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Abstract. The Object Constraint Language OCL offers a formal nota-
tion for constraining the modelling elements occurring in UML diagrams.
In this paper we apply OCL for developing Java realizations of UML de-
sign models and introduce a new Hoare-Calculus for Java classes which
uses OCL as assertion language. The Hoare rules are as usual for while
programs, blocks and (possibly recursive) method calls. Update of in-
stance variables is handled by an explicit substitution operator which
also takes care of aliasing. For verifying a Java subsystem w.r.t. a de-
sign subsystem specified using OCL constraints we define an appropriate
realization relation and illustrate our approach by an example.

1 Introduction

Program verification is a dream which has not yet been realized in practical
software development. With UML [17] the possibilities for achieving this dream
have improved: UML allows one to express semantic constraints using OCL
and offers notations such as the “realizes” relation for expressing correctness
relationships between different diagrams on different levels of abstraction. The
object constraint language OCL [23] offers a formal notation to constrain the
interpretation of modelling elements occurring in UML diagrams. OCL is sys-
tematically used for rigorous software development in the Catalysis Approach
[11]. The OCL notation is particularly suited to constrain class diagrams since
OCL expressions allow one to navigate along associations and to describe con-
ditions for object attributes in invariants and pre- and post-conditions of the
operations. The “realizes” relationship asserts that classes (written in a pro-
gramming language) “realize” the requirements formulated in a more abstract
class diagram with constraints. It allows the programmer to express the cor-
rectness of its implementations w.r.t. UML designs. However, to our knowledge,
there is up to date no formal definition of the “realizes” relationship and also no
possibility of verification.

The aim of this paper is to close this gap. We propose a formalization of
the “realizes” relationship w.r.t. Java implementations. For this purpose we first
define the syntactic and semantic requirements induced by a design model that
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is given by a UML class diagram and associated OCL constraints. The semanti-
cal requirements are presented by Hoare formulas which express pre- and post-
conditions for the method implementations. We verify these requirements using
the axioms and rules of a new Hoare calculus for Java-like sequential programs
proposed in [20]. Even if in practice such proofs will not be done in full our
approach provides a tool for verifying the critical and important parts of a real-
ization relationship.

Our work has been influenced by several other calculi. A Hoare calculus
for Java has been proposed by Poetzsch-Heffter and Müller [18, 19]. We see as
a main drawback that loc.cit. use an explicit representation of state in their
calculus which is thus not suited for OCL. Similarly the calculi of Abadi and
Leino [1, 15] do not fit to Java and OCL. Our calculus avoids this problem and
is directly tuned to OCL. In this sense we follow rather the ideas of Gries and
De Boer who handle arrays and references by explicit substitution [10]. Other
relevant work on Hoare-calculi includes a calculus of records [7] and treatment
of recursion [22].

The JML approach [14] extends the Java language such that programs (in-
cluding exceptions) can be annotated by specifications. Proof obligations are
generated but proofs can only be performed after a translation into a volumi-
nous semantic description of Java that does not make use of a Hoare-logic but
is of denotational flavour instead.

Our calculus extends the usual rules for while programs with blocks by rules
for update of instance variables – handled by an explicit substitution operator
which also takes care of aliasing –, for creation of objects – using a special
constant –, for recursive method specifications – taking care of inheritance –,
and method calls.

2 The General Method

During the development of complex software systems various documents on dif-
ferent levels of abstraction are produced ranging from analysis models to concrete
implementations (in terms of some programming language code). In this paper
we focus on the (formal) relationship between system design and implementa-
tion.

2.1 The Design Model

Following the Unified Process (cf. [21]) a design model can be presented by a
design subsystem. We assume that the subsystem contains classes, inheritance
and association relations such that any association is directed and equipped with
a role name and a multiplicity at the association end. As an essential ingredient
of our approach the elements of a design model will be equipped with OCL
constraints for specifying properties like invariants of classes and pre- and post-
conditions for the operations.
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In the following we consider as an example the design model for a (simple) ac-
count subsystem of a bank application shown in Fig. 1. For any checking account
there is a history which stores the amounts of all deposit operations performed
on the account. To describe precisely the desired effects of the operations in
terms of pre- and post-conditions we use OCL-constraints which also include
appropriate invariants for the specialized account classes (cf. Table 1).

