
The Collaborative Nature of Pair Programming

Sallyann Bryant, Pablo Romero, Benedict du Boulay

IDEAS Laboratory, University of Sussex, Falmer, UK
s.Bryant@sussex.ac.uk, pablor@Sussex.ac.uk, b.du-boulay@sussex.ac.uk

Abstract. This paper considers the nature of pair programming. It focuses on using pair programmers’
verbalizations as an indicator of collaboration. A review of the literature considers the benefits and
costs of co-operative and collaborative verbalization. We then report on a set of four one-week studies
of commercial pair programmers. From recordings of their conversations we analyze which generic
sub-tasks were discussed and use the contribution of new information as a means of discerning the
extent to which each pair collaborated. We also consider whether a particular role is more likely to
contribute to a particular sub-task. We conclude that pair programming is highly collaborative in nature,
however the level of collaboration varies according to task. We also find that tasks do not seem aligned
to particular roles, rather the driver tends to contribute slightly more across almost all tasks.

1. Introduction

Computer programming is known to be a complex skill that is difficult to master. Recently pair
programming, formalized as one of the core practices in eXtreme Programming (XP), has been shown to
assist in the production of high-quality software (e.g. [1], [2], [3]. [4], [5], [6]). Here we consider co-located
pair programming, as ‘two people working at one machine, with one keyboard and one mouse’ [28] and use
the standard terms ‘driver’ and ‘navigator’ to indicate who has control of the keyboard (the ‘driver’). These
existing studies indicate an improved outcome through pair programming (e.g. better quality software,
faster production speed, fewer defects and greater enjoyment) and high level reports (e.g. [7]) and
ethnographic studies (e.g. [8], [9]) provide useful insights into pair programming in practice. However few,
if any, studies have considered in detail the process by which these improved outcomes are achieved. It has
been suggested that they may be due to ‘pair pressure’ [7], where a programmer is more focused and
thorough when being watched. Other studies have suggested pairing may be beneficial due to greater
enjoyment [4], increased overhearing [8], provision of a better apprenticeship environment [29] and
increased knowledge distribution. Pair programming may simply be a way of improving outcome by
encouraging programmers to talk to themselves, a phenomena known in other subject areas as self-
explanation (e.g. [10]). Here we consider the level of collaboration in pair programming across different
types of tasks via a series of on-site studies of experience professional pair programmers ‘in the wild’ [11].
Via these four, one-week observational studies we gathered, transcribed and analyzed 36 pair
programmers’ conversations. Here we consider sessions where both programmers have at least six months’
commercial pair programming experience, in an attempt to address the following questions:

• Do pair programmers talk to themselves while working on separate sub-tasks?
• To what extent do pair programmers actually ‘collaborate’ on the same task?
• Are certain types of task more collaborative than others?
• Does a particular role (driver/navigator) contribute more strongly to a particular type of task?

Section 2 provides an overview of perspectives on the effects of verbalization to oneself and others and
section 3 considers how to characterize collaboration. We then go on to explain the methodology and
background of our studies and in section 4 present the results of an in-depth analysis of 23 hours of pair
programmers’ dialogue. We conclude by considering what these results tell us about the collaborative
nature of pair programming, and discussing further work which we now hope to undertake.

2. Verbalisation

Gathering and analyzing verbalizations from pair programmers seems ideal because, unlike other
domains, the pair are already communicating verbally and so do not need to be asked to do so. Hopefully
this minimizes the impact of the observation. Here we take verbalisation to mean any talk produced,
whether directed at themselves or each other. While extra-pair communication (for example, discussion
with a third party) may be an interesting area of study, it has been excluded from this analysis.

Before we can begin to address the questions we have identified, it is necessary to consider how to

characterize collaboration. It has been suggested [19] that it is hard to describe the differences between
explaining to oneself and explaining interactively, but that collaborative situations may be defined in terms
of three factors: interactivity, asynchronicity and negotiability. Similarly it is suggested [20] that co-
operative work is accomplished by the division of labour. Here, we will consider a collaborative task one to
which both parties are contributing information and a co-operative task one where only one programmer
contributes.

