

PPIG, University of Sussex, 2014 www.ppig.org

Neo-Piagetian Theory and the Novice Programmer

Donna Teague

Faculty of Science and Engineering

Queensland University of Technology

d.teague@qut.edu.au

Keywords: POP-I.B. barriers to programming, POP-II.A. novices, POP-V.A. Neo-Piagetian, POP-V.B. protocol

analysis, POP-VI.E. computer science education research

Abstract

This PhD research draws on neo-Piagetian theories of cognitive development to explain how novices

learn to program. From an interpretive perspective, we used think aloud studies to observe novice
programmers completing simple programming tasks in order to determine the reasoning skills they

had utilised. The concurrent verbal reports from the think aloud studies are triangulated with in-class

test data of large student cohorts to maximise the quality of the research data and validity of the
results. The outcome of the research will be a mapping of the neo-Piagetian stages to behaviours

exhibited by novice programmers.

1. Motivation

Why do so many students find programming hard to learn?

One might define an "expert programmer" (borrowing from Bloom's taxonomy) as someone who is

able to remember, understand and apply programming concepts, analyse and evaluate programs, and

ultimately create their own (Krathwohl, 2002). Expert programmers exhibit a high level of abstract
reasoning, and we need to know how that reasoning is developed in order to influence the transition of

students from one stage to the next more complex level of cognition in that domain. The results of

this study will have pedagogical implications.

2. Background

Piagetian-based cognitive development theories (Flavell, 1977; Morra, Gobbo, Marini, & Sheese,

2007; Piaget, 1952) provide a framework for describing the domain-specific development of

cognition. There has been some work in the mathematics domain (Keats, Collis, & Halford, 1978;
Ojose, 2008) and also in identifying misconceptions with programming concepts (Clancy, 2004; du

Boulay, 1989; Pea, 1986) which help us to understand the problems students have with programming.

However, little is known about when, why and how abstract reasoning skills are developed in the
programming domain.

It has been hypothesised (Lister, 2011) that programming students exhibit characteristics at each of

the sensorimotor, preoperational, concrete operational and formal operational levels described in neo-

Piagetian theory. If so, this would explain why some novice programmers struggle with
programming, because neo-Piagetian theory considers adequate exposure to the domain of knowledge

as paramount to the progression to the next more complex level of abstract reasoning.

At the least most mature stage of cognitive development, sensorimotor, a novice programmer has
difficulty tracing (hand executing) code and has a fragile model of program execution. At the next

more mature stage, a preoperational novice has overcome any early misconceptions and can now trace

code with some accuracy. However, a preoperational programmer is as yet unable to reason about the
code's purpose because they are also unable to see any relationship between various parts of the code.

They rely on specific values and inductive inference, based on input/output pairs, to determine the

outcome of code. A concrete operational programmer, however, is able to reason about code's

 2

PPIG, University of Sussex, 2014 www.ppig.org

purpose simply by reading it, as they are able to conceive the unified whole, rather than just a

collection of parts. A defining characteristic of the concrete operational stage is the ability to reason
about concepts of conservation, reversibility and transitive inference. By the time a programmer

reaches the formal operational stage, they can reason logically, consistently and systematically about

code. They can understand and use abstractions to reason about and create complex programs of their

own.

We each progress through the stages at our own rate. So by virtue of our current teaching practices,

students who develop slowly through the early stages would likely be expected by their teachers to

operate at a more mature level of reasoning before they are developmentally able.

3. Research Questions

In order to operationalise the question:

Why do so many students find programming hard to learn?

We decompose it into the following questions:

1. Over time, do students tend to exhibit characteristics of each of the neo-Piagetian stages in

order from least to most mature?

2. If a student is found to exhibit characteristics of one of the neo-Piagetian stages on a
particular programming problem, does that student tend to manifest that same neo-Piagetian

stage on similar programming problems?

3. Does a student's programming ability improve with progression into the next more mature
neo-Piagetian stage?

4. Objectives

The main objectives of this research project are to:

1. document the reasoning skills and behaviours of novice programmers;

2. analyse the manifestation of those behaviours using neo-Piagetian cognitive development

theory; and

3. develop a mapping between neo-Piagetian cognitive development stages and programming
reasoning skills and behaviour

The expected outcome of this research is the formalisation of the development trajectory from novice

programmer in terms of the evolution of reasoning skills. The formalisation will include behaviours
likely to be exhibited, and artefacts likely to be produced by a programmer at each stage of

development. Should it be found that novices develop programming skills according to the

sequential, cumulative neo-Piagetian stages of development, we can then talk about the "when" of

novices' ability becoming expert, rather than "if". It will mean that, given time, everyone can learn to
program.

