
Evolutionary Robotics: A new scientific tool for studying cognition 
 

Evolutionary Robotics: 
A new scientific tool for studying cognition 
 
 
Inman Harvey1*, Ezequiel Di Paolo1, Elio Tuci 1,2,   
Rachel Wood1 and Matt Quinn1 
 
(1) Centre for Computational Neuroscience and Robotics (CCNR)  
Evolutionary and Adaptive Systems Group (EASy) 
COGS/Informatics 
University of Sussex 
Brighton BN1 9QH, UK 
Phone: +44 1273 678431 
Fax: +44 1273 671320 
 
and (2) IRIDIA 
Universite Libré  de Bruxelles 
Avenue Franklin Roosevelt 50 
CP 194/6 
B-1050 Brussels - Belgium  
Phone: + 32 2 - 6502730  
Fax: + 32 2 - 6502715  
 
emails: inmanh@susx.ac.uk, ezequiel@susx.ac.uk, etuci@ulb.ac.be, 
rachelwo@susx.ac.uk, matthewq@susx.ac.uk 
 
* Corresponding author. 
 
Keywords: Evolutionary Robotics, Cognition, Dynamical Systems, Homeostasis, 
Learning, Development 
 
Abstract:  
 
We survey developments in Artificial Neural Networks, in Behaviour-based Robotics 
and Evolutionary Algorithms that set the stage for Evolutionary Robotics in the 
1990s. We examine the motivations for using ER as a scientific tool for studying 
minimal models of cognition, with the advantage of being capable of generating 
integrated sensorimotor systems with minimal (or controllable) prejudices. These 
systems must act as a whole in close coupling with their environments which is an 
essential aspect of real cognition that is often either bypassed or modelled poorly in 
other disciplines. We demonstrate with three example studies: homeostasis under 
visual inversion; the origins of learning; and the ontogenetic acquisition of 
entrainment. 
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The recent history of Evolutionary Robotics 
 
Evolutionary Robotics (ER) is a term that has gained currency since the early 1990s 
for the study and application of an artificial analogue of natural Darwinian evolution 
to the design of robots or simulated agents; usually to the design of their control 
systems or ‘artificial brains’, but sometimes also to their bodily and sensorimotor 
design[1, 2]. This was not a new idea – nearly 50 years earlier Alan Turing talked of 
designing brain-like networks through “genetical search” [3] – but a combination of 
factors perhaps made the conditions friendly to the re-emergence of such an approach. 
 
After decades of dominance by the computational paradigm of Good Old Fashioned 
Artificial Intelligence (GOFAI), in the 1980s there was a resurgence of interest in 
Artificial Neural Networks (ANNs), Admittedly, as the phrase “Parallel Distributed 
Processing” indicates [4], this was thought of by most of its proponents as some new 
form of “biologically plausible” computational processing, and for the most part went 
along with similar Cartesian assumptions to GOFAI. But this did at least open some 
people’s eyes to the possibility that brains, both real and artificial, were possibly not 
doing anything like computation at all – computation in the sense that Turing defined. 
At the same time in the 1980s the development of personal computing power made it 
possible for many more people to be ambitious in their simulations and 
experimentation. 
 
Turning from simulated brains to real robots, also in the 1980s Brooks developed a 
behaviour-based approach to robotics using subsumption architecture [5]. He 
designed minimal “insect-like” robots in an incremental fashion explicitly modelled 
on the process of natural evolution. A simple robot was constructed with sensors, 
motors and just about the smallest conceivable amount of “artificial nervous system” 
so as to perform in real time the simplest possible of behaviours; for instance, forward 
movement avoiding obstacles. Only after this simplest level of behaviour was tested 
and debugged on the real robot was the next stage attempted: adding a next simple 
layer of behaviour that interacted with the environment and the pre-existing behaviour 
so as to slightly extend the robot’s repertoire. Although successive levels of 
behaviour, and their associated extra components of “nervous system”, were designed 
by hand, the emphasis was on testing, debugging and modifying on the real robot. 
Through this process, mimicking the phylogeny of real creatures, the designs after 
several layers had been added bore little resemblance to any top-down designs 
produced on GOFAI principles. 
 
Again in the 1980s the field of evolutionary algorithms started to receive wider 
attention. After perhaps 20 years of being hardly noticed, Holland’s Genetic 
Algorithms [37] merited a first international conference in 1985 [6]. As the field came 
into wider prominence, other flavours such as Evolution Strategies, and Evolutionary 
Programming also became recognised. As with ANNs, this came to be seen by many 
as an alternative form of computation, and indeed the field as a whole has come to be 
called Evolutionary Computation. But it is worth noting that Holland’s 1975 book 
was entitled “Adaptation in Natural and Artificial Systems”, and was to a large extent 
aimed at generating adaptive cognitive systems; albeit in silico rather than in real 
robots [7]. 
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Coming from a particular philosophical perspective in the 1980s, influenced by 
people such as Rosen and Pattee, Cariani wrote an unpublished paper in 1987 entitled 
“Why Artificial Life Needs Evolutionary Robotics” in the context of the first 
Artificial Life workshop. This may be the earliest use of the phrase “Evolutionary 
Robotics”; the philosophical issues raised were presented in his 1989 doctoral thesis 
[8] and in later papers such as at the first European Conference on Artificial Life [9]. 
 
Motivation for doing ER 
 
So by 1990 the stage was prepared for a number of people and research groups to 
investigate in the field of using artificial evolution to design “nervous systems” for 
real robots or simulated agents. There is a range of different motives for such work, 
both within and between different research groups. In this paper we shall focus 
primarily on motivation for much ER work at Sussex, which started in 1989; but in 
particular we should mention three other groups who have worked with a broadly 
similar or at least overlapping motivation: Beer and colleagues at Case Western 
Reserve [10, 11];  Floreano, Nolfi and colleagues working at EPFL in Lausanne and 
at  Institute of Cognitive Science and Technologies C.N.R., Rome [12]; Pfeifer and 
colleagues at Zurich [13].  
 
This motivation is concerned with the understanding of cognition in its most basic 
sense, and sees ER as a useful testbed, a methodology for generating synthetic or 
artificial agents in a relatively prejudice-free fashion that can then be investigated and 
analysed. As such, ER clearly should be considered a core methodology for Artificial 
Life.  
 