Fig. 1. Design Model for Accounts

2.2 The Implementation Model

An implementation model is given by an implementation subsystem (in the sense
of [21]) which contains components that may be related by dependency relations.
In our approach any component C.java will be a Java file containing the code
of a Java class C. We assume that all attributes of Java classes are declared
“private” or “private protected” to ensure encapsulation of object states. The
code of the implementation model is shown in Table 1.

2.3 The Realization Relation

A realization relation connects a given design model and its corresponding im-
plementation model as shown in Fig. 2. We say that the realization relation
between “MyDesignSubsystem” and “MyJavaSubsystem” holds if the following
syntactic and semantic requirements are satisfied.

Syntactic requirements: First the classes occurring in the design subsystem have
to be mapped to components of the implementation model. This can be done by
using trace dependencies as considered in [21]. We require that every class C of
the design model is related by a trace dependency to a Java component C.java
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context Account::deposit(n:Integer)
pre: n ≥ 0
post: bal = bal@pre + n

context SavingsAccount
inv: bal ≥ 0 and interestRate ≥ 0

context SavingsAccount::
addInterest()

post: bal = bal@pre +
bal@pre * interestRate/100

context CheckingAccount
inv: chargeRate ≥ 0

context CheckingAccount::
deposit(n: Integer)

pre: n ≥ 0
post: history.oclIsNew and

history.amount = n and
history.history = history@pre

abstract class Account

{ private protected int bal;

abstract void deposit(int n) {}

}

class SavingsAccount extends Account

{ private int interestRate;

public void deposit(int n)

{ this.bal = this.bal + n;

}

public void addInterest()

{ int interest = this.bal *

this.interestRate/100;

this.deposit(interest); }

}

class CheckingAccount extends Account

{ private int chargeRate;

private History history;

public void deposit(int n)

{ this.bal = this.bal + n;

History h = new History();

h.amount = n;

h.history = this.history;

this.history = h; }

}

class History

{ private int amount;

private History history;

}
Table 1. OCL-Constraints and implementation model for Account Subsystem

as depicted in Fig. 2. The trace dependency between C and C.java is supposed
to hold if the following conditions are satisfied:

1. Each attribute of the design class C is also an attribute of the Java class C
and for each role name at the end of a directed association the Java class
contains a corresponding reference attribute with the same name. (Note
that standard types may be slightly renamed according to the Java syntax
and that role names with multiplicity greater than one map to reference
attributes of some container type.)

2. For each operation m specified in the design class C there is a method dec-
laration in the Java class C and vice versa (up to an obvious syntactic
modification of the signature). The operation m of the design model has the
property { abstract } iff the method m is an abstract method.

3. The design class C is a (direct) subclass of a design class A iff the Java class
C extends the Java class A.
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Fig. 2. Trace Dependency and Realization Relation

These conditions guarantee (in particular) that the OCL expressions used as
constraints for the design model can be interpreted in the implementation model
which is necessary to define the semantical requirements. Moreover, note that
the above conditions are satisfied by usual code generators for Java classes from
UML class diagrams.

Semantic requirements: Let us first stress that the semantic requirements con-
sidered in the following are derived solely from the OCL constraints attached
to the design model. This means that constraints imposed by the UML class
diagram itself (like multiplicities or { query } properties of operations) and any
kind of frame assumption will not be considered here if not explicitly expressed
by an OCL constraint.

For the formulation of the semantic requirements we assume that the syn-
tactic requirements from above are satisfied. Let us first discuss the role of in-
variants. According to [23] an invariant INV-C defined in the context of a class
C means that INV-C evaluates to true for all instances of C at any moment of
time. Since, by assumption, all attributes occurring in an implementation model
are private or private protected the state of an object can only be modified by
method invocations. Therefore the basic idea is to require that the invariant
is preserved by any method invocation1 for objects of C and that the invari-
ant holds also for any object of C after its creation. These conditions, however,
are not sufficient if there is a superclass A of C which has also an associated
invariant, say INV-A. Then, in order to satisfy Liskov’s substitution principle
for subtypes [16], INV-A should be inherited by C. Hence, in general, we have
to consider for any class C the conjunction of INV-C and all invariants INV-A
associated to a superclass A of C. For any design class C, this conjunction will
be denoted in the following by INV-conj-C. 2

For dealing with object creation we transform any post-condition POST oc-
curring in the design model into the expression POST+ where any occurrence
of an OCL expression “t.oclIsNew” with some term t of some type C is replaced
by “t.oclIsNew and INV-conj-C[t/this]”.

