gene[POP] [LEN], indexed by position in population and locus on genotype. The function

h

evaluate(n) returns the fitness of the n'* member of the population; drand48() returns a

pseudo-random number between 0.0 and 1.0.

void microbial_tournament(void)

{
int a,b,c,W,L,1i;
a=POP*drand48(); /* TOURNAMENT PAIR */
do {b=POP*drand48();} while (a==b); /* 2 different at random */
if (evaluate(a)>evaluate(b)) {W=a;L=b;} /* SELECTION: */
else {W=b;L=a;} /* also ELITISM for free */
for (c=LEN*drand48(),i=0;i<SEG;i++) /% RECOMBINATION(1) */
gene[L] [(c+i)%LEN]=gene[W] [(c+i)%LEN];
for (i=0;i<LEN;i++) /* MUTATION: */
if (drand48()<MUT) genel[L][i]"=1; /* bit-flip */
¥

Mutation here flips a bit with a probability MUT assessed independently at each locus. In the
above version recombination copies a segment of length SEG from winner to loser, with toroidal
boundary conditions, comparable to 2-point crossover. Alternatively, the probability of gene
transfer from winner to loser can be made independent at each locus, comparable to uniform

crossover but with a probability REC between 0.0 and 1.0.

for (i=0;i<LEN;i++) /* RECOMBINATION(2) */

if (drand48()<REC) genel[L][il=gene[W][i];

In this form, the parallels between the recombination and mutation operators are striking.
This allows further simplification, particularly if elitism is sacrificed by not insisting that a and
b are different. At the risk of crossing a boundary between elegance and freak-show, we have
the ultimate Microbial Genetic Algorithm: a succession of tournaments of randomly picked pairs,

with selection, recombination and mutation, in a single line of C code, here indented to fit on the

page.



for (t=0;t<NUM_TOURNAMENTS;t++)
for (W=(evaluate(a=POP*drand48())>evaluate(b=POP*drand48())7a:b),
L=(W==a%b:a),i=0;i<LEN;i++)
if ((r=drand48())<REC+MUT)

gene[L][11=(r<REC ? gene[W][i] : gene[L][i]l"1);

This code is written for compactness rather than efficiency. As it stands, an individual is
reevaluated every time it is picked for a tournament. This may be appropriate when using the
GA for adaptive improvement in a changing environment, or in the presence of noise, but for
deterministic optimisation it should be more efficient to evaluate an individual just once, when
it first arises. Multiple calls to a pseudo-random number generator are expensive, and for small
rates of the mutation and uniform-style crossover operators economies can be made by using the
Poisson distribution to first stochastically set how many loci are to be affected, and only then to

fix the positions of these few (usually a small number, often zero).

4 Bacterial Recombination

This form of recombination is related to bacterial conjugation, where segments of DNA are trans-
ferred between two members of a population. Lessons have been taken from the GA community
into that of molecular biotechnology, in the context of DNA shuffling (Stemmer, 1994), and ideas
going in the other direction may be fruitful. I am not aware of previous use of bacterial-style
recombination for GAs, except that during the course of this work two other independent sug-
gestions on related lines came simultaneously to my attention (Smith, 1996; Xxxx, 1996).

Such bacterial infection need not be directly associated with the selection process. I suggest
a distinction between a ‘Bacterial GA’” where in any context there is genetic transfer from one
individual to another that is pre-existing rather than ‘newly-born’; and a ‘Microbial GA’ as a
special case of Bacterial GA where such transfer is from the winner to the loser of a tournament
— as 1n the minimalist version presented here.

The rate of recombination p = SEG/LEN or REC also regulates the selection pressure o (Harvey,
1993), which equals e?#. This implies that a single new mutation conferring superior fitness in
a large population can expect to have e?” copies after a number of tournaments equal to the
population size. Hence different selective pressures can be chosen, and there is scope for p to
change in value during the course of a run, or to have differing values within the population.
There are interesting theoretical properties in the context of setting selection pressures for SAGA

(Harvey, 1993), which will be pursued in a further paper.



5 Discussion

The Microbial GA conforms to the fundamental requirements of a GA, and indeed versions
have been tested successfully with standard test problems. No claims are yet made as to what
circumstances are most appropriate for its use, but rather it is presented here as an exercise in
minimalism which provides new insights into the fundamentals of a GA. It is hoped that this will

act as a spur for further investigation into infection in Bacterial and Microbial GAs.
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