But there is plenty of scope for interpretation here, to make clearer what we might 
mean by “cognition”, and to what extent ER can be seen as “prejudice-free” – and 
indeed why that might be considered a desirable property when making models of 
cognitive systems. 
 
So when we say ER is a new scientific tool, we are documenting a trend over the last 
15 years with distinctive features: emphasis on minimal cognition, on existence 
proofs, on reduction of bias. These emphases had not existed to the same degree 
before, they may (now) also be shared by other methods, but we draw attention to this 
as a movement of significance. 
 
Minimal Cognition 
 
For a large number of cognitive scientists cognition means centrally human 
cognition, and in this they primarily mean what distinguishes humans from other 
species. In contrast, in the work discussed here the focus of attention is on the kinds of 
cognition that humans have in common with other species: the organisation of the 
behaviour of an organism, in interaction with its environment, so as to safeguard and 
promote its interests. In the context of Darwinian evolution, we currently understand 
that an organism’s primary interests include all that is necessary to maintain its 
identity and survival in a changing world that contains other organisms with 
sometimes competing interests; to eat, to avoid being eaten, to anticipate events and 
cooperate with others where this is necessary; and to leave offspring that will continue 
the lineage beyond the death of an individual. 
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This all-embracing view of cognition can be taken to the extreme in the slogan “Life 
= Cognition” [14]. But such a view needs defence from those cognitive scientists who 
see human capacities as the touchstone for what counts as cognition. To a large extent 
such an argument over the meaning of the word are purely definitional, but it then 
needs to be made very clear what definition is being used in the work covered here. In 
particular, those studying “minimal cognition” with ER sometimes need to defend 
their work from cognitive scientists who mistakenly assume that if a study of 
cognition is not exclusively concerned with humans, then it has no relevance at all to 
humans. From an evolutionary perspective, our own species with its peculiarly human 
characteristics has only been around for the last few tens of thousands of years of 
life’s 4 billion year history, and our human capacities are built on top of those of our 
pre-human ancestors. It makes sense to try and study and understand the relatively 
simple first, and this is the motive for using ER to study models of “minimal 
cognition”. In the examples discussed below, these will be minimal models of 
homeostasis under sensory distortion, of the origins of learning, and of interactions 
between evolution and development, but in each case the models are deliberately 
simplified so as to be potentially relevant to all potential life-forms, whether real or 
artificial.  
 
Cognition, consequently, can be broadly defined as the capability of an agent of 
interacting with its environment so as to maintain some viability constraint. It is not 
an internal property of the agent, but a relational property that involves both the agent, 
its environment and the maintenance of some constraint. Living organisms are 
naturally cognitive according to this definition as they need to engage in interaction 
with their environment so as to stay alive - but the term can also be applied to some 
artificial non-living systems, as long as we can clearly treat them as agents and their 
viability constraints are well specified (and these could be as artificial as maintaining 
certain relations with the environment, self-preservation, or the fulfilment of a pre-
specified goal). 
 
Minimal prior assumptions: Dynamical Systems 
 
It also makes sense to try and minimise the prior assumptions that are built into a 
model. If one hopes to learn something new and perhaps unexpected about some 
aspect of cognition, then every assumption and prejudice built into the model as a 
constraint reduces its potential to inform. Of course it is not possible to start in a 
vacuum, but one should attempt to make ones prior assumptions both explicit and as 
few as possible. For the work reported here, the basic assumptions are: 
 

1. An agent (…   human, animal, robot …), and the world it lives in, is made of 
physical materials obeying the laws of physics, chemistry etc.                                                         

2. Through the subtleties of assembly and design of these physical materials, it 
exhibits robust adaptive behaviours, such as goal-seeking and other intentional 
behaviour. 

 
Though these are materialist assumptions, it is does not follow that the terms mind 
and brain can be used interchangeably. Much confusion is avoided if mental terms 
such as mind, intentions, goals, learning, are reserved for descriptions of an agent as 
an agent, the behavioural level of description; whilst the brain or nervous system and 
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body is described in terms of physical components, the physical or mechanistic level 
of description. 
 
These basic assumptions or hypotheses underlie what is sometimes called the 
Dynamical Systems (DS) approach to cognition [11, 15, 16]. As used here, it means 
no more than the pragmatic assumption that where we build artificial nervous 
systems, for real or in simulations, the mechanisms can be considered as composed of 
a finite number of interacting components, the state of each of which can in principle 
be specified by some real number at any instant of time. The current state of the 
mechanism as a whole can be specified by the instantaneous values of all these 
variables; mathematically speaking, a vector. 
 
It should be emphasised that the DS notion of state here refers to the instantaneous 
state of the whole physical mechanism, specified in physical terms. This should not be 
confused with the very different use of the term state in mental or behavioural 
descriptions, such as “in a state of hunger”, “in a goal-seeking state”, and so on. 
 
The variables refer to the current physical state of a component, and applying 
Occam’s Law we try and get away with as few components as possible. It is our 
decision as to which physical parts we shall classify as components, and typically we 
will do so at a fairly macroscopic level, rather than at the level of atoms or electrons. 
Neuronal activations, real or artificial, the position of a relay, the output of a 
photoreceptor or the voltage applied to a motor could be appropriate components, 
depending on the context. 
 
Our decision as to what counts as a component is not arbitrary, however, since as far 
as possible we choose macroscopic components whose interactions can be reliably 
described by laws based ultimately on the laws of physics. When we can do this really 
reliably, then typically we can specify some function f() for each of the n state 
variables xi  (i = 1 to n) in this form: 
 

 ( )ni
i xxxf

dt
dx

,..., 21=  

 
The function may be deterministic, but pragmatically it may also include a term for 
noise. A fine-grained description of a system with many components whose 
interactions are described by deterministic laws may under some circumstances be 
usefully described at a coarser level, with fewer components whose interactions are 
only approximately described by deterministic laws, and here the addition of a noise 
term to the equations can account for these approximations. 
 