The pedagogical significance of this research is in providing the framework upon which to identify

students' cognitive development in programming based on their abstract reasoning behaviour.
Novices' learning can then be supported and scaffolded in a stage-appropriate manner in order to

better influence their progression to the next more complex level of cognitive development in

programming.

5. Method

Normally the only true artefacts we have of our programming students' work are their exam scripts.

That is, the exam paper on which they write their solutions to the exam questions. Many assumptions

are made by academics about the reasoning employed by students to produce their solutions. From an
exam script, we actually know very little about the thought processes, problem solving and reasoning

 3

PPIG, University of Sussex, 2014 www.ppig.org

skills the students employed. Likewise, we can only guess about any misconceptions they may have

had. In order to gather that sort of rich data, it is necessary to observe the phenomenon as it occurs.

This research uses microgenetic analysis to closely observe novice programmers as they complete

programming exercises. The microgenetic research method has been used in other domains to study

cognitive development and has been defined as having three key characteristics (Siegler & Crowley,

1991):

1. observations span a period of rapidly changing competence;

2. the density of observations is high relative to the rate of change in competence; and

3. observations are subjected to intensive analysis, with the goal of inferring the processes that gave
rise to the change.

The microgenetic research for this project involved interviews with novice programmers. Each

interview session was audio-taped, and the participants use a SmartPen (LiveScribe, 2014) and dot
paper to complete each exercise while thinking aloud (Ericsson & Simon, 1993). The SmartPen

produces a replayable "pencast" which is then able to be encoded for analysis.

Data was also collected from in-class tests and final exams of entire cohorts of novice programmers

using the same or similar programming exercises as used in the think aloud studies. Because of this,
we can employ triangulation of the qualitative and quantitative methods to check the validity of our

findings. From the in-class test artefacts we can make generalisations about the entire cohort, and any

problems/misconceptions identified here have informed a specific investigation with the think aloud
studies. Conversely, the interesting behaviour or misconceptions observed in the think aloud sessions

have lead us to deploy appropriate tests to the entire cohort in order to identify patterns and test

research theories or assumptions.

In our final analysis, think aloud students' performance will be categorised according to the skills

exhibited while processing tasks associated with certain levels of abstract reasoning. Analysis of the

verbal reports will allow quantification of certain behavioural components for each of the students,

and allow comparison of students operating at the same and different levels of reasoning.

6. Results to Date

We designed programming tasks which tested for the existence of reasoning skills described in neo-

Piagetian theory and then gave them to introductory programming students in the classroom ("in-class
tests"). We found evidence that many students continued to struggle with very simple programming

tasks which tested them at the concrete operational level (Teague, Corney, Fidge, et al., 2012). The

data we have collected from these in-class tests, as well as final exams, supports our initial claim

(Corney, Lister, & Teague, 2011) that the problems some students face in learning to program start
very early in the semester (Teague, Corney, Ahadi, & Lister, 2012).

We then presented empirical results (Corney, Teague, Ahadi, & Lister, 2012) in support of the neo-

Piagetian perspective that novice programmers pass through at least three stages: sensorimotor,
preoperational, and concrete operational stages, before eventually reaching programming

competence at the formal operational stage. The programming exercises we gave novices tested for

the concrete operational abilities to reason with quantities that are conserved, processes that are
reversible and properties that hold under transitive inference. Examples of each of these types of

exercises are shown in Figure 1, Figure 2 and Figure 3. The empirical results from these tests

demonstrate that many students struggle to answer these problems, despite their apparent simplicity.

 4

PPIG, University of Sussex, 2014 www.ppig.org

From our observational studies, we have pencasts of students at various levels of competency,

completing exercises similar to those shown in Figure 1, Figure 2 and Figure 3 which tested their

level of abstract reasoning. These think aloud sessions confirmed that students can still be at the

sensorimotor and preoperational stages even after two semesters of learning to program (Teague,
Corney, Ahadi, & Lister, 2013). These results are the first observational data that is described

explicitly in neo-Piagetian terms. Further microgenetic research have provided evidence of novice

programmers' evolving ability to reason abstractly which has been analysed using the neo-Piagetian
framework (Teague & Lister, 2014a, 2014d).