Having the above definitions in mind we require that for each design class C
the following conditions are satisfied:
1 For simplicity, we assume that all methods are public. Otherwise the approach could

be easily extended to take into account UML visibility markers in the design model
which then should be preserved by the trace dependency.

2 Obviously, if INV-C is stronger than INV-A for any superclass A then INV-conj-C
is equivalent to INV-C.
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1. Pre- and post-conditions associated to operations of C are respected by
corresponding method implementations. This means that for each operation
m specified in the design class C with OCL-constraint

context C:: m(p1 : T1, . . . ,pn : Tn)pre : PRE post : POST

the given Java subsystem satisfies the Hoare formula

{PRE and INV-conj-C} C::m(p1 : T1, . . . , pn : Tn) {POST+}

where C denotes the Java class with method m defined in the component
C.java. The formal basis of this proof obligation will be provided in the next
sections. In particular, according to Definitions 8 and 9, the satisfaction of
the above Hoare formula means that any method body of m provided in C
or in a subclass C ′ of C (which eventually overrides m) respects the given
pre- and post-condition. Thus Liskov’s substitution principle is satisfied.
Note that it may also be the case that in the design model there is a subclass
C ′ of the design class C which redefines m in the sense that it provides an
additional OCL constraint with pre- and post-conditions PRE ′ and POST ′

for m. In this case the realization relation requires that both Hoare formulas

{PRE and INV-conj-C} C::m(p1 : T1, . . . , pn : Tn) {POST+}
{PRE ′ and INV-conj-C ′} C ′::m(p1 : T1, . . . , pn : Tn) {POST ′+}

must be satisfied by the Java subsystem. For instance, the pre- and post-
conditions in our example lead to the proof obligations (1-3) of Table 2.

2. Invariants are preserved by method implementations. This means that for
each operation m specified in the design class C or in a superclass of C the
given Java subsystem satisfies the Hoare formula

{PRE and INV-conj-C} C::m(p1 : T1, . . . , pn : Tn) {INV-conj-C}

where PRE denotes the pre-condition required for m (if any). For instance,
considering the invariants of the account example we obtain the proof obli-
gations (4-6) of Table 2.

3 OCLlight

OCLlight is a representative kernel of OCL which should be easily extendible to
full OCL. Yet, it deliberately differs from OCL in some minor syntactic points
explained below.

3.1 Syntax

OCLlight admits the use of so-called “logical variables” for eliminating expres-
sions of the form “t@pre” from post-conditions. Such variables cannot be altered
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{n ≥ 0} {n ≥ 0 and bal ≥ 0 and interestRate ≥ 0}
1) Account::deposit(n:Integer) 4) SavingsAccount::deposit(n:Integer)

{bal = bal@pre + n} {bal ≥ 0 and interestRate ≥ 0}

{n ≥ 0 and chargeRate ≥ 0} {bal ≥ 0 and interestRate ≥ 0}
2) CheckingAccount:: 5) SavingsAccount::addInterest()

deposit(n:Integer) {bal ≥ 0 and interestRate ≥ 0}
{history.oclIsNew and

history.amount = n and
history.history = history@pre}

{true} {n ≥ 0 and chargeRate ≥ 0}
3) SavingsAccount::addInterest() 6) CheckingAccount::deposit(n:Integer)

{bal = bal@pre+ {chargeRate ≥ 0}
bal@pre ∗ interestRate/100}

Table 2. Proof obligations for the account example

by any program. All other variables are simply referred to as “program vari-
ables”. By contrast to Table 2, we stipulate that all instance variables are fully
qualified, i.e. we write “this.bal” instead of just “bal”.

