

PPIG, University of Sussex, 2014 www.ppig.org

Blinded by their Plight: Tracing and the Preoperational Programmer

Donna Teague

Queensland University of Technology

Australia

d.teague@qut.edu.au

Raymond Lister

University of Technology, Sydney

Australia

raymond.lister@uts.edu.au

Keywords: POP-I.B. barriers to programming, POP-II.A. novices, POP-V.A. Neo-Piagetian, POP-V.B. protocol

analysis, POP-VI.E. computer science education research

Abstract

In this paper, we present evidence that some novice programmers have the ability to hand execute

(“trace”) small pieces of code and yet are not able to explain what that code does. That evidence is

consistent with neo-Piagetian stage theory of programming. Novices who cannot trace code are

working at the first stage, the sensorimotor stage. Novices who are working at the preoperational

stage, the second stage, can trace code but do not yet have a well-developed ability to reason about the

code’s purpose, other than by induction from input/output pairs. The third stage, the concrete

operational stage, is the first stage where novices can reliably reason about code. We present data

from think aloud sessions that contrast the behaviour of preoperational and concrete students while

they attempt to reason about code.

1. Neo-Piagetian Stages of Development

Lister (2011) proposed that we could describe novice programmers’ behaviour using neo-Piagetian

stage theory. This theory is based on the premise that there are consecutive, cumulative stages

through which we develop increasingly more mature abstract reasoning and expertise in a domain.

1.1 Sensorimotor Stage

Sensorimotor is the first, and least mature, stage of development. It is at this stage that

misconceptions about basic programming concepts most influence the novice’s behaviour, like those

misconceptions described by du Boulay (1989). A sensorimotor novice programmer has as yet

minimal language skills in the domain and is still learning to recognise syntax and distinguish

between the various elements of code. At this stage the novice requires considerable effort to trace

code (i.e., hand execute), and only occasionally do they manage to do so accurately.

1.2 Preoperational Stage

At the next more mature stage, the preoperational novice has made headway into mastering basic

programming concepts, with most misconceptions having now been rectified. This makes it possible

for them to more consistently trace code accurately. However, the preoperational novice is heavily

reliant on the use of specific values to trace, understand and write code. Preoperational novices are

not yet able to perform abstract reasoning about a chunk of code, as their focus is quite narrow:

limited to simply a single statement or expression at a time. They struggle to recognise the

relationship between two or more statements.

1.3 Concrete Operational Stage

By the time a novice is at the concrete operational stage, their focus shifts from individual statements

to small chunks of code which allows them to consider the overall purpose of code. Their ability to

reason at a more abstract level allows them to understand short pieces of code simply by reading that

code. When the concrete operational novice does trace, they can do so in an abstract manner rather

than being reliant on the use of specific variable values. One of the defining characteristics of the

 2

PPIG, University of Sussex, 2014 www.ppig.org

F
re

q
u

en
cy

sensorimotor

preoperational

concrete

operational

Figure 1 Overlapping Waves Model

concrete operational novice is the ability to perform transitive inference: comparing two objects via an

intermediary object. For example, if A > B and B > C then, by transitive inference, A > C.

1.4 Piaget -v- Neo-Piaget

Whereas Piaget himself focussed on the cognitive development of children, neo-Piagetian theory is

concerned with cognitive development of people of any age, learning any new task. A person can

thus concurrently exhibit characteristics from different stages in different knowledge domains. Using

a methodology based on Piaget’s theory of genetic epistemology, da Rosa (2007) witnessed in her

research participants the transition of reasoning about relationships towards the construction of new

recursive concepts. According to neo-Piagetian theory, time taken by individuals to transition through

the stages varies, but there are conflicting theories about the nature of those transitions which we will

discuss in the next section.

1.5 Staircase Model -v- Overlapping Wave Model

We previously alluded to conflicting theories about the nature of the transitions between neo-

Piagetian stages. Although theorists agree that the neo-Piagetian stages are consecutive and

cumulative, one view is that the stages are discrete, much like a stair-case model. However, there is a

growing body of evidence suggesting that progress through the stages may not be so straightforward.

How, for example, does one make the quantum leap from one stage to the next? An alternative to the

stair-case model is that the transition through the stages can be seen as overlapping waves: where a

person exhibits characteristics from two or more stages as they develop skills in the domain (Siegler,

1996; Boom, 2004; Feldman, 2004). In this overlapping waves model, characteristics of the earliest

stage dominate behaviours initially, but as cognitive progress is made there is an increase in use of the

next more mature level of reasoning and a decrease in the less mature. In this way, there is concurrent

use of multiple stages of reasoning. This model is depicted in Figure 1. As will be apparent later in

this paper, some novice programmers’ behaviour that we have observed fits this overlapping waves

model.