2.1 Collaboration and Verbalisation

Here we take collaboration to mean both parties contributing new information to a given task.
Collaboration is widely documented as being beneficial: Suthers [17] suggests that collaboration increases
learning, productivity, time focused on the task, knowledge transfer and motivation and Jeong and Chi [18]
show that understanding improves after collaboration - those collaborating on a task learned more than
those performing it alone. It could be suggested that collaboration decreases the probability of confirmation
bias [11], where we filter information depending on what is expected and therefore are more likely to
attend to items confirming our hypotheses (even if incorrect). Similarly, in pair programming literature,
Williams et al. [1] suggest that collaborating lowers the likelihood of developing ‘tunnel vision’.

2.2 Co-operation and Verbalisation

If pair programmers typically do not collaborate on a task, but are more likely to co-operate (that is, split
the task up and work on separate subtasks) verbalisation could still affect performance. There is a body of
evidence suggesting that simply talking to oneself helps improve understanding. For example, Chi et al.
[10] asked a group of students to self-explain each line of a text about physics and showed that self-
explanation resulted in the production of a more correct mental model and a higher gain in understanding.
Ainsworth and Loizou [12] suggests that verbalization provides a form of ‘computational off-load’, perhaps
putting part of the problem ‘out in the world’ rather than requiring it to be kept ‘in the head’. Ericsson and
Simon [13] state that verbalization provides an intermediate re-coding of information, and that in the
process of this recoding, it is necessary to add further information for communication purposes which may
itself prove useful. Cox [14] also shows that translation between modalities (in his work from mental to
diagrammatical) improves understanding. This might all be easily extrapolated to the domain of computing
and suggests that simply talking about a software development issue may assist in its understanding and
ultimately its resolution. In fact there are a number of accounts of this effect including talking to a rubber
duck [14] or even a poster of your favorite movie star.

Studies considering the effect of requested verbalization have also addressed this issue with somewhat

different results. Such studies have questioned the use of eliciting verbal protocol (asking participants to

talk to themselves as a means of gaining insight into mental processes) and considered whether talking
aloud may change the manner in which a task is performed. Of particular interest, Ericsson and Polson [15]
show that talking aloud has an effect no different from counting out loud while performing a task – it
slows participants down but does not affect their performance.

Another group of studies of a phenomenon known as ‘verbal overshadowing’ suggests that verbalization

may sometimes have a negative effect. Schooler et al. [16] show that verbalization may interfere with non-
verbal (insight) tasks, because they rely on non-reportable mental processing. An example of these type of
insight tasks are those requiring a ‘eureka’ moment rather than a step-by-step process of deduction.

These three schools of thought may at first seem contradictory, however if we consider task type this

suggests a more complementary picture, perhaps where explaining and embellishing help in understanding
non-insight problems, ‘thinking aloud’ has no effect, and trying to talk about an insight problem has a
negative impact. This suggests that particular types of software development task may be helped or
hindered by verbalization even if just talking to oneself. There may, of course, be other explanations,
including the context in which the studies took place and the means by which verbalizations were elicited.

It would appear difficult to distinguish between co-operation and collaboration in pair programming

sessions, however this might be achieved by considering whether the two individuals are holding a
collaborative conversation or following all the rules involved in having a conversation (turn taking etc) but
actually holding two separate self-conversations, or ‘interleaved monologues’. The method we have used to
ascertain this is to consider not only whether each party is contributing to the conversation, rather whether
these contributions are ‘on task’. We have particularly looked at instances of new information being added
to each task in a pair programming session. This is discussed in further detail in Section 3.