=================== Figure 1 around here ==================== 
 
An agent, as caricatured in Figure 1, can be thought of as a bag of physical 
components describable in such a way, a dynamical system. But we must consider not 
just internal interactions, but also interactions with the agent’s environment, an 
environment that is also made up of further dynamical systems. These external 
interactions can be thought of as a coupling of the agent-DS with the environment-DS 
through sensory and motor interactions. 
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Since a DS is basically no more than a list of variables together with the differential 
equations describing how they interact over time, the combination of two DSs into a 
single system, taking account of the coupling interactions, is in fact a new combined 
DS. One of the important lessons learnt through practical experience with DSs is that 
a combined DS often behaves in a fashion that is counter-intuitive, even when one is 
familiar with the behaviour on one of the sub-DSs in isolation. Multiple feedback 
loops and circular causation often lead to surprises.     
 
The Dynamical Systems Approach to Cognition 
 
For some advocates of the DS approach to understanding cognition, this implies a 
commitment to explaining cognitive phenomena in the mathematical language of 
DSs: for instance attractors, both stable and unstable, basins of attractions, trajectories 
through phase space. Whilst not ruling out such explanations, the commitment can be 
much weaker. In the examples given below, the commitment is little more than that of 
describing, explaining, and implementing in simulation the physical mechanisms of 
an agent in terms of the equations of a DS, including noise where appropriate. This is 
one way of respecting the principle of minimising the prior assumptions that are used. 
 
A computational system is defined in classical computer science as something 
functionally equivalent to a Universal Turing Machine (UTM), and belongs to a 
specialised subclass of DSs. It is deterministic, the state at any time can be uniquely 
specified by the values, typically binary, of all its component parts: in the case of a 
UTM, the values of the cells on its tape, the position of the reading head, and the 
current rule to be applied from the rule table. Unusually for a DS, the updates are 
done discretely in sequence, with no direct reference to any time interval. In the 
practical implementations of TMs that are desktop computers, the updates are timed 
sequentially by a clocking chip, but this speed is basically an artefact of the 
implementation rather than part of the definition of the computational system.  
 
So a distinguishing feature that usually highlights the distinction between a DS 
approach to cognition and a GOFAI approach is that in the former case time, real 
wall-clock time, is introduced explicitly in the differential equations, whereas in the 
latter case it is often ignored or left as an accidental artefact of the implementation. 
More generally, computational systems are indeed a subset of DSs but a rather 
specialised and bizarre subset. The DS approach as advocated here is much wider and 
embraces more possibilities, imposes fewer constraints, than the computational 
GOFAI approach. 
 
There are many practical implementations of DSs that may be used in ER. One 
method advocated by Beer, that has been used, sometimes with variations, at Sussex, 
is that of Continuous Time Recurrent Neural Networks (CTRNNs) [17]. These consist 
of a network of n fully connected nodes or artificial neurons, with time parameters τi 
at node i, and with weighted connections wij between node i  and node j. For each 
node the relevant differential equation for its activation yi is: 
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where σ() is a sigmoid function 1/(1+e-x), θj is a bias term, and Ii(t) refers to a possible 
sensory input to that node. The firing rate of a node zi is calculated as σ(yi - θi). Some 
nodes are designated as motor nodes, and their activations, varying in real time, are 
passed on to the relevant motors. 
 
This formalism provides a relatively convenient class of dynamical system, which can 
be parameterised by specifying the number of nodes, and the specific values for time 
parameters, weights and biases; it is these values that the genotypes will encode. This 
class of DS also has the advantage of being universal, in the sense that it has been 
formally proved that any DS can be approximated to any desired degree of accuracy 
by a CTRNN with a sufficient number of nodes [18].  
 
It is perhaps unfortunate that CTRNNs are described as (artificial) neural networks, 
because there is no particular reason to identify the nodes with anything analogous to 
neurons in real brains.  
 
 
Generation of Existence Proofs 
 
When an ER experiments replicates some cognitive capacity of a human or animal, 
typically in simplistic and minimal form, what conclusions can be drawn from this? 
The environment of the artificial agent will have been grossly simplified, and the 
synthetic nervous system will bear only the sketchiest caricature of a resemblance to 
the nervous system of any real organism. So it would be foolish and unjustified to 
claim that this gives us some direct insight into the actual physical mechanisms of real 
biological organisms.  
 
Nevertheless a successful experiment has taught us something, which basically takes 
the form of an Existence Proof. We will have demonstrated cognitive capacity or 
phenomenon X under clearly specified conditions and constraints, hence showing that 
these provide sufficient conditions for X. Since the underlying philosophy of ER is 
typically to find minimal conditions for phenomenon X, then often the target of the 
experiment may be some alternative theory to the effect that phenomenon X 
necessarily requires condition Y. An ER experiment may enable us to refute this, by 
demonstrating an existence proof of phenomenon X without Y.  
 
For this reason, it is not necessary (though certainly possible) to aim at modelling 
specific animal behaviour so as to validate the model with empirical data. This 
approach can be successfully implemented using ER or autonomous robotics in 
general (see for instance [34]), but the production of proofs of concept has a different 
scientific function: that of catalysing theoretical re-conceptualizations and facilitating 
the production of novel hypotheses which then need to be appropriately translated to 
domain-specific cases and tested empirically (for further discussion see [35]). 
 
ER thus can allow the exploration of the minimal conditions for a given behavioural 
capability. But it would be unwarranted to suggest that minimal here will necessarily 
imply general. This is again an empirical matter and in each case the ultimate test will 
be in the validity of the conceptual re-organization provoked by the minimal model. 
Such validity may be general or specific as the case may be. 
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The Evolutionary Algorithm 
 
The DS approach covers the first part of our principles of minimal prior assumptions, 
but does not yet explain how we plan to design the DS of the agent nervous system 
and body, such that when coupled with its environment the agent demonstrates the 
desired adaptive behaviour. One possibility would be to design by hand, and indeed 
this is the approach of Brooks’ subsumption architecture. But there are two reasons to 
justify using artificial evolution as a design methodology. 
 
Firstly, design of DSs is often counter-intuitive. The desired behaviour of the agent is 
that exhibited when coupled through sensorimotor interactions with its environment, 
and as discussed above this is notoriously difficult to predict and design for. Natural 
living systems are, so we assume, DSs designed through natural Darwinian evolution, 
so it makes sense to consider the artificial equivalent to this design process. 
 