 Early Time Later

2. Methodology

Previous studies have found evidence that novices find explaining code harder than tracing code

(Lister, Simon, Thompson, Whalley, & Prasad, 2006; Whalley et al., 2006; Lister, Fidge, & Teague,

2009; Simon, Lopez, Sutton, & Clear, 2009). Philpott, Robbins and Whalley (2007) found that

students who could not accurately trace were not able to explain similar code.

But if a novice has the skills to accurately trace a piece of code, shouldn’t they then have an adequate

understanding of it to be able to explain the purpose of that same piece of code? In this paper, we

gathered empirical data to help us answer this question. We gave students some code and asked them

to both trace and explain its purpose.

At most institutions, Explain in plain English (EPE) questions are not as familiar to most

programming students as tracing and writing tasks. At our institution, however, students encountered

EPE questions in their lectures and previous tests and therefore were familiar with what type of

 3

PPIG, University of Sussex, 2014 www.ppig.org

answer was expected of them. They had not necessarily both traced and explained the same piece of

code before. We asked students to do that in this study, first to establish that they understood the

semantics of the code by being able to trace it, and second, if they could indeed trace it, to determine

if they were also able to explain its purpose.

2.1 In-Class Testing

We tested introductory programming students with trace and explain tasks at our university during

their lecture in four different (13 week) semesters. The students involved in these in-class tests had

already completed one semester of programming. Students were asked to complete the tests

individually, as if they were sitting an exam, but the tests did not contribute to their final grades.

In the sixth week of each of the four semesters, we gave the students the programming tasks shown

below in Figure 2. (Note that the line numbers next to the code in Figure 2 were inserted by the

authors of this paper for the readers’ benefit, and were not part of the exercise given to the students.)

Sample answers are provided in the shaded areas of the figure. The concepts that these tasks use

(selection and output) were covered in week four of their first unit of study, so in effect, students had

exposure to these concepts for 15 teaching weeks. In other words, the programming concepts in the

tasks were quite familiar to them.

Although informally invigilated, our in-class testing was not conducted under formal exam conditions

and students may have been less motivated to complete the tests than if those tests had contributed to

their grades. On the other hand, our students also had less motivation to plagiarise.

2.2 Think Aloud Sessions

An issue with any type of written exam is that test scripts (i.e., the papers that the students hand in)

are sometimes not an accurate indication of students’ ability at all, and certainly rarely give any

insight into the process they used to arrive at an answer (Teague et al., 2012). We wanted evidence of

how students traced and reasoned about code. Artefacts from think aloud sessions are potentially a

much richer source of data which describe the students’ process of solving tasks (Ericsson & Simon,

Consider the following block of code, where variables a, b and c each store integer values:

1 if (a > b) {

2 if (b > c) {

3 Console.WriteLine(c);

4 } else {

5 Console.WriteLine(b);

6 }

7 } else if (a > c) {

8 Console.WriteLine(c);

9 } else {

10 Console.WriteLine(a);

11 }

(a) In relation to the above block of code, which one of the following values for the variables will

cause the value in variable b to be printed?

(i) a = 1; b = 2; c = 3; (ii) a = 1; b = 3; c = 2;

(iii) a = 2; b = 1; c = 3; (iv) a = 3; b = 2; c = 1;

(b) In one sentence that you should write in the box below, describe the purpose of the above

code (i.e. the if/else if/else block). Do NOT give a line-by-line description of what

the code does. Instead, tell us the purpose of the code:

Sample answer: To print the smallest of the three given values.

Correct answer: (iii)

Figure 2 - Trace and Explain Tasks

 4

PPIG, University of Sussex, 2014 www.ppig.org

1993; Atman & Bursic, 1998). So to complement any quantitative findings from our in-class tests, we

also ran a series of think aloud sessions with volunteer students from our first two introductory

programming classes and asked them to complete an exercise similar to that shown in Figure 2. Note

that our think aloud students came from different cohorts using different programming languages, but

essentially there were only syntactic differences in the code. The exercise was presented to them in

the same manner as the in-class test, except the exercise was printed on special dot paper on which

they wrote their answers with a SmartPen (LiveScribe, 2014). This allowed us to see what students

wrote and record what they said as they did so.

3. Results

3.1 In-Class Testing Results

Table 1 shows the performance of students on the tasks in Figure 2, from four different cohorts, in

four different semesters (each cohort is a row in the table). The last row of that table combines the

four cohorts.