Note that formal parameters of methods are assumed to appear as logical
variables in assertions since they are not allowed to change (call-by-value). More-
over, we use “this” and “null” although the former is called “self” in OCL and
the latter is expressed in OCL by the use of the formula “isEmpty”, i.e. instead
of “t→isEmpty” write “t = null”. The OCL-term-syntax is extended by an op-
eration “new(C)”. It should not be used in OCL- specifications, but it may pop
up in assertions during the verification process to cope with object creation (cf.
Section 5.3). that is sound w.r.t. the above given interpretation function.

General OCLlight-terms may additionally be built from

t ::= 〈Var〉.a@pre field variables in previous state
| 〈Var〉.a.oclIsNew test for new field variable

where 〈Var〉 must not be a logical variable.
OCLlight-formulas are expressions of type bool subsuming equality, forall,

exists, and includes-expressions.
Notation: Usually we use capital letters (X, Y, Z) for logical variables and

small ones for program variables. An exception from the rule are the formal
parameters of methods which are uniquely identified by syntax and thus can
remain lowercase although regarded logical.

3.2 Semantics of OCLlight-terms

There is an interpretation function, [[ ]] , , , , taking a pure OCLlight-term, a store
(containing the objects), a (runtime-) stack (containing actual parameters of
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methods and local variables), two environments – one for logical variables and
one for query names –, and yields an element in a semantic domain. The def-
inition of [[e]]µ,σ,β,ρ is by induction on e. It is rather straightforward and thus
omitted (it can be found in [20]). However, query calls were not considered in
loc.cit., therefore we have introduced an environment for queries and the seman-
tics of a call for query q is as follows:

[[e0.q(e)]]µ,σ,β,ρ = ρ(q)([[e0]]µ,σ,β,ρ, [[e]]µ,σ,β,ρ, µ)

where a query environment ρ maps a query name to a function ρ(q), taking as
input an object reference (the actual value of this), some arguments of a type
determined by the argument types of the query and a store (which is needed to
obtain the field values of this). Moreover, [[e]] is the canonical generalisation of
[[ ]] to a list of terms. In the following we will analogously use extensions of β
and σ to lists of variables.

The axiomatization of the OCLlight-logic contains the usual axioms for natu-
ral numbers, typed finite set theory, and booleans. The “forall” and “exists”
quantifiers are always bounded by a set. The two “non-standard” operations are
“new(C)” representing a free object reference, and “allInstances” referring to all
actually existing and valid objects of a certain class type. They are axiomatized
as follows:

not(new(C) = null)
C.allInstances→includes(t) iff not(t = null) and not(t = new(C))

where t is of type C, “iff” means “if, and only if” obtained from “implies”.
Since not(C.allInstances → includes(t) = C.allInstances → includes(t′)) implies
not(t = t′) one can derive e.g. C.allInstances → forall(Y |not(new(C) = Y )).

The queries need a bit of work too. If q is a query with precondition P and
postcondition Q the following axiom is supposed to hold:

P [e0/this, e/p] implies Q[e0/this, e/p, e0.q(e)/result]

This axiom is only sound, of course, if ρ(q) obeys the specification given as pre-
and post-condition which will be generally assumed in the following, i.e. we re-
quire for any ρ that for any OCL-query-specification in a set of class declarations
D, context q(p : τ ) : τr pre : P post : Q, it holds that

∀µ, σ, β. [[Pq]]µ,σ,β,ρ = true implies [[Qq]]µ,σ[result 7→ρ(q)(σ(this),β(p),µ)],β,ρ = true

abbreviated to ρ  Queries(D).
Note that formal parameters are treated as logical variables. This is justified

by the assumption that we only deal with call-by-value parameter-passing.

Theorem 1. (Soundness) There is an axiomatization of the OCLlight-logic with
pure terms, `l, such that for any pure OCLlight-formula Q it holds that

`l Q ⇒ ∀µ, σ, β, ρ. ρ  Queries(D) implies [[Q]]µ,σ,β,ρ = true
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For general OCLlight-terms the interpretation function has an additional pa-
rameter representing the old store, i.e. the interpretation function is written
[[e]]µp

µ,σ,β,ρ where µp denotes the old store, whereas µ stands for the actual one.