Secondly, and equally importantly, the use of artificial evolution minimises the 
incorporation of design prejudices and constraints, as the subtleties and tweaking of 
architectural detail is left to the blind forces of evolution, guided only by the selection 
constraints imposed by the experimenter on the behaviour, not on the mechanism.  
 
It is the task of the experimenter to set up conditions whereby a population of agent-
designs is bred, over successive generations, according to the experimenter’s desired 
selective conditions; much as a farmer might breed cows for good milk production 
and an equitable temperament. So some evaluation or fitness function must be 
devised, appropriate for the behaviours desired for the purposes of the experiment. 
Each agent-design in a population must be scored, or at least ranked in comparison 
with the others, so that the fitter ones can be selected for breeding from. 
 
For a population to evolve there are just three requirements: Heredity, Variation, and 
Selection. The farmer really only has to worry about the last of these, since heredity 
and variation are provided ready-made in the biological world. In ER, however, the 
experimenter is required to set up suitable conditions for heredity and variation. This 
is done by deciding on an appropriate genetic encoding, whereby strings of symbols 
representing artificial DNA will be interpreted as potential designs for the agent. 
 
The main target for evolution will be the artificial brain or nervous system of the 
agent, and one way of visualising the design process is in terms of a shelf-full of 
available components that have to be assembled somehow. The genetic encoding must 
allow the interpretation of the genotype (or artificial DNA) as giving instructions for 
which components are selected and just how they are connected to each other. If for 
example the genotypes are binary strings of length 100, then this means that 
potentially 2100 different genotypes can encode for 2100 different nervous system 
architectures. For some experiments the genotype may also determine body 
parameters or sensor characteristics, as well as the nervous system. 
 
=================== Figure 2 around here ==================== 
 
ER can then be seen as some form of search through such an enormous search space. 
A population, which may be only 30 or 100, would only be a tiny sample of this 
search space, but successive generations of directed selection plus blind variation, as 
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indicated in Figure 2, gives an effective evolutionary process. An initial population of 
randomly constructed genotypes is evaluated, and the fitter members are chosen to 
become parents of the next generation. Genotypes for the offspring are inherited from 
their parents, either by direct copying in the case of asexual reproduction, or when 
sexual reproduction is used then part is inherited from each parent. This mixing in 
sexual reproduction already introduces some variation, but random mutations applied 
to the offspring genotype at an appropriate rate introduce further variation. 
 
The consequence of this is that a new generation of offspring is created, that inherit 
with some variation from the selected, fitter members of the parent generation. Since 
we have the three essentials of Heredity, Variation and Selection, we have the basis 
for an evolutionary process. When properly set up, this results in increasing fitness at 
the selected task as successive generations follow each other. Often thousands of 
generations may be needed, and this can be a lengthy process. 
 
Only the bare essentials of artificial evolution have been sketched out here. There are 
many possible variations and subtleties, but the core methodology is always based on 
this. 
 
Simulations and Reality 
 
When the ultimate goal is to build real robots and demonstrate results on them, then 
ER can be practised without any form of simulation. Since evaluations must be 
carried out on many robots for many generations, this can be expensive and time-
consuming, so frequently simulations have been used as an intermediary step. Making 
simulations, of both the robot and its dynamic environment, can also be time-
consuming and difficult if high standards of accuracy are required. The only ultimate 
test for the adequacy of such simulations is whether the evolved control systems 
actually work on the real robot, and historically there have been many problems in 
achieving this. In particular, robot control systems built on GOFAI principles have 
often completely underestimated the issues involved in turning abstract ideas into 
physical reality.  
 
Fortunately it turns out that when doing ER one can often get away with minimal 
simulations, and still produce results that work on a real robot. At Sussex Jakobi took 
ideas about adding appropriate types of noise to a simulation and developed a 
principled approach of minimal simulation [1, 19, 20]. This allows for simplified 
simulations that ignore all the irrelevant details of the real world, can run extremely 
fast, yet have a track record of producing ER control systems that transfer directly to 
the real robot. 
 
Many ER experiments, including examples below, are done in simulation only. Such 
experiments are potentially open to the charge laid against many GOFAI simulations, 
that it may be that the simplifications involved have omitted some of the really 
difficult and important issues to do with physical embodiment. The type of 
simplifications where this is seen in GOFAI examples include grid-worlds where 
robot-agents move in simple jumps from one square to the next; and magic sensors 
that indicate infallibly the presence, or direction and distance, of some object or 
target. These are symptoms of glossing over the distinction between the 
mechanical/physical level of description (appropriate to values of sensor-variables) 
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and the behavioural level of description (appropriate to recognition of objects by the 
agent). 
 
Such distinctions are kept very distinct in the ER/DS approach as outlined above, and 
this together with the track-record of successful transfers gives us some degree of 
confidence in the results obtained through simulations. Although they may be 
idealised existence proofs, we are confident that in principle with some extra work the 
results will be capable of validation on real robots. 
 
Examples 
 
As examples of the breadth of possible fields to investigate using the ER 
methodology, we give brief details of three areas where these techniques have been 
used at Sussex.  

1. Homeostasis under sensory distortion (Ezequiel Di Paolo) 
2. The origins of learning (Elio Tuci with Matt Quinn) 
3. Interactions between evolution and development (Rachel Wood) 

  
Homeostasis 
 
In order for an organism to survive, its essential variables – such as temperature, 
oxygenation in the bloodstream, energy reserves – must be kept within viable limits. 
Otherwise the organism faces the possibility of disintegration and/or loss of identity – 
meaning dissolution or death. The renowned early cybernetician W. Ross Ashby [21] 
developed a theory to explain how an organism could be capable of adapting 
appropriately and adaptively so as to maintain this homeostasis. Inbuilt reactions, 
such as instinctive withdrawal of a limb from a dangerous heat source, may be fairly 
easy to account for, but animals are typically much more adaptive than this.  
 
Even when faced with unforeseen circumstances, where the consequences of actions 
may not be familiar to the animal, nevertheless the appropriate action may be taken 
after some experimentation. An adaptive system is a stable system, the region of 
stability being that part of the state space where all essential variables are within 
physiological limits. Depending on ones point of view, a stable system may be 
regarded as blindly obeying its nature and also as showing great skill in returning to 
equilibrium in spite of disturbances. 
 