A great proportion of the students we tested over the four semesters were able to answer the tracing

question correctly (see Col. 3 of Table 1). A much smaller percentage could actually explain the code

(see Col. 5 of Table 1). A total of 29% of the students could trace the code and therefore had a

working knowledge of the programming concepts involved, but could not explain what that code did

(see Col. 2 of Table 1).

Considering students were working with the same code for both tasks, these results seem to be

surprising. Why were so many students unable to explain that code when they could trace that code?

n

Col. 1

Can trace (a)

and can

explain (b)

Col. 2

Can trace (a)

but cannot

explain (b)

Col. 3

Can trace

Col. 4

Cannot trace (a)

but can explain

(b)

Col. 5

Can

explain

Col. 6

Can neither

trace (a) nor

explain (b)

51 31 (61%) 10 (20%) 41 (80%) 1 (2%) 32 (63%) 9 (18%)

113 40 (35%) 31 (27%) 71 (63%) 0 (0%) 40 (35%0 42 (37%)

53 27 (51%) 21 (40%) 48 (91%) 1 (2%) 28 (53%) 5 (9%)

86 51 (59%) 26 (30%) 77 (90%) 5 (6%) 56 (65%) 4 (5%)

303 149 (49%) 88 (29%) 237 (78%) 7 (2%) 156 (51%) 60 (20%)

Table 1 Comparison of students’ performance on the trace and/or explain tasks in Figure 2

3.2 Think Aloud Sessions Results

As we have seen, a significant number of students in our in-class tests were not able to explain the

code even though they could trace it. However, only two of the students who took part in think aloud

sessions were able to trace the code but were not able to explain the code. Although two students is

much too small a sample size from which to draw conclusions or generalise (about why students are

not able to explain the purpose of code), an analysis of these two students’ process of completing the

tasks is insightful. It gives us evidence that their ability to do one task and not the other can be

explained by neo-Piagetian theory.

For anonymity, our think aloud students chose aliases, by which we will refer to them. The think

aloud sessions with four students are summarised in Table 2. Later in the paper, we will discuss in

detail the difficulties encountered by two of those students, Michael and Charlotte, as they completed

the tasks in Figure 2. But first, by way of comparison, we introduce the other two students, Lance and

Briandan, who completed the exercise without difficulty, and did so in ways we had originally

anticipated all of our students would complete it.

 5

PPIG, University of Sussex, 2014 www.ppig.org

Alias Weeks of prior

programming instruction

Time taken to complete

exercise (min:seconds)

Dominant neo-Piagetian stage

demonstrated by behaviours

Lance 10 2:14 Concrete

Briandan 26 3:06 Preop/Concrete

Michael 6 7:26 Preoperational

Charlotte 6 8:03 Sensorimotor/Preoperational

Table 2 Summary of Think Aloud Sessions, with Subjects in Order of Reasoning Sophistication

Our detailed excerpts which follow use a format similar to that used previously in qualitative studies

(Lewis, 2012; Teague & Lister, 2014a), where the interview data is presented separate to its analysis,

so that the reader may more easily follow the think aloud session.

In this paper, pauses in speech are marked “...”, as placeholders for dialog we have not included

because we deemed that the excluded dialog added nothing to the context of the think aloud session.

Utterances are italicised and where we have added our own annotations for clarification, these appear

in square brackets in non-italicised text.

3.2.3 Lance

Summary

Lance completed a Python version of the exercise in Figure 2 without any fuss, in little more than 2

minutes. He did not trace with specific values. While reading the code in Figure 2 he spontaneously

determined the purpose of the code.

Data

After very quickly reading the code almost in its entirety, Lance made the comment:

Lance: Ah that’s a bit of a mind warp.

He made a mark in the code (line 5 in Figure 2) indicating the part of the code that needed to execute.

Lance: ... so basically to get there [line 5] we need a to be greater than b and we need b to be

greater than c ... oh no we need b to be ... less than c ... so we need b to be the smallest

number

To verify his thinking, Lance then traced the code with the set of values in option (iii)

Lance: a ... is greater than ... b ... yes ... b is ... greater than c ... no ... so it doesn’t print c ...

and then it goes to the else statement print b so ... yep so (iii)

As part of answering part (a) in Figure 2, Lance had already explained the purpose of the code, so he

was able to write his answer to part (b) without hesitation.

Analysis

Lance’s comment about the code being “a bit of a mind warp” makes us believe that on first reading,

he had not formed a clear understanding of the code. However, he then determined which conditions

must be met in order for the required output statement to print. We refer to this as a “backward”

trace. The ease with which he volunteered an explanation of the purpose of the code in part (b) of

Figure 2 indicates that he had already processed a great deal of the code’s semantics while completing

part (a).