3. Study Background and Methodology.

In line with calls for studies of programmers working in an industrial setting [21], the analysis and
results presented here are from four, one-week studies of commercial programmers working on on-going
tasks in their usual environment. While a variety of levels of experience were studied (see [22] for insights
about the differences in behavior between novice and more experienced pairers) this paper only considers
programmers who had been commercially pair programming for a minimum of six months. The four
studies were from three different industrial sectors and all the studies took place at medium to large scale
companies. All of the projects encouraged or expected programmers to work in pairs whenever possible.
Across the companies the pairs generally seemed empowered and were considered responsible for
completing their tasks as they considered appropriate. The profiles of the session are shown in Table 1:

Table 1. Profile of the companies, projects and sessions studied

 Number of projects
considered

Number of pair programming
sessions considered

Agile/XP development
approach?

Banking 1 3 Yes

Banking 4 12 Yes

Entertainment 2 10 Yes

Mobile
communications

2 11 Yes

The methodology used followed the framework for verbal protocol analysis set down by Chi [24] in

which protocols are produced, transcriptions are segmented and coded according to a coding schema,
depicted in some manner and patterns are sought and interpreted. A literature review on the use of verbal
protocols in software engineering is available [26], which also suggests that the analysis of verbalisation

may be a useful method for use in the study of pair programmers so that ‘the cognitive processes
underlying productivity and quality gains can be formally mapped rather than speculated about’.

Here each one-hour recording was transcribed and segmented into utterances (an utterance typically

being a sentence). A coding schema was produced by reducing the work in each of the session into a tree of
numbered subtasks (e.g. see Figure 1). These subtasks were derived from the dialogue by considering what
was required in order to complete the task. The derived tasks were at a level of abstraction higher (i.e. less
detailed) than writing a line of code but a lower level than the overall task itself. They were typically either:

• Things which needed to be done
• Things which needed to be understood
• Things which needed to be decided
• Things which needed to be ‘broadcast’ (outside of the pair)

Further division into sub-sub-tasks etc. was common during the process of deriving sub-tasks.

 Any utterance in which new information was added was then coded with the number of the subtask the
information was contributing to, the contributor (A or B) and their role at that time (navigator or driver -
note it was usual for participants to change roles several times during a session). See Table 2 for an
example coding (note that line 4 is not coded as it is considered a continuance of line 2).

Fig. 1. Example subtask decomposition

Table 2. Example coding of dialogue

No Participant Role Subtask Generic
subtask type

Utterance

1 B Nav 1 B So basically we can create a
directory…and we can just use…

2 A Dri 2 A …We put the date that we are
going to put the X in.

3 B Nav - Right
4 A Dri - So when you look at it you know

that it was done on this date
5 B Nav Good
6 A Dri 2 A …Then that’s a standard file
7 B Nav 3 B I’ll just copy it all over, apart from

the update.

Copy directory

1
Create new
directory

2
Agree naming
standards

3
Copy directory

contents

In order to analyze the extent to which different types of subtask fostered or inhibited collaboration, the
subtasks from all sessions were then used to derive a set of generic subtask types (see Table 3). The generic
subtasks were then compared with those described in the literature to ensure coverage. A difference with
those tasks described in [27] was the lack of a discrete ‘design’ category. While part of this is covered in
‘agree strategy’, the lack of a design category is not surprising in an XP environment, where there is no
‘up-front’ design task, rather design takes place as part of the coding task. The following list shows the
derived generic sub-tasks used in the analysis. These cover all the tasks that were identified and therefore
categories such as L (Discuss the IDE) were rarely used but are included for completeness. Instances of
social chat either within or outside the pair were not considered.

Table 3. Derived generic sub-tasks

A Agree strategy/conventions Including approach to take, coding standards and naming
conventions

B Configure environment Setting up paths, directories, loading software etc.
C Test Writing, running and assessing the success of tests
D Comment code Writing or modifying comments in the code
E Correspond with 3rd party Extra-pair communication: person to person, telephone or email
F Build, compile, check in/out Compiling and building on own or integration machine
G Comprehend Understanding the problem or existing code
H Refactor Re-organising the code
I Write new code Creating completely new code to complete the assigned task
J Debug Diagnosing, hypothesizing and fixing bugs
K Find/check example Looking at examples in books, existing code or on-line
L Discuss the IDE Talking about the development environment