A classic and extreme example in humans is their ability to adapt to inversion of the 
visual field. When experimental subjects wear distorting goggles that may, for 
example, reverse left/right or reverse top/bottom in the visual field, then after days 
and weeks of continual use they begin to adapt to these unusual circumstances [22, 
23]. Gradual behavioural and perceptual adaptation takes place. Initially the 
disorientation leaves the subjects confused and unable to move around without 
crashing into objects or falling over, but slowly their performance improves. 
Eventually not just their behaviour, but their reported perceptions become more 
normal. Whereas initially the world may be seen as upside-down, eventually they 
report that the world has become normal, the “right-way-up” again.  
 
Ross Ashby put forward a possible explanation for such phenomena in terms of 
“Ultrastability”, a form of double feedback between environment and organism; he 
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was using the language and concepts of a DS approach to cognition. Normal 
sensorimotor coupling with the environment, such as walking down the road with 
normal vision, requires one feedback loop so as to adjust ones path and maintain 
progress. When there is the drastic disruption in this feedback through wearing 
inverting goggles, there must be a second feedback loop that triggers changes in the 
internal organisation of the brain, until eventually, perhaps with some luck as well as 
effort, a freshly organised stable primary feedback loop is put in place. Drawing on 
these ideas, together with extensions to the theory by James Garden Taylor[23], Di 
Paolo set out to replicate a simplified version of these phenomena using ER [24].   
 
=================== Figure 3 around here ==================== 
 
The agent was modelled as a circular object on an infinite two-dimensional plane, on 
which a single light source popped up at a random position relative to the agent. 
Visual sensors were just 2 photoreceptors facing forward to the left and right; a left 
and right motor provided power to the wheels on either side, allowing motion and 
turning. The primary task for the agent was to perform phototaxis, to move towards 
the light as quickly as possible. On reaching the light it would disappear, to reappear 
in another random position, requiring the agent to track it down again. 
 
To evolve a CTRNN so as to generate such phototactic behaviour in an agent is 
relatively easy. However the purpose of this experiment was to go further and evolve 
some form of homeostasis. So the CTRNN was adapted to allow local plasticity of 
each node, a (genetically-specified) weight-changing mechanism that modified 
incoming weights and cut in whenever the node’s activation was too high or too low. 
Similar mechanisms of regulatory synaptic scaling have been found in real cortical 
neurons [25]. 
 
The internal activity of all the nodes was then treated as a proxy for the essential 
variables that homeostasis had to maintain within bounds, neither too high nor too 
low. In order to achieve this, the fitness function used for selection within the genetic 
algorithm had to be modified so as to simultaneously select both for phototaxis and 
for homeostasis of these essential variables. This was done by including a term in the 
fitness calculation that corresponded to the time-average of the proportion of nodes 
that had stayed within their preferred range without inducing the local plasticity 
triggered by going out of range. 
 
Fitness is calculated by adding three terms. FD corresponds to the proportion of 
reduction between the final and initial distance to a source, 1 - DF/DI, (DF: final 
distance to source, DI: initial distance to source). This term is taken as 0 if DF > DI, 
and it is calculated for each source and then averaged for the whole evaluation. FP 
indicates the proportion of time (over the whole evaluation) that the agent spends 
within a distance of 4 body radii of a source, and FH indicates the time-average of the 
proportion of neurons that have behaved homeostatically (that is, without inducing 
plasticity). These factors (all between 0 and 1) can be differently weighted. Typical 
weights for FH are between 0.15 and 0.2. Of the other two components, permanence 
near the source is favoured with typical weights between 0.64 and 0.68. 
 
=================== Figure 4 around here ==================== 
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After between 1000 and 2000 generations, high fitness was usually achieved. High 
performance agents were then subjected to further tests without further evolution. 
Firstly they were exposed to an extended trial where between 100 and 400 
presentations of the light source were made, as compared to the 5 successive 
presentations used during the evolutionary stage. Those agents that demonstrated long 
term stability were then subjected to the equivalent of inverting goggles: the 
connections were swapped between left and right photoreceptors. This is done after a 
short initial period of normal phototaxis at the beginning of the trial, and 
unsurprisingly the immediate effect is that the agent veers away from the light rather 
than towards it. But for around half the individuals tested, after a long period of 
successive presentations with the inverted vision, the behaviour switches to become 
perfect phototaxis again; the agents have adapted to the new sensorimotor regime. 
 
=================== Figure 5 around here ==================== 
 
Interestingly, the time to adaptation is an increasing function of the time of normal 
“development” before inversion, as demonstrated in Figure 5. This indicates that the 
capacity for plastic change is “hardened”, and there is a critical period for adaptation 
in these agents thus reproducing known features of animal development and 
adaptation. Ashby’s theory could well explain this phenomenon. If the space of 
changing parameters (connection weights in this case) is populated with “pockets of 
stability” within which the system is stable for a range of conditions, and if different 
pockets have different ranges for those conditions of stability, then those pockets with 
the larger ranges will tend to be selected for over time. The overall effect is that if a 
system is left to develop under constant conditions (levels of noise, randomness in 
source positioning, etc.) it will progressively find parameter sets with larger ranges of 
stability, thus making it harder to “jump out of them” when a novel condition (e.g., 
sensor inversion) is met. Even at this abstract level, the model permits the exploration 
of a general hypothesis for critical developmental periods in real animals. 
 
It is clear that this minimal model does not fully explain how radical adaptation 
occurs in human subjects, but it provides a working proof of concept that support the 
idea of ultrastability playing a potentially central role in the real case. Further work 
along these lines is currently addressing several open issues in this model such as the 
role of internal variability in the rules of reconfiguration, the kind of relation between 
behaviour and internal homeostasis (whether it's arbitrary or not), the amount of time 
it takes for adaptation to occur, and the lack of guarantee that adaptations will be 
accumulated. Solving these problems will probably mean evolving more complex 
kinds of ultrastable systems, but it is thanks to the simpler model that these research 
issues stand out. 
 
 
The Origins of Learning 
 
This example is work done by Elio Tuci with Matt Quinn, as part of an investigation 
into the evolution of learning from an ecological perspective [26, 27, 28]. Most 
studies of learning in artificial agents provide explicit learning mechanisms, often in 
the form of weight-changing rules at the synaptic connections in ANNs. However, if 
one is studying the origins of learning, then providing such mechanisms in advance 
seems to beg the question. Rather than providing the agents with the ability to learn, 
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we wish to provide it with low level mechanical components that are not committed to 
any particular architecture, and examine the conditions under which the mechanisms 
that allow for learning may evolve. 
 