Lance had no real need to trace the code with the specific values in the options, as his abstract trace of

the code and conclusion that “we need b to be the smallest number” was sufficient to identify the

correct option. However, he traced the code using the values from option (iii) to confirm the answer

at which he had arrived. He did not at any stage refer to any of the code after line 6 that is, the else

branches of the first if block.

 6

PPIG, University of Sussex, 2014 www.ppig.org

Lance formed a coherent understanding of the “big picture” as a by-product of his trace. It was his

grasp of the concept of transitive inference (comparing two things via an intermediary) that allowed

him to quickly determine the code’s purpose, that is, that if a > b and b < c then b is the smallest.

Transitive inference is a defining quality of the concrete operational stage.

3.2.1 Briandan

Summary

Briandan completed a Java version of the task in part (a) of Figure 2 by doing a “backward” trace,

much like Lance had done. However, she was a little more reliant on specific values than Lance.

Briandan eliminated two options based on the first condition not being met, then traced the code with

the values given in the remaining two options to find the correct option. For the EPE task (part (b) in

Figure 2) she did little else other than to re-read the given code, consider its purpose and then

correctly describe that purpose. Whereas Lance had already spontaneously formed a clear

understanding of the code as part of his trace, Briandan had not.

Data

Briandan read each section of the code, sometimes articulating a summary rather than each token of

the syntax. For example, she said “print” to summarise the code “system.out.println”. (Note that as

Briandan was working in Java, the “print” statement was different to that shown in Figure 2.)

Briandan drew a line next to the code at line 5 in Figure 2 which prints b, to indicate the line that must

be executed. She then determined that the first condition at line 1 in Figure 2 (i.e., a > b) must be

true in order for b to print, and marked that condition with a dash. She said:

Briandan: let’s eliminate [options] if a ... greater than b ... we need a greater than ... no

She then crossed out option (i) and proceeded to check the other three options in a similar way:

Briandan: ... is a greater than b yes ... that one [option (iii)] ... a greater than b, no [option (ii)] ...

a greater than b ... mm yes [option (iv)] ... so we’ve got two options here

By this stage she had eliminated options (i) and (ii) and placed a mark under options (iii) and (iv).

However, she then changed tactic, and traced the values provided in options (iii) and (iv):

Briandan: Now if b greater than c b ... greater than c ... no it’s not ... so we’re going to go to the

else one ... so that would be possible [option (iii)]

She then tested the final option as well in order to confirm her choice:

Briandan: and other one [option (iv)]... yeah it would print c

Briandan circled the correct option (iii).

To answer the EPE task in part (b) of Figure 2, Briandan read the code again then said:

Briandan: hold on ... we printed the ... smallest number ... so assuming ... this didn’t work right

[i.e., the condition (b > c) at line 2 in Figure 2 failed]... if c greater than b its going

to go up here [line 5 in Figure 2]... so printing the smallest number

Analysis

That Briandan substituted some meaning for expressions as she read the code is evidence that she was

processing the code, rather than simply reading it (i.e., when she said “print” in lieu of the code

“system.out.println”).

Briandan’s initial approach to doing the tracing task was a short-cut elimination of two options based

on the conditions that must be met. She did not test each answer option in a linear fashion. However,

having eliminated two options by this approach, she then changed to tracing the remaining two

options to determine their outcome. She did not make a transitive inference. Like Lance, Briandan

found no need to refer to the code after line 6 in Figure 2.

 7

PPIG, University of Sussex, 2014 www.ppig.org

In part (b), and unlike Lance, Briandan had to think further about the meaning of the code: she had not

deduced the meaning of the code as she traced in part (a) in Figure 2. It hadn’t occurred to her during

the trace that the code would always print the smallest number. That is, she did not see that a

transitive inference could be made about the variables.

3.2.2 Michael

Summary

Michael was given the C# exercise in Figure 2. His approach to the tracing task was different. He

started with the first option and (forward) traced its values. When he noticed the (a > b) condition

(at line 1 in Figure 2) was not met, he was able to eliminate both option (i) and option (ii). He then

traced with the values from option (iii), and determined that b’s value would be printed. He chose

option (iii) as the correct answer, and did not trace option (iv). Even though he accurately traced the

code, he then had difficulty explaining what the code did autonomously. To explain the code, he

required scaffolding from the interviewer.

