

Links to our Analysis and PDEs seminar and our departmental MASS seminar
My research interests lie in the analysis of nonlinear partial differential equations.
My most recent focus has been on the
NavierStokes equations governing the motion of viscous, incompressible
fluids.
Click here
and follow the links on that page for a summary of this
longstanding and interesting problem.
Isabelle Gallagher, Gabriel Koch and Fabrice Planchon. A profile decomposition approach to the L^{∞}_{t} (L^{3}_{x}) NavierStokes regularity criterion. Math. Ann. (published online July 2012), 355(4):15271559, 2013.
Hajer Bahouri, Albert Cohen and Gabriel Koch. A general waveletbased profile decomposition in the critical embedding of function spaces. Confluentes Mathematici (CM) 3(3):387411, 2011.
Gabriel Koch. Profile decompositions and applications to NavierStokes. In Journees "Equations aux Derivees Partielles" (Port d'Albret, 2010), Exp. No. 12, 13. 2010.
Gabriel S. Koch. Profile decompositions for critical Lebesgue and Besov space embeddings. Indiana Univ. Math. J., 59:18011830, 2010.
Carlos E. Kenig and Gabriel S. Koch. An alternative approach to the NavierStokes equations in critical spaces. Ann. I. H. Poincare  AN, 28(2):159  187, 2011.
Gabriel Koch, Nikolai Nadirashvili, Gregory A. Seregin, and Vladimír Šverák. Liouville theorems for the NavierStokes equations and applications. Acta Math., 203(1):83105, 2009.
19961999: B.A., Mathematics with honors, Magna Cum Laude, Brandeis University
20002006: Ph.D., Mathematics, University of Minnesota (advisor: Vladimír Šverák)
20062009: L. E. Dickson Instructor, Department of Mathematics, University of Chicago (mentor: Carlos E. Kenig)
20092011: Postdoctoral Research Fellow, Oxford Centre for Nonlinear PDE (OxPDE), Mathematical Institute, Oxford University (mentor: Gregory Seregin)
2012 (April  December): Lecturer, Institute for Mathematics, University of Zürich
2011present: Lecturer in Mathematics, Mathematics Department, University of Sussex