The use of CTRNNs avoids the question-begging problem, as on the one hand they 
have no explicit learning mechanism: the genetically-specified weights are fixed and 
unvarying throughout an agent’s lifetime. But on the other hand, because of the 
universal approximation property of CTRNNs, they can, when suitably parameterised, 
approximate any DS including a DS capable of learning behaviour. Some ANN 
practitioners seem to find this possibility of an ANN with fixed weights being capable 
of learning behaviour rather troubling; it may assist them if they appreciate that the 
nodes of a CTRNN could represent any part of a DS, including the weights or some 
function of the weights of an ANN as well as its activations. 
  
=================== Figure 6 around here ==================== 
 
Yamauchi and Beer [29, 30] designed a task for an agent to perform, that could 
require a combination of reactive (non-learning) and learning abilities. They used an 
ER approach to evolve CTRNNs as control systems, leaving it to the “discretion” of 
the evolutionary process to decide what combination was appropriate for the task. The 
environment was one-dimensional, a line where the agent started off each trial at the 
centre. Its goal was to reach an invisible target placed randomly at the start of each 
trial at the left or right end of the line, guided only by a light that it could sense. For 
some periods of time, covering a succession of trials, the light was placed on the same 
side as the target, whereas for other periods the light was placed on the opposite side. 
So to anthropomorphise the task: for an initial trial, the agent has no idea whether the 
light is associated or anti-associated with the target, and must choose a direction at 
random. But feedback from reaching the target can indicate which regime is current, 
and following trials can be guided by relying on the type of correlation that held on 
the previous occasion. This can result in reliable target-finding, until at some 
unannounced moment the light-target regime is changed to the opposite polarity, and 
there will be an inevitable mistake before the agent can adapt to the new regime. 
 
Yamauchi and Beer succeeded in evolving CTRNNs to produce high-scoring 
behaviour at this task, but only after they were forced to divide the control system into 
three separate modules: one that was evolved first on its own, in effect to assess what 
the current regime was, marker-near-to-target or marker-far-from target: the second 
for guiding the agent under the light-correlated-with target regime: and a third for the 
anti-correlated regime. Despite the lack of success in evolving a fully integrated 
control system, once this modular approach was adopted success came fairly easily 
and quickly.  
 
The aim of Tuci and Quinn’s experiments was to replicate a version of the Yamauchi 
and Beer version, but without explicitly dividing the control system into modules. 
This necessitated making some changes to the experimental setup, offering an 
opportunity to analyse why the earlier experiment had not worked, and to see just 
which changes made the difference.  
 
=================== Figure 7 around here ==================== 
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The main visible difference is that the one-dimensional world is replaced by a two-
dimensional arena, with a simulated circular agent that can manoeuvre freely in any 
direction. The agent is a simulated Khepera, with infra-red sensors that can detect 
walls, three light sensors that are sensitive to the light (one each side at the front, and 
one facing back), and a further light-sensor directed downwards that is sensitive to the 
dark stripe on the floor that represents the target. Apart from this, the experimental 
regime follows very closely that of Yamauchi and Beer; except that the agent is 
started towards one side of the arena (randomly chosen), and it is only once it has 
reached the central portion that the target is placed randomly towards one end or the 
other of the arena; and simultaneously the light is switched on, placed according to 
whichever regime is current. The spatial relationship between the light and the target 
is selected randomly and kept fixed for 15 trials. The agent is evaluated in both types 
of environment: in an environment in which the light is associated and in an 
environment in which the light is anti-associated with the target. 
 
The genotype specifies the parameters for a 13-node fully connected CTRNN. Unlike 
Yamauchi and Beer’s model, the agent has no dedicated sensor for a reinforcement 
signal, nor is there any explicitly provided reinforcement signal provided when it 
finds the target. The evaluation function has been designed to provide a selective 
pressure favouring those agents that perform well, but this evaluation is not available 
as any form of feedback to the agent; it is merely used, after the trials are completed, 
to assess its chance of becoming a parent to the next generation. 
 
The first evaluation function sums a number of different scores: the evaluation is 
increased for motion towards the centre at the beginning of the trial; thereafter for 
movement towards the target after it and the light have appeared; an additional bonus 
is received for finding the target and staying over it; the evaluation function penalises 
such behaviours as colliding with the walls, failing to reach the centre at the 
beginning, and moving into the non-target end of the arena after reaching the centre. 
 
It was hoped that the changes from the Yamauchi and Beer version would make 
possible the evolution of an integrated control circuit without resorting to the explicit 
modularisation that they used; the arena was more complex, the sensorimotor 
coupling was richer, the evaluation function was designed to allow partial scores for 
partial success rather than an all-or-nothing evaluation. Nevertheless the experiments 
using this first evaluation function failed, necessitating some analysis and 
consideration of what further changes were needed. 
 
Observation showed that basically the agents evolved so as to ignore the light signal 
completely. For a non-learning agent, the light provides no useful information, since 
on any one trial the light is equally likely to be correlated or anti-correlated with the 
target. But unless the agent does pay attention to the light, it will be unable to evolve 
so as to learn from the relevant relationship between light and target positions. Once 
this was worked out, it was clearly seen to be necessary for the light to have some 
adaptive significance before any learning that relied on seeing the light was expected 
to take place. 
 
Hence a second evaluation function was devised, that biased the value of successful 
trials by a factor of 3 on those occasions where the light was correlated with the 
target. In the majority of runs using this new method of scoring, the agents soon came 
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to use the light to navigate towards the target, as an initial strategy of heading towards 
the light on average paid more dividends than a random strategy. Although this 
strategy means heading in the wrong direction on those 50% of occasions when the 
light is anti-correlated, nevertheless the evaluation regime allows them the possibility 
of returning from the wrong end and belatedly picking up a few extra points if they 
manage this. Furthermore, they are capable of “learning from their mistakes” and 
subsequently switching their behaviour to a strategy of moving away from the light. 
 