Data

Michael read the code verbatim, including each output statement and punctuation (“console dot

writeline...”). He then took the values in option (i) and started tracing:

Michael: a equals to 1 b equals 2 c equals 3. 1 is more than 2 no. So this if statement would

not run [i.e., the condition (a > b) at line 1 in Figure 2 would evaluate to false].

Recognising that the if (a > b) block needed to execute for b to be printed, and therefore a’s

value needed to be greater than b’s, he eliminated options (i) and (ii).

Michael: so just left with the third option and fourth option

He then looked at the next option, (iii):

Michael: So a ... is more than b ... 2 is more than 1. You jump to next statement where 1 is more

than 3 console dot writeline c. ... doesn’t happen [i.e., the condition (b > c)at line 2

in Figure 2 fails] ... so we write b. ... Yeah. ... so it’s (iii)

After requiring clarification that a line by line description was not required for part (b), Michael gave

his first and incorrect explanation of the code:

Michael: Display the values of a b and c?

Interviewer: Would it display all of them?

Michael: Not all of them. It depends on what starting values they have

Interviewer: Under what conditions would a print?

Michael: from the code ... as long as ... a is the smallest number ... comparison to ...

At this point, Michael seemed to have figured out the purpose of the code. However, when asked

under what conditions would b print he attempted to answer in terms of each of the conditions in the

code that would need to be met:

Michael: b would print when um ... a is smaller, a is larger than b, plus smaller than c ... and ...

but ... oh wait wait wait I take that back. Uh ... a is ah ... more than b ... but less than c

... and c is larger than b ... ah c is ... larger than b yeah... to print b

The interviewer asked a similar question about the code printing c, to which he gave a similar,

preoperational answer. Then he was asked a more general question about the code:

Interviewer: What can you say about it printing a or b or c? Is there anything in common?

Michael: Yeah all depends on values of a ... ah ... I’m very confused

The interviewer then gave Michael a set of values for a b and c to trace: 10, 2, and 7 respectively.

 8

PPIG, University of Sussex, 2014 www.ppig.org

Figure 3 Charlotte's trace

of option (i)

Interviewer: Which one will print?

Michael: ... um 2 ...

The interviewer then gave Michael another set: 2, 5, and 12 respectively:

Michael: ... a ... yeah a ... I’ve figured it out <laugh> as long as ... it’s the smallest digit it will

be printed

Analysis

Unlike Briandan, Michael’s inclination was to read every token of the code including output

statements and punctuation verbatim (“console dot writeline...”). This is a remnant of the

sensorimotor stage, where the language in the domain is still developing. At this stage, processing the

meaning of many elements of code is necessary, and tends to be a time consuming process that

requires a great deal of cognitive effort.

Michael traced the values in the options in a mechanical manner. He chose the first option,

determined the outcome, eliminated another option based on the outcome of the first, then traced

option (iii) before deciding it was the correct one.

Michael continually referred to the specific values of the variables while he traced. For example, “1 is

more than 2 no”, “a ... is more than b ... 2 is more than 1”. Reliance on specific values to trace is

consistent with preoperational behaviour.

Michael did not attempt to reason about the code as he traced. Unlike Lance, he was not building an

understanding of the code’s purpose while he traced it. His attempt to explain the code (part (b) in

Figure 2) showed he had very little ability to reason about the code’s purpose which is, again,

indicative of someone at the preoperational stage. His explanation relied on inductive reasoning based

on various input/output pairs. He itemised which conditions in the code needed to be met before the

line to print b would be executed. As with any preoperational novice, Michael was preoccupied with

evaluating individual statements rather than developing a more abstract “big picture”.

It was only after several prompts by the interviewer, which lead Michael through additional traces

with specific values, that he understood the purpose of the code. Until what appeared to be a “light

bulb moment”, Michael had used specific values when asked which variable would print: “... um 2

...”, but after his enlightenment, his responses became abstract: “... a ... yeah a ...”. It was as if he had

only just come to realise that the code’s outcome, when expressed abstractly, was invariant.

3.2.3 Charlotte

Summary

Charlotte was given the C# exercise in Figure 2. Her method of tracing the code involved substituting

specific values for each of the variables. She rewrote the code in specific rather than abstract terms.

After an initial self-corrected error, she determined that the first condition (i.e., (a > b) at line 1 in

Figure 2) must be met in order for the correct output statement to be executed, and then eliminated

options (i) and (ii). She rewrote the code using values from option (iii), decided it was correct, but

also checked (iv) before eliminating it. Charlotte’s attempt to explain the purpose of the code was

also heavily reliant on the use of specific values.