Definition 2. The interpretation function for general OCLlight-terms is de-
fined inductively such that [[t@pre]]µp

µ,σ,β,ρ = [[t]]µp,σ,β,ρ and [[t.oclIsNew]]µp

µ,σ,β,ρ =
([[t]]µ,σ,β,ρ 6∈ µp) where x 6∈ µp is true iff x is not referring to an existing object
in µp. All other cases follow literally the interpretation for the pure case.

3.3 Transformation of OCLlight-formulas

Postconditions may contain expressions of the form “t.a@pre” and “t.oclIsNew”
which are forbidden in preconditions. This is impractical in proofs of Hoare-
formulas where the postcondition of one statement may appear as precondition
of another statement. Therefore we introduce logical variables for encoding the
effects of “@pre” and “oclIsNew”.

Definition 3. For a pair of general OCLlight-formulas (P,Q) we define the syn-
tactic transformation (P,Q)∗ = (P ∗, Q∗) as follows:

P ∗ = (P and ti = Xi and Cj .allInstances = Aj)
Q∗ = Q[Xi/ti@pre][not(ej = null) and not(Aj→includes(ej))/ej .oclIsNew]

where {ti@pre | i ∈ I} contain all occurrences of “@pre”-variables in Q and
{ej .oclIsNew | j ∈ J} contain all occurrences of “oclIsNew” in Q. The Cj are
the class types of the ej . All Xi and Aj are new logical variables not occurring
in P or Q.

Example 4. We can transform the pre- and postcondition of the deposit oper-
ation in Account to the following Hoare-formula:

{ this.bal = M and n ≥ }Account::deposit(Integer n){ this.bal = M + n }

The “oclIsNew” part of the pre-/postcondition of deposit in CheckingAccount
is transformed as follows (written vertically):

{ History.allInstances = H and n ≥ 0 }
CheckingAccount::deposit(Integer n)
{ not(this.history = null) and not(H→includes(this.history)) and ... }

3.4 Correctness of the Transformation

Proposition 5. Let P,Q be general OCLlight-formulas and (P,Q)∗ = (P ∗, Q∗).
Then for all µ, µp, σ, β and ρ we have

[[P ]]µp,σ,β,ρ ⇒ [[Q]]µp

µ,σ,β,ρ iff [[P ∗]]µp,σ,β∗,ρ ⇒ [[Q∗]]µ,σ,β∗,ρ

where β∗(Z) =

 [[ti]]µp,σ,β,ρ if Z ≡ Xi, i ∈ I
[[Cj .allInstances]]µp,σ,β,ρ if Z ≡ Aj , j ∈ J
β(Z) otherwise
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and (ti)i∈I and (Cj)j∈J are as in Def. 3.

4 Javalight

The object-oriented programming language of discourse is supposed to be a
subset of sequential Java with methods and constructors without exceptions.

There are some restrictions, however, on the syntax that deserve explanation.
First, we do not allow arbitrary assignments Exp.a = Exp as we will only be
able to define substitution for instance (field) variables x.a where x is a local
variable or a formal parameter (or this). This is, however, no real restriction
as for an assignment e.a = e′ one can also write x = e;x.a = e′. This sort of a
decomposition of compound expressions is well known from compiler construc-
tion. Second, we distinguish a subset of expressions without side-effects (Exp)
and with possible side-effects (Sexp). The first forms a proper subset of OCLlight-
expressions and can thus be substituted for (instance) variables. This is why all
the arguments of a method call must be side-effect free. The restricted syntax
for expressions is still sufficient since, again, one can decompose any expression
using auxiliary variables.

In general, dealing with partial correctness only, we shall only consider ver-
ification of programs that are syntax and type correct. For technical simplicity
two minor simplifications of the Java type-system are in use. We ignore shadow-
ing of field variables and method overloading (by different number and types of
argument variables).

Semantics For the purpose of this paper it is sufficient to treat the operational
semantics of Javalight abstractly.