=================== Figure 8 around here ==================== 
 
An analysis of the best of each generation over a run of 5000 generations clearly 
shows (Figure 8) how phototaxis develops in the early stages of this phylogeny, 
gaining high scores in the light-correlated regime but failing in the anti-correlated 
regime. Between 1250 and 3000 generations, performance and hence scores start to 
improve also in the anti-correlated regime, until an abrupt leap in performance 
indicates that the agents are now performing near-perfectly under both regimes. 
 
So the final outcome of these experiments can be summarised as, firstly: a successful 
replication of a version of Yamauchi and Beer’s task, demonstrating learning 
behaviour using a CTRNN with fixed weights. Secondly, to do so without the explicit 
use of modularisation and provision of feedback that they were forced to use, hence 
providing a more principled study of one potential ‘Origin of Learning’ (an Existence 
Proof) in a system that was not pre-provided with explicit learning mechanisms. And 
thirdly, it gave an opportunity to gain some insight into the sorts of selective pressures 
and ecological contingencies that are required. 
 
Minimal developmental systems and the ontogenetic acquisition of entrainment 
 
ER has been successfully used to investigate both science and engineering type 
questions about adaptive behaviour. Evolutionary methods have thus enabled the 
discovery of new solutions to old adaptive control problems and the formulation of 
new answers to questions about how adaptive responding might be implemented in 
natural systems. One area which has been less explored is the application of 
evolutionary approaches to the design of developmental systems. This, slightly 
counterintuitive approach, involves using evolution to find parameters for on-line 
self-organisation and is founded on notions of exploiting the integral coupling 
between evolution and development in natural adaptive systems. In animals and 
infants, adaptation at the ontogenetic scale interlocks with evolutionary adaptation in 
a relationship of mutual constraint. Developmental processes are evolutionary 
artefacts: the systems which enable lifetime function acquisition were themselves 
constructed, over generations, through the action of natural selection. On this view, 
developmental processes are necessarily constrained to be evolvable - in the sense that 
individual plasticity inevitably entails costs which must be offset by a higher-level 
regularity in developmental outcome.  In the same way, evolution exploits the 
adaptive design advantages of plasticity but is always constrained by what is 
developmentally possible. 
 
On this view, using ER as a framework for studying developmental systems allows 
the coupling between evolutionary and ontogenetic adaptation to be explored and 
exploited. There are methodological advantages to be had from this approach by 
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focusing on the applications for which ER methods have already proved to be most 
appropriate. Fundamentally, ER methods are useful for allowing efficient negotiation 
of complex problem spaces; evolved solutions are often sub-optimal but embody an 
“as-good-as-it-gets” compromise between constraints operating at many levels. ER 
uses highly abstract, simplified models to capture the essential dynamics of 
interaction between agents and their environments. This approach is thus especially 
suitable for experimenting with evolved ontogenies; it offers a possible route to 
untangling the behavioural effects of evolutionary and developmental interactions. In 
essence, these methods can enable the construction of models which are abstract 
enough to be achievable and simply enough to be analysed. More specifically, this 
“evo-devo” flavoured ER  looks to minimise the design assumptions incorporated into 
the model while still instantiating embodied situated systems whose dynamics are 
determined by a plausible physics. 
 
=================== Figure 9 around here ==================== 
 
The work presented in this section thus centres on evolving minimal developmental 
systems, i.e. modelling at the minimal level of complexity necessary to instantiate 
“interestingly” developmental processes. This approach seeks to unite Beer’s minimal 
cognition paradigm [10, 31] with developmental systems approaches to ontogenetic 
adaptation [32]. The model is an extension of Di Paolo’s simulation studies of 
coordination and entrainment in agents performing an acoustic approach task [33]. 
Here, the agents are controlled by plastic CTRNNs with evolved, broadly Hebbian 
learning rules obtained from genetically specifying the parameters in the following 
polynomial: 
 

)( 3210 jijiij
ij zzAzAzAA

dt
dw

+++=η  

 
where zi  and zj are the firing rates of the pre- and post-synaptic neurons respectively 
and all parameters can be positive or negative. The task requires that the agents 
should locate and remain in close proximity with each other via acoustic signals. It is 
nontrivial in that each must modulate its own sound production in order to hear the 
other and discrimination of the direction of a sound source is affected by self-motion. 
Thus efficient performance entails discrimination of self versus other and sustained 
behavioural control in order to act on perceived signals successfully.  
 
=================== Figure 10 around here ==================== 
 
It was found that agents were able to acquire entrained signalling behaviour through 
lifetime interaction with a conspecific. Evolved solutions to the task environment 
consisted in the acquisition of a distributed strategy whereby each agent predicates its 
behaviour directly on that of its “life partner”. It might be expected that the task 
would be most easily solved by some initial allocation of roles, (i.e. a pursuer which 
doesn’t signal and a signaller which doesn’t move). However, in this case the task was 
solved via the acquisition of turn-taking in signalling behaviour whereby signals were 
emitted in almost perfect anti-phase (figure 9). Having come together the agents move 
in regular, spiralling paths within close proximity of each other (figure 10). In 
addition, by manipulating the interaction history of an individual we can manipulate 
the behavioural strategies it adopts. These experiments have generated a new set of 
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questions about the role of noise in evolved developmental systems. We have found 
that varying the levels of noise in the system during development has a profound 
effect on the behavioural strategies produced. 
 
Conclusions 
 
What do these examples show? How can these findings be related to actual cognitive 
systems? Unlike modelling efforts in cognitive science where the objective is to build 
a system that can be directly compared with empirical data, ER has a different sort of 
use as a scientific tool. The homeostatic agent is not meant to be a good model of how 
humans adapt to visual inversion (crucial factors such as kinaesthetic and tactile 
modalities are ignored), the origin of learning study did not pretend to establish how 
learning happens in actual small nervous systems, and the minimal developmental 
systems example has factored out essential aspects of real development such as 
morphological changes induced by growth. 
 
These systems then will not tell us how real cognitive systems work but they will do 
something very useful nonetheless. They provide us the proofs of concept and 
exploratory studies that can challenge existing views and unwritten assumptions in a 
healthy manner. Additionally, these existence proofs can provide further lessons since 
it is possible to manipulate and understand them in dynamical terms to some extent. 
The potential scientific role of such examples should not be underestimated. 
They can help us re-organise our conception of a problem (e.g, origin of learning), 
bring added importance to factors previously considered of little relevance (e.g., 
neural homeostasis), and explore situations too complex even to start asking the right 
questions about using traditional tools, (e.g., minimal developmental systems). 
 