Data

Charlotte read the code including “curly brace ... writeline ...”, and circled the “b” in the output

statement (at line 5 in Figure 2) as a “note to self”. She then proceeded to rewrite the code with

specific values (from option (i)) substituted for the variables. She said:

Charlotte: I’m going to write them out

Charlotte then wrote what can be seen in Figure 3. Immediately she

made an incorrect conclusion about option (i):

Charlotte: so this one [option (i)] could be it

 9

PPIG, University of Sussex, 2014 www.ppig.org

Figure 4 Charlotte's trace

of option (iii)

Figure 5 Charlotte's second trace of option (iii)

She said of option (iii):

Charlotte: if 2 is greater than 1 ... this won’t run so (iii) is already not an option

At this point Charlotte paused (for 32 seconds) and silently read through the problem again. She then

self-corrected:

Charlotte: so a has to be greater than b for b to print

She then eliminated options (i) and (ii) and marked option (iv) as a

possibility. She traced option (iii) again by substituting specific

values for the variables and wrote what appears in Figure 4.

Charlotte: if 1 is greater than 3, which it’s not, write c … else

... b, so it’s (iii)

After deciding this, she also checked (iv) “just to be sure”:

Charlotte: 3 is greater than 2 which it is, if 2 is greater than 1 ... c ... no its (iii)

When Charlotte began part (b) of Figure 2, her initial “gut instinct” (as she described it) was incorrect:

Charlotte: showing which number is ... I guess the biggest?

However, she was not convinced that this was correct:

Charlotte: Ok .. don’t be lazy. ‘cause I don’t want to go through it all again

But she did go through it again. This time,

instead of rewriting the code with values,

she wrote the specific values for option (iii)

above each of the variables in the given code

(see Figure 5).

Then she asked herself:

Charlotte: ... what’s so special about c?

After a short time she concluded:

Charlotte: In this case [referring to the line of code to output c, line 3 of Figure 2], c would be the

smallest number ... in this case b [referring to line of code to output b, line 5 of Figure

2] would be the smallest number ... in this case c [referring to line of code to output c,

line 3 of Figure 2] ... yeah, it’s to find out what the smallest number is.

Analysis

Like Michael, Charlotte’s inclination was to read every token of the code including punctuation

(“curly brace”), which suggests that she too is manifesting remnants of sensorimotor habits.

However, some of her behaviour is clearly preoperational. She successfully traced the code, but her

reliance on specific values caused her to rewrite the code substituting a specific value for each of the

variables. So rather than trying to reason about abstract code, she rewrote it in a language she

understood: specific values. At other times when she was tracing or verifying the correctness of her

answer, she wrote values above each of the variables.

Charlotte’s initial attempt at reasoning about the code’s purpose (i.e., that it finds the biggest) was

intuitive, and surprisingly inaccurate given that she had previously concluded that “... a has to be

greater than b for b to print”. As novices at the preoperational stage attempt to reason about code,

they tend to make guesses based on intuition, and those intuitions can be inconsistent.

After suspecting she was wrong, Charlotte actually considered not retracing. She thought better of it

and admonished herself for being lazy. She then traced the code correctly. A sensorimotor novice

finds any tracing task to be non-trivial and for that reason is reluctant to do so more than the minimum

necessary.

 10

PPIG, University of Sussex, 2014 www.ppig.org

In answer to part (b) of the task shown in Figure 2, it was only after, again, making extensive use of

specific values and finding a pattern via inductive reasoning that she was able to make a conclusion

about the purpose of the code.

Charlotte is manifesting behaviours of both the sensorimotor and preoperational stages. This

behaviour fits with the overlapping waves theory as described in the previous section where her

sensorimotor behaviours, although diminishing and no longer dominant, are still evident as she starts

to reason at the preoperational stage.

4. Discussion

Preoperational novices are heavily reliant on specific values. They talk about code in terms of

specific values and trace with specific values, to the extent of replacing variables with values as they

trace code like Michael did: “a ... is more than b ... 2 is more than 1. You jump to next statement

where 1 is more than 3”. Similarly, Charlotte wrote “if 1 > 2”. Novices at an early phase of the

preoperational stage are keenly focused on using the knowledge accumulated in the sensorimotor

stage (i.e., the semantics of programming constructs) to mechanically trace code. The ability to trace

in abstract terms, like Lance did, is usually beyond the preoperational novice. Michael and Charlotte

are working mostly at this preoperational level.

Also beyond the capacity of the preoperational novice is the ability to reason about the purpose of the

code. Preoperational novices are preoccupied with the detail of a tracing task. They have developed

the ability to determine the functional outcome of each line of code and trace to completion. However

the mental effort of doing so exhausts them, which obscures from them the abstract purpose of the

code. They are in effect, tracing blind.