What has emerged from the think aloud studies is evidence for three different ways in which students

reason about programming which correspond to the first three neo-Piagetian stages (Lister, 2011). At

the sensorimotor stage, novices programmers exhibit misconceptions and other errors that are already
well established in the literature (e.g., Du Boulay (1989)). At the next stage, known as the

preoperational stage, students can correctly trace a program, but they can neither reason about code

nor see a relationship between parts of a program. Preoperational programming students are not yet
equipped with skills which allow them to reason about conservation, transitive inference and

reversibility. They rely heavily on specific values in order to reason about, trace and write program

code. Many of our think aloud students have exhibited behaviour which is consistent with this type of
preoperational reasoning.

We have evidence of students exhibiting characteristics of each of the neo-Piagetian stages in order

from least to most mature (Teague & Lister, 2014b). However, our data supports the overlapping

waves model which explains why students can exhibit characteristics from two or more stages as they

The purpose of the following code is to move all

elements of the array x one place to the right, with

the rightmost element being moved to the leftmost

position:

 int temp = x[x.length-1];

 for (int i=x.length-2; i>=0; --i)

 x[i+1] = x[i];

 x[0] = temp;

Write code that undoes the effect of the above code.

That is, write code to move all elements of the array

x one place to the left, with the leftmost element

being moved to the rightmost position.

Figure 2: Test of Reversibility

Figure 1: Test of Conservation

Below is incomplete code for a method which returns

the smallest value in the array x. The code scans

across the array, using the variable minsofar to

remember the smallest value seen thus far. There are

two ways to implement remembering the smallest

value seen thus far: (1) remember the actual value, or

(2) remember the value’s position in the array. Each
box below contains two lines of code, one for

implementation (1), the other for implementation (2).

First, make a choice about which implementation you

will use (it doesn’t matter which). Then, for each

box, draw a circle around the appropriate line of code

so that the method will correctly return the smallest

value in the array.

public int min(int x[]){

 int minsofar = ;

for (int i=1 ; i<x.length ; ++i)

{

 if (x[i] <)

 minsofar = ;

}

 return ;

}

(g) minsofar

(h) x[minsofar]

(a) 0

(b) x[0]

(e) i

(f) x[i]

(c) minsofar

(d) x[minsofar]

In plain English, explain what the following segment

of Java code does:

bool bValid = true;

for (int i = 0; i < iMAX-1; i++)

{

 if (iNumbers[i] > iNumbers[i+1])

 bValid = false;

}

Figure 3: Test of Transitive Inference

 5

PPIG, University of Sussex, 2014 www.ppig.org

develop skills in the domain (Boom, 2004; Feldman, 2004; Siegler, 1996). In this overlapping waves

model, characteristics of the early stage dominate behaviours initially, but as cognitive progress is
made there is an increase in use of the next more mature level of reasoning and a decrease in the less

mature. In this way, there is concurrent use of multiple stages of reasoning.

One of our series of think aloud sessions used two exercises that required very similar programming

skills and we discovered that students who manifested preoperational behaviour were able to complete
one, but not the other (Teague & Lister, 2014c). This was because the second task, although

functionally equivalent, required the ability to reason about concepts that only someone at the

concrete operational level was likely to be able to do.

In-class test data supports our hypothesis that preoperational reasoning may be the norm for novice

programmers rather than being peculiar to the small number of students in our think aloud studies.

We observed one particular student for several semesters in think aloud studies using a wide variety
of programming tasks and were able to find evidence that programming ability improved with the

increased ability to reason abstractly about programming code. Our evidence also suggests that it

may take several semesters or even years of exposure to programming to develop operational

reasoning in this domain (Teague & Lister, 2014b, 2014c). Yet it is at this concrete operational level
that we often assume our students are capable of working, and as a result students may be struggling

due to inappropriate teaching resources rather than an inability to learn to program.

7. References

Boom, J. (2004). Commentary on: Piaget's stages: the unfinished symphony of cognitive

development. New Ideas in Psychology, 22, 239-247.

Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to Program Computer
Science Education Research. London, UK: Taylor & Francis.

Corney, M., Lister, R., & Teague, D. (2011). Early Relational Reasoning and the Novice

Programmer: Swapping as the “Hello World” of Relational Reasoning. Paper presented at

the 13th Australasian Computer Education Conference (ACE 2011), Perth.
http://crpit.com/confpapers/CRPITV114Corney.pdf

Corney, M., Teague, D., Ahadi, A., & Lister, R. (2012). Some Empirical Results for Neo-Piagetian

Reasoning in Novice Programmers and the Relationship to Code Explanation Questions.
Paper presented at the 14th Australasian Computing Education Conference (ACE 2012),

Melbourne, Australia. http://crpit.com/confpapers/CRPITV123Corney.pdf

du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway & J. C. Sphorer

(Eds.), Studying the Novice Programmer (pp. 283-300). Hillsdale, NJ: Lawrence Erlbaum.