ER as a scientific tool is therefore quite different from the typical idealized and 
disembodied modelling that is found in connectionism or computational neuroscience 
(let alone GOFAI). This is an advantage shared with other approaches in robotics, but 
the removal of design constraints in ER allows for a fruitful exploitation of 
embodiment - such as innovative forms of sensorimotor coordination - beyond what is 
typically achieved with other methods in robotics. ER has advantages over 
computational neuroscience, but it also has disadvantages. The main advantage is that 
the method is capable of generating integrated sensorimotor systems with minimal (or 
controllable) prejudices. These systems must act as a whole in close coupling with 
their environments which is an essential aspect of real cognition that is often either 
bypassed or modelled poorly in other disciplines. We must emphasize that ignoring 
embodiment and situatedness is not simply a valid modelling simplification, but it 
amounts to ignoring definitional aspects of cognition (a model of the solar system that 
ignores gravity is not a simplified model, but simply no model at all!)  Computational 
neuroscience, for instance, will look at a sub-system (say vision) with an enormous 
richness of detail which is unbalanced by gross assumptions such as independence 
from motor systems, arbitrary external control signals, or artificial uncorrelated 
random inputs. ER cannot do this if the desired outcome is a whole agent that 
performs a behaviour autonomously (the acid test of all the work in this area).  
 
Evolution can bridge the difficulty of designing an integrated and situated system, 
thus providing quite a different perspective from models where the sensorimotor loop 
is opened, but at the cost of simplifications and certain degree of opaqueness which is 
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the inevitable consequence of passing a good part of the design job to an automated 
process. These costs are important. We cannot evolve systems with an internal 
complexity resembling that of animals, even insects. And even if we succeed in 
evolving an integrated and situated system, we cannot immediately know how it 
works or whether unwanted regularities have been taken advantage of by evolution, 
but must often resort to psychophysical experiments, lesion analysis and dynamical 
studies, [36].  
 
Fortunately, being aware of these disadvantages does not prevent the exploitation of 
the benefits of ER - proofs of concept and exploratory studies require only minimal 
understanding of how a system works to have some impact, and the role of certain 
mechanisms can be studied using comparative approaches or building in further 
constraints in an evolutionary process that will prevent those mechanisms from 
working in the hypothesized way.  It is, however, a crucial task for ER practitioners to 
be able to clarify in each case how the method is used so as to communicate 
effectively with other disciplines as experience shows that motivations for ER are 
often misunderstood. 
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LIST OF FIGURES: 
 
Figure 1: A cartoon view of a Dynamical Systems approach to cognition. The “Brain 
and Body” of an agent (human, animal, robot) can be considered as a bag of physical 
components whose internal dynamics are governed by physical laws, a Dynamical 
System. The rest of its “World” can be considered as another DS. These two DSs are 
coupled through sensory and motor interactions. The challenge for ER, when 
designing artificial agents, is to get the dynamics of interaction “right”, so that the 
whole coupled DS generates appropriate behaviour in the agent. 
 
Figure 2: The basics of a Genetic Algorithm. An oval indicates a population of 
genotypes, represented by the horizontal lines. One generation consists of a cycle anti-
clockwise, through Evaluation (allocating fitness measures to each genotype on the 
basis of the robot behaviour it generates); Selection (biased towards the fitter scores); 
Reproduction and Mutation (producing offspring genotypes for the next generation 
inheriting, with variation, from the selected parental pool). The initial population is 
often generated at random, and thereafter each cycle or generation is intended to 
produce on average increased fitness in the population. 
 
Figure 3: A top-down view of the simulated agent, showing bilaterally symmetric 
sensors (“photoreceptors”). Reversing the sensor connections will initially have a 
similar effect to moving the light source as shown. 
 
Figure 4: On the left, a plot of distance from light source against time, for the lifetime 
of a successful agent under normal conditions. Each vertical spike represents the 
arrival of a new light source at some distance from the agent, and also indicates the 
subsequent rapid decrease in distance as the target is approached. On the right 
(showing a longer timescale and a very different vertical scale of distance), an initial 
short series of normal presentations (at the very left hand end of the plot) is followed 
by visual inversion applied to the agent. It can be seen that this causes the agent to 
move away from the source each time it is presented, until around 38,000 timesteps 
(detail in insert) the robot reverts to phototactic behaviour. 
 
Figure 5: Time taken to adapt to visual inversion, plotted against the length of time 
that the agent experienced normal presentations of the light source before the visual 
inversion was imposed upon it.  
 
Figure 6: Yamauchi and Beer’s original one-dimensional task. A is the agent that 
starts in the centre, G is the Goal and L the light. In the 2 examples on the left, the 
Light is on the same side as the Goal; 2 examples on the right, the Light is on the 
opposite side. 
 
Figure 7: Tuci and Quinn’s revised two-dimensional version, The dark stripe on the 
ground represents the Target, which may be correlated (“Landmark-near”) or anti-
correlated (“Landmark-far”) with the Target. The robot is initially presented with an 
empty arena, and it is only after it has reached the centre region that the Target and 
Landmark (Light) appear. 
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Figure 8: Plots of Success/Failure under Landmark-near and Landmark-far 
conditions for the best of each generation over 5000 generations. Detour behaviour 
refers to those unsuccessful strategies in which the agent finds the target having 
previously explored the wrong end of the arena.'' 
 
Figure 9: Plot of signalling behaviour over time by an adult/infant pair during 
interaction. 
 
Figure 10: Plot showing agent positions during an 'adult/infant' trial (fixed weight 
controller agent paired with plastic controller agent). The time axis runs vertically 
from the bottom of the plot: at the outset the pair are some distance apart, having 
come together they remain in close proximity for the remainder of the trial. 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 1: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 2: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 3: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 4: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 5: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 6: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 7: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
Figure 8: 
 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 
 
 

 
Figure 9: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 

 
Figure 10: 
 



Evolutionary Robotics: A new scientific tool for studying cognition 
 

 
 