There is a stark difference between the concrete operational behaviour of Lance and the

preoperational behaviour of Michael and Charlotte. With the help of the think aloud sessions we have

come to understand that what Lance was doing when he traced the code was something that neither

Charlotte nor Michael did when they traced the code. He was reasoning about the parts of the code as

he read and traced the code. Briandan also showed some evidence of processing the code as she read

it, by summarising complicated output sequences simply as “print”. The speed with which Briandan

solved the EPE task, “hold on ... we printed the ... smallest number ... so...” is reasonable evidence

that although she had not previously drawn this conclusion verbally, the process of tracing the code

had provided some insight into the code’s purpose. This behaviour exhibited by both Lance and, to a

lesser extent, Briandan is indicative of the concrete operational stage.

Charlotte would have been awarded full marks for her answer if it had been provided in an exam. We

doubt that Michael would have completed the EPE question in an exam, as he was unable to do so

without intervention in his think aloud session. We suspect that many of the students who completed

the in-class test are much like Charlotte or Michael. Their correct test answers belie the difficulty

they had with the task. (We speculate that this difficulty might explain why some students can trace

code, yet not be able to write similar code.)

It is interesting that none of the think aloud students referred to code after line 6. We could account

for this in a number of ways. First, students may have assumed that any code we supplied would be

“purposeful” code, which is indeed the case. Second, we could attribute their behaviour to inductive

reasoning. That is, they drew conclusions about the purpose of the code based on input and output

combinations. By backwards tracing (i.e., finding which conditions needed to be met in order to print

the value of variable b), they saw no need to investigate the latter section of code as it was of no

consequence to the outcome in this particular instance. For example, even if lines 8 and 10 in the

code were swapped, it would still print the smallest value when the smallest value was stored in b.

If we assume that the reasoning processes of the students in the in-class test are consistent with the

reasoning processes of the think aloud students, then we can make some inferences about the in-class

test results. Students who could neither trace nor explain (see Col. 6 of Table 1) are exhibiting

behaviours that are consistent with the sensorimotor stage. They manifest limited ability to reason

 11

PPIG, University of Sussex, 2014 www.ppig.org

logically and abstractly about the code’s purpose. Therefore their attempt at an EPE task is most

likely a guess.

Students who traced the code correctly but then could not explain it (see Col. 2 of Table 1) fall into

the preoperational category (at best). As we have discussed previously in this paper, students working

at the preoperational level, like Michael and Charlotte, have developed the skills to trace code but as

yet do not have the ability to reason abstractly about its purpose. As part (a) of the task (see Figure 2)

was a multiple choice question, some students would have simply guessed the correct answer in the

in-class test. In that case, and if the guess was because those students were unable to trace the code,

then they are students who are at the sensorimotor stage.

That there are students who could not trace the code, but yet were able to explain it (see Col. 4 of

Table 1), is an anomaly, for neo-Piagetian theory. (Jean Piaget referred to such anomalies as

decalage.) However, those students are a very small proportion of the students. We suspect they had

an accurate idea of the code’s purpose, but merely made a careless mistake on part (a). It is less likely

that they guessed the correct explanation, as this is more difficult to do for a short answer question

than a multiple choice question.

Students who were able to complete both the tracing and explaining tasks successfully (see Col. 1 of

Table 1), like Lance and Briandan, may be working at the concrete operational level. However, it is

difficult to make a conclusion based on their answer alone. It is the process that identifies concrete

operational reasoning, not the final answer. Charlotte’s think aloud session in particular argues this

point. It is at the concrete operational level we would like all of our students to be working, and it is

certainly where most of our teaching and learning material is aimed. However, as we can see from

our results, many of our students fall short of this level of cognitive development because they are still

preoperational, and are not yet capable of working at a concrete level, with abstractions.

Our results support previous findings that explaining code is more difficult than tracing code. Neo-

Piagetian theory offers an explanation of why that is so.

5. Conclusion

There are important pedagogical implications that can be drawn from this research. Many of our

students are not reasoning at the concrete operational level required of the type of programming tasks

we expect them to complete. If they cannot reason about code given to them, then they are probably

incapable of writing similar code. From our data, about a third of our students are reasoning at the

preoperational stage, so to them we may as well be talking in a foreign language when we pitch our

teaching resources at the concrete operational level. Our preoperational students require exposure to

reading and tracing tasks which are constituted from a minimal number of parts and which give them

the freedom to use a less abstract level of reasoning. With sufficient practice, and with a slow increase

in the sophistication of the code they read and trace, these students will eventually reach the concrete

operational stage.