Definition 6. An operational semantics for Javalight is a family of partial func-
tions

(T C)C∈Classname : JavaL× Store× Stack ⇀ Store× Stack

that is defined – assuming that this has actual type C – only if execution of the
Java-program terminates successfully. Moreover, the result has to be in accor-
dance with the requirements of the Java Specification [12]. The restriction T C

k

yields the same result as T C if the evaluation depth (the call-stack-depth) of the
computation is less than k; otherwise it is undefined.

This restriction is necessary to give a sound interpretation to specifications of
recursive methods (see also [22, 20]).

A possible operational semantics that fits can be found in [8, 9, 2]).

5 Hoare Calculus

In this section we present a Hoare calculus for Javalight with assertions written
in pure OCLlight. This calculus extends the well-known Hoare calculi one can
find in any textbook (see e.g. [4] or the original text [13]) by a few rules covering
assignment to instance variables, object creation (see also [6, 7]), method call,
and method specification (inheritance).
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5.1 Syntax

Because object-oriented programs are structured by means of classes which in
turn break down to fields and methods, we introduce two different Hoare-like
judgements, where the one for methods is considered as a special abbreviation:

Definition 7. We first distinguish between two types of Hoare-triples, those for
statements {P} S {Q} and those for methods (also called method specifications)
{P} C :: m(p : τ ) {Q} where S is a Javalight-statement, C is a class type, P and
Q are pure OCLlight formulas. For method specifications, all program variables
appearing in Q must be “this” or “result”. Recall that the formal parameters
p are assumed to appear as logical variables since we assume a call-by-value
parameter mechanism. The judgments of the Hoare calculus are then as follows:

1. Derivable Statement Triples
Γ `C

D {P} S {Q} where Γ denotes a context being empty or consisting of
one method specification, D is the whole set of declarations, i.e. the complete
Java-package of discourse, and C is the assumed class type of this (which
may not be uniquely derivable from the statement S alone).

2. Derivable Method Triples
`D {P} C :: m(p : τ ) {Q} where C and D are as above.

The context for Hoare triples is necessary for the treatment of recursive method
specifications. For mutual recursive methods the context must be generalized to
sets of method triples.

We omit the indices D and C if they can be derived from the context.

5.2 Semantics

The following definition of validity of triples holds for general OCLlight-assertions
P and Q.

Definition 8. Let T denote a semantic function for Javalight. Then Hoare-
triples are said to hold relatively to evaluation depth smaller than k if the
following holds:

1. Statement Triples (partial correctness of statements)
|=D,C

k {P} S {Q}, if for any µ, σ, β we have

[[P ]]µ,σ,β,ρ = true ∧ T C
k (S, µ, σ) = (µ′, σ′) ⇒ [[Q]]µσ′,µ′,β,ρ = true

where ρ is defined as follows for any query of D defined in class Cq:

ρ(q)(o,a, µ) = (T Cq

k (body(Cq, q,D), µ, ∅[this 7→ o][p 7→ a])1(result)

2. Method Triples (partial correctness of methods)
|=D

k {P} C::m(p : τ) {Q} if ∀C ′ ≤ C. |=D,C′

k {P} body(C ′, m, D) {Q}
where body(C ′, m, D) is the body of m defined in class C ′ of program package
D. If C ′ just inherits m from some superclass C ′′ then body(C ′, m, D) =
body(C ′′, m, D).
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Note that it is not clear a priori that ρ  Queries(D), but it will follow from
the proof of `D {P} C::q( . . . ) {Q} for each query q with pre-condition P and
post-condition Q.

Definition 9. A triple T is valid in a context Γ , i.e. Γ |=D,C T , iff

∀k ∈ N. |=D
k Γ ⇒|=D,C

k+1 T

5.3 Inductive definition of the Hoare calculus

In this section we present the rules (i.e. the calculus) for deriving correct speci-
fications for Javalight programs in a purely syntactic way. The rules and axioms
below define inductively a relation `D

C , i.e. the derivable statement specifications.
To this end we may make use of the axioms and rules for the OCLlight-

language (i.e. `l, cf. Theorem 1) and of the “classical” rules of the Hoare calculus
for While-languages which are not repeated here (cf. [13, 3]).

In the following we present the rules that deal with object-oriented features.