4. Results

The pair programmers studied had all been pairing commercially for at least six months. While the
introduction of pair programming was reported as having been accepted very differently (some
programmers were initially very reluctant to pair, while others were keen to), all of the pairs observed
behaved in a professional manner and were highly focused on the task at hand. The sessions observed
showed a surprisingly high amount of verbal interaction. Pair programmers were shown to produce more
than 250 verbal interactions per pair programming hour. Generally there were only very brief periods of
silence. Even when a pair was awaiting a suite of tests to run, for example, they would often take the
opportunity for some social chat.

The analysis performed shows that both partners contributed to more than 93% of subtasks, that is, the

programming pair collaborated on 93% of the sub-tasks they performed. Similarly, when considered by
role, slightly fewer, but still just more than 93% of subtasks were contributed to by the driver and by the
navigator. These results suggest that pair programming sessions are highly collaborative in nature and that
the programming pair really are working together on the vast majority of tasks. We will now take a closer
look at the types of tasks in which more and less collaboration took place. First, in Figure 2 we consider the
number of contributions made for each generic subtask type in order to ascertain which were the most
common types of task for the sessions observed.

Fig. 2. Distribution of contributions amongst generic sub-tasks

It is interesting to note that the majority of contributions related to comprehension – understanding the

problem or existing code. Second most common is writing new code, followed by testing (iwriting and
running tests). Least common were discussing the IDE, commenting code (which is in line with the idea of
self-commenting code) and corresponding outside the pair. If we normalize our data to ascertain the
percentage of tasks of each type that were collaborative both across participants (i.e. both participants
contributed to a task) and across role (i.e. both roles contributed) we obtain the percentages outlined in
Table 4. Figures in the two columns are often, but not always the same, as a participant may contribute as
both driver and navigator when roles changed mid-task.

Table 4. Percentage of tasks of each generic type that were collaborative across participants and roles

Subtask type Percentage of tasks
collaborative across participants

Percentage of tasks
collaborative across roles

A - Agree strategy 91.93 91.61
B – Configure environment 81.08 81.08
C – Test 91.92 92.20
D – Comment code 83.33 83.33
E – Correspond 95 93.33
F – Build,compile,check in/out 90.68 90.68
G – Comprehension 95.11 94.94
H – Refactor 94.29 95.24
I – Write new code 94.95 94.71
J – Debug 93.56 93.56
K – Find/check example 92.48 92.48
L – Discuss the IDE 100 100

Table 4 shows that both partners contributed to almost all tasks. Only configuring the environment and

commenting code had a level of collaboration below 90% and even these were over 80%, although they
were rarely performed. Thus the benefits attributed to pair programming may well be due to the
collaborative manner in which tasks are performed. However, in order to further understand the nature and
extent of this collaboration we should consider each subtask type. In other words, since we have
ascertained that both parties contribute something to almost every task, we should now consider the
proportion of contributions made by each participant and each role. If we first consider the level of

collaboration between participants we find the averages shown in Table 5, along with the maximum and
minimum number of contributions for each subtask type. These are then expressed as percentages of the
total contributions in Figure 3:

Table 5. Most and least collaboration by participant for each generic subtask type

Subtask type

Contributions by most active
participant

Contributions by least active
participant

 Average Highest Lowest Standard
Deviation

Average Highest Lowest Standard
Deviation

A Agree strategy 3 13 0 2.6 1.4 8 0 1.6
B Configure

environment
3 10 0 3.0 0.8 7 0 1.7

C Test 3.7 17 0 3.2 1.5 15 0 2.3
D Comment code 2.2 5 1 1.5 0.8 3 0 1.2
E Correspond 4.8 14 0 5.2 1.9 7 0 2.3
F Build, compile,

check in/out
3.2 10 0 2.5 1.7 7 0 2.2

G Comprehend 5.2 32 0 5.7 2.0 12 0 2.6
H Refactor 4.1 11 1 2.6 2.2 9 0 2.4
I Write new code 3.9 14 0 3.0 1.7 8 0 1.7
J