Neo-Piagetian theory offers a coherent framework for explaining our data. Readers might argue that

our empirical results are not entirely new, and we have cited several other similar findings. However,

our use of a neo-Piagetian framework to explain such data is new. Our use of neo-Piagetian theory

also has methodological implications. Knowing that tracing code does not require concrete

operational skills, students who can trace code accurately are not necessarily capable of tasks that

require abstract reasoning, such as explain in plain English tasks, and also writing code.

Neo-Piagetian theory suggests interesting problems on which to study students. In this particular

paper, we have used a problem intended to study transitive inference. In other papers, we have used

problems intended to study other aspects of concrete operational reasoning, such as reversibility and

conservation (Teague & Lister, 2014a, 2014b).

4. References

Atman, C. J., & Bursic, K. M. (1998). Verbal Protocol Analysis as a Method to Document

Engineering Student Design Processes. Journal of Engineering Education, 87(2), 121-132.

 12

PPIG, University of Sussex, 2014 www.ppig.org

Boom, J. (2004). Commentary on: Piaget's stages: the unfinished symphony of cognitive

development. New Ideas in Psychology, 22, 239-247.

da Rosa, S. (2007). The Learning of Recursive Algorithms from a Psychogenetic Perspective. Paper

presented at the Psychology of Programming Interest Group (PPIG) 19th Annual Workshop

2007, Joensuu, Finland.

du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway & J. C. Sphorer

(Eds.), Studying the Novice Programmer (pp. 283-300). Hillsdale, NJ: Lawrence Erlbaum.

Ericsson, K. A., & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data. Cambridge, MA:

Massachusetts Institute of Technology.

Feldman, D. H. (2004). Piaget's stages: the unfinished symphony of cognitive development. New

Ideas in Psychology, 22, 175-231.

Lewis, C. M. (2012). The importance of students' attention to program state: a case study of

debugging behavior. Paper presented at the 9th Annual International Conference on

International Computing Education Research (ICER 2012), Auckland, New Zealand.

Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice Programmer.

Paper presented at the 13th Australasian Computer Education Conference (ACE 2011), Perth,

WA.

Lister, R., Fidge, C., & Teague, D. (2009). Further Evidence of a Relationship between Explaining,

Tracing and Writing Skills in Introductory Programming. Paper presented at the ITiCSE 09:

Proceedings of the 14th annual conference on Innovation and technology in computer science

education, Paris.

Lister, R., Simon, B., Thompson, E., Whalley, J., & Prasad, C. (2006). Not seeing the forest for the

trees: Novice programmers and the SOLO taxonomy. Paper presented at the Eleventh Annual

Conference on Innovation Technology in Computer Science Education (ITiCSE'06), Bologna,

Italy.

LiveScribe. (2014). Retrieved March 17, 2014, from https://www.smartpen.com.au/

Philpott, A., Robbins, P., & Whalley, J. (2007). Accessing the Steps on the Road to Relational

Thinking. Paper presented at the 20th Annual Conference of the National Advisory

Committee on Computing Qualifications (NACCQ'07), Port Nelson, New Zeland.

Siegler, R. S. (1996). Emerging Minds. Oxford: Oxford University Press.

Simon, Lopez, M., Sutton, K., & Clear, T. (2009). Surely We Must Learn to Read before We Learn to

Write! Paper presented at the 11th Australasian Computing Education Conference (ACE

2009), Wellington, New Zealand.

Teague, D., Corney, M., Fidge, C., Roggenkamp, M., Ahadi, A., & Lister, R. (2012). Using Neo-

Piagetian Theory, Formative In-Class Tests and Think Alouds to Better Understand Student

Thinking: A Preliminary Report on Computer Programming. Paper presented at the

Australasian Association for Engineering Education Conference (AAEE 2012), Melbourne.

Teague, D., & Lister, R. (2014a). Manifestations of Preoperational Reasoning on Similar

Programming Tasks. Paper presented at the Australasian Computing Education Conference

(ACE 2014), Auckland, New Zealand.

Teague, D., & Lister, R. (2014b). Programming: Reading, Writing and Reversing. Paper presented at

the ITiCSE '14, Uppsala, Sweden.

Whalley, J., Lister, R., Thompsopn, E., Clear, T., Robbins, P., Kumar, P., & Prasad, C. (2006). An

Australasian Study of Reading and Comprehension Skills in Novice Programmers, using the

Bloom and SOLO Taxonomies. Paper presented at the 8th Australiasian Computing Education

Conference, Hobart, Australia.