Field Assignment

{P [e/x.a]} x.a = e {P} e ∈ Exp (Field variable assignment)

where t[e/x.a] is the substitution for field variables defined inductively as follows:

Definition 10. Define e′[e/x.a] by structural induction on e′, the only interest-
ing non-trivial case being (in other cases just push substitution through):

(t.b)[e/x.a] ,

{
t[e/x.a].b if b 6= a
if (t[e/x.a] = x) then e else t[e/x.a].b otherwise

Example 11. The following Hoare-triple is an instance of the field variable as-
signment axiom for the body of the deposit operation in SavingsAccount:

{ ( if (this = this) then (this.bal + n) else this.bal ) = M + n}
this.bal = this.bal + n
{ this.bal = M + n }

which by the Weakening Rules reduces to

{this.bal + n = M + n} this.bal = this.bal + n {this.bal = M + n}

Again by weakening we obtain the correctness of the body of the method deposit
of class SavingsAccount w.r.t. the transformed OCLlight-pre/post-condition of
deposit given in the superclass Account (cf. (1) of Table 2).
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Object creation Let Q[δC.a/x.a] abbreviate the simultaneous substitution of all
field variables x.ai occurring in Q by a default value of appropriate type. This
default value has to be the one that Javalight uses for initialisation (e.g. 0 for
integers and null for class types).

{Q[δC.a/x.a][new(C)/x,C.allInstances→including(new(C))/C.allInstances]}
x=newC() (new)
{Q}
where Q does not contain any query calls nor new(C).

Recall that “new(C)” and query calls can be eliminated using the consequence
rule of standard Hoare calculus and the axioms mentioned in Section 3.2.

Example 12. The correctness of deposit in CheckingAccount involves proving
the following Hoare-formula (*):

{ H = History.allInstances }
History h = new History()
{ not(H→includes(h)) and not(h = null) }

Using the axiom for object creation the derived precondition is

(∗∗) not(H→includes(new(History))) and not(new(History) = null)

Because of the axioms for “new(History)” and “History.allInstances” the pre-
condition of (*) implies (**). Thus by the weakening rule, the Hoare-formula (*)
is proven.

return-statement Returning a value means assigning it to variable result.

{Q[e/result]} return e {Q} (return)

Method specifications The partial correctness of a method specification for m in
class C can be derived from the partial correctness of all bodies of m in C and
in any subclass of C where for dealing with recursion the partial correctness of
the method specification can be assumed.

∀C ′ ≤ C. {P} C::m(p:τ) {Q} `D
C′ {P} body(C ′, m, D) {Q}

{P} C :: m(p : τ ) {Q}
(MethodSpec)

Example 13. By proving the correctness of the method bodies of deposit in
SavingsAccount (cf. Example 11) and CheckingAccount i.e.

`AccountJavaSubsystem
SavingsAccount { this.bal = M and n ≥ 0 }

body(SavingsAccount,deposit,AccountJavaSubsystem)
{ this.bal = M + n } and

`AccountJavaSubsystem
CheckingAccount { this.bal = M and n ≥ 0 }

body(CheckingAccount,deposit,AccountJavaSubsystem)
{ this.bal = M + n }
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we conclude the correctness of deposit w.r.t. its transformed OCL-constraint
by rule (MethodSpec).

`AccountJavaSubsystem { this.bal = M and n ≥ 0 }
Account::deposit(n : Integer)
{ this.bal = M + n }

Method Call The rules for the method call must take into consideration the
method dispatch of the programming language. This is ensured by using the
method specification in the premise.

{P} type(e0)::m(p:τ) {Q} `l Q[e0/this] implies R[result/x]
{P [e0/this] and p = e} x = e0.m(e) {R}

(Call)

Note that one cannot simplify the rule by dropping the implication in the hy-
pothesis and changing the postcondition in the conclusion to Q[e0/ this, x/result]
since this would blur the distinction between x before and after execution of the
method call and thus lead to an unsound rule. For the very same reason the
arguments e cannot be substituted into Q.

Logical variables can be replaced by special side-effect free expressions.