Ericsson, K. A., & Simon, H. A. (1993). Protocol Analysis: Verbal Reports as Data. Cambridge, MA:

Massachusetts Institute of Technology.

Feldman, D. H. (2004). Piaget's stages: the unfinished symphony of cognitive development. New
Ideas in Psychology, 22, 175-231.

Flavell, J. H. (1977). Cognitive Development. Englewood Cliffs, NJ: Prentice Hall.

Keats, J., Collis, K., & Halford, G. (1978). Operational Thinking in Elementary Mathematics
Cognitive Development: Research Based on a Neo-Piagetian Approach (pp. 221-248).

Chichester: John Wiley & Sons.

Krathwohl, D. R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory into Practice,

41(4), 212-218.

Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice Programmer.

Paper presented at the 13th Australasian Computer Education Conference (ACE 2011), Perth,

WA. http://crpit.com/confpapers/CRPITV114Lister.pdf

LiveScribe. (2014). Retrieved March 17, 2014, from https://www.smartpen.com.au/

http://crpit.com/confpapers/CRPITV114Corney.pdf
http://crpit.com/confpapers/CRPITV123Corney.pdf
http://crpit.com/confpapers/CRPITV114Lister.pdf
http://www.smartpen.com.au/

 6

PPIG, University of Sussex, 2014 www.ppig.org

Morra, S., Gobbo, C., Marini, Z., & Sheese, R. (2007). Cognitive Development: Neo-Piagetian

Perspectives. Psychology Press.

Ojose, B. (2008). Applying Piaget’s Theory of Cognitive Development to Mathematics Instruction.

The Mathematics Educator, 18(1), 26-30.

Pea, R. D. (1986). Language-Independent Conceptual "Bugs" in Novice Programming. Journal of

Educational Computing Research, 2(1), 25-36.

Piaget, J. (1952). The Origins of Intelligence in Children. New York: International University Press.

Siegler, R. S. (1996). Emerging Minds. Oxford: Oxford University Press.

Siegler, R. S., & Crowley, K. (1991). The Microgenetic Method: A Direct Means for Studying
Cognitive Development. American Psychologist, 46(6), 606 - 620.

Teague, D., Corney, M., Ahadi, A., & Lister, R. (2012). Swapping as the “Hello World” of Relational

Reasoning: Replications, Reflections and Extensions. Paper presented at the Australasian
Computing Education Conference (ACE 2012), Melbourne.

http://crpit.com/confpapers/CRPITV123Teague.pdf

Teague, D., Corney, M., Ahadi, A., & Lister, R. (2013). A Qualitative Think Aloud Study of the Early

Neo-Piagetian Stages of Reasoning in Novice Programmers. Paper presented at the 15th
Australasian Computing Education Conference (ACE 2013), Adelaide, Australia.

http://crpit.com/confpapers/CRPITV136Teague.pdf

Teague, D., Corney, M., Fidge, C., Roggenkamp, M., Ahadi, A., & Lister, R. (2012). Using Neo-
Piagetian Theory, Formative In-Class Tests and Think Alouds to Better Understand Student

Thinking: A Preliminary Report on Computer Programming. Paper presented at the

Australasian Association for Engineering Education Conference (AAEE 2012), Melbourne.
http://eprints.qut.edu.au/55828/

Teague, D., & Lister, R. (2014a). Blinded by their Plight: Tracing and the Preoperational

Programmer. Paper presented at the Psychology of Programming Interest Group (PPIG)

2014, Sussex, UK.

Teague, D., & Lister, R. (2014b). Longitudinal Think Aloud Study of a Novice Programmer. Paper

presented at the Australasian Computing Education Conference (ACE 2014), Auckland, New

Zealand. http://crpit.com/confpapers/CRPITV148Teague.pdf

Teague, D., & Lister, R. (2014c). Manifestations of Preoperational Reasoning on Similar

Programming Tasks. Paper presented at the Australasian Computing Education Conference

(ACE 2014), Auckland, New Zealand. http://eprints.qut.edu.au/67314/

Teague, D., & Lister, R. (2014d). Programming: Reading, Writing and Reversing. Paper presented at
the ITiCSE '14, Uppsala, Sweden.

http://crpit.com/confpapers/CRPITV123Teague.pdf
http://crpit.com/confpapers/CRPITV136Teague.pdf
http://eprints.qut.edu.au/55828/
http://crpit.com/confpapers/CRPITV148Teague.pdf
http://eprints.qut.edu.au/67314/