{P} x = e0.m(e) {Q}
{P [e′/Z]} x = e0.m(e) {Q[e′/Z]}

if e′ ∈ Exp, x 6∈ LV (e′), IV (e′) = ∅

(Call Invariance)

where LV (e′) and IV (e′) denote the local variables and the instance variables
occurring in vector e′, respectively, and Z is a vector of logical variables (thus
not occurring in any program). The variable conditions ensure that e′ is not
changed by the method invocation.

For method calls with return type void there is an analogous rule.

{P} type(e0)::m(p:τ) {Q}
{P [e0/this] andp = e} e0.m(e) {Q[e0/this]}

(CallVoid)

We omit the analogous invariance rule for methods with return type.

Example 14. In the following we prove a property of deposit which is used in
the proof of the constraint for addInterest:

{this.bal = M and n ≥ 0} SavingsAccount::deposit(n:Integer) {this.bal = M+n}
(MethodCall)

{this.bal = M and n ≥ 0 and n=interest} this.deposit(interest) {this.bal=M+n}
(CallInvariance)

{Q} this.deposit(interest) {this.bal =M+M*I/100}

where Q ≡ “this.bal = M and M*I/100 ≥ 0 and M*I/100=interest” and “I” is a
logical variable denoting the value of “this.interestRate”. Note that for proving
“M*I/100 ≥ 0” we need the invariant of SavingsAccount asserting “this.bal ≥
0 and this.interestRate ≥ 0”.
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5.4 Correctness

Theorem 15. The presented Hoare calculus for pure OCLlight-formulas and
Javalight programs is sound w.r.t. the operational semantics of Javalightgiven
in [9], i.e.

Γ `C
D {P} S {Q} ⇒ Γ |=D,C {P} S {Q}

Proof. [20]

Corollary 16. For general OCLlight-formulas P and Q we therefore get

Γ `C
D {P ∗} S {Q∗} ⇒ Γ |=D,C {P} S {Q}

Proof. The proof is a consequence of the theorem above and Proposition 5.

Currently we are investigating the completeness of the Hoare calculus. It
appears that we need some additional (admissible) rules such as conjunction
introduction and the introduction of existential quantifiers, see e.g. [4].

6 Verifying the Realization Relation

In this section we sketch the proof of the correctness of the realization relation of
the AccountSubsystem (see Fig. 3). According to the definition in Section 2.3 we

Fig. 3. Realization relation of the AccountSubsystem

have to show the trace dependencies, the satisfaction of the pre-/postcondition
constraints and the preservation of the OCL-invariants.

Trace dependencies The trace dependencies are obviously satisfied: for each class
of AccountSubsystem there exists a corresponding Java class in AccountJavaSub-
system so that the attributes, methods and inheritance relations are preserved.

Satisfaction of pre-/postconditions The proof obligations (1-3) of Table 2 shown
in Section 2.3 have to be verified. For this purpose, according to Corollary 16, it
is sufficient to consider their transformations which can be proved as sketched
in Example 13 (for (1)), Example 12 (for (2)), and Example 14 (for (3)).

Preservation of invariants The AccountSubsystem contains invariants for Sav-
ingsAccount and CheckingAccount. It is easy to prove the associated conditions
(4-6) shown in Section 2.3.
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7 Concluding Remarks

We have presented a new formal approach for verifying the realization of UML
design models by Java subsystems and a new Hoare calculus for a sequential
subset of Java and a subset of OCL as assertion language. This is a first step
towards the goal of providing a basis for formal software development with UML.
But one can see several necessary extensions of our approach, for the UML part
as well as for the Hoare calculus. In this paper we have restricted the design
models to classes and their relationships. In the following we plan to consider
also interfaces. Here, our approach of [5] where we propose a constraint language
for interfaces may provide a good basis for the extension. Another important
question concerns the composability of subsystems: Under which conditions is
the correctness of the realizes relationship preserved if two subsystems with
correct realizations are composed? Concerning the Hoare calculus it should be
easy to extend semantics, calculus, and soundness proof to the full OCL-language
(with bags, sequences and many operations on them). In order to analyse the
practicability of our calculus we also need to carry out further case studies. Those
examples might then propose additional admissible or derived proof-rules for the
Hoare calculus in order to support the verification process, i.e. to simplify the
reasoning.
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