Debug 3.8 17 0 3.5 1.6 8 0 1.9

K

Find/check
example

4.0 19 1 3.3 1.5 10 0 2.1

L Discuss IDE 2 2 2 0 1.0 1 1 0

Fig. 3. Average distribution of contributions for generic subtask by participant

Interestingly, the task for which contributions are least evenly distributed (averaging nearly 80:20

between participants) is agreeing strategy. It seems that this is the task on which one person is more likely
to take the lead, contrary to suggestions that pair programming lessens the chance of tunnel vision [7].
However, the activity most evenly distributed is Refactoring. This is unsurprising, given the high cognitive
load associated with considering both the current and potential future organization of code. Table 6 and
Figure 4 below consider the same issues according to role.

Table 6. Most and least collaboration by role for each generic subtask type

Subtask type

Contributions by driver Contributions by navigator

 Average Highest Lowest Standard
Deviation

Average Highest Lowest Standard
Deviation

A Agree strategy 2.4 13 0 2.3 2.0 13.0 0 2.3
B Configure

environment
2.6 10.0 0 3.0 1.0 8.0 0 2.0

C Test 3.3 20.0 0 3.4 1.9 12.0 0 2.5
D Comment code 1.8 4.0 0 1.3 1.2 4.0 0 1.5
E Correspond 4.2 13.0 0 5.3 2.4 7.0 0 2.2
F Build,compile,

check in/out
2.8 10.0 0 2.7 2.0 7.0 0 2.2

G Comprehend 4.8 32.0 0 5.8 2.4 12.0 0 2.9
H Refactor 3.6 11.0 0 2.8 2.7 9.0 0 2.4
I Write new code 3.1 10.0 0 2.5 2.5 14.0 0 2.8
J Debug 3.1 12.0 0 3.1 2.3 13.0 0 2.6
K Find/check

example
3.2 19.0 0 3.4 2.3 10.0 0 2.4

L Discuss IDE 1.0 1.0 1.0 0 2.0 2.0 2.0 0

Fig. 4. Percentage each role contributed to each generic subtask type

As illustrated above, contributions were well distributed across roles with the driver contributing slightly

more than the navigator across all but one subtask type, ‘Discussing the IDE’, which happened rarely. This
suggests that the driver and navigator roles are less ‘tuned to different tasks’ but more a convenience in
terms of who types. Considering the additional cognitive load of typing, it is surprising that drivers
contributed more, however it could be that they were simply commentating on what they were doing.

The two views above (by participant and by role) indicate that the programming pair really are working
together on each subtask, rather than each considering a different part of the problem and then pooling
results to cover the whole task. However, when one considers more closely the level of collaboration on
different types of task, it becomes clear that some lend themselves more to collaboration than others.
Similarly, a particular role does not appear to dominate a particular type of task.

Percentage of contributions to

subtask type by role

0.0

20.0

40.0

60.0

80.0

100.0

120.0

a b c d e f g h I j k l

Generic subtask type

P
e
r
c
e
n

ta
g

e
 o

f

c
o

n
tr

ib
u

ti
o

n
s

Navigator

Driver

5. Conclusion

This report highlights pair programming as highly collaborative, with both partners contributing
information to almost every sub-task, irrelevant of role. This contrasts with suggestions that the benefits of
pair programming may come from encouraging verbalization, facilitating overhearing or peer pressure from
being watched. The profile of the pair programming sessions showed an overall pattern with most time
spent on comprehension (understanding existing code and/or the nature of the problem), followed by
writing new code and then testing and least time discussing the IDE and commenting code.

While generally very high (over 80%), the level of collaboration varied according to task. Refactoring

and writing new code showed the highest level of collaboration and therefore one might suggest that the
challenging nature of these tasks made pairing on them most valuable. When the number of contributions
per participant was considered, one person was more likely to lead on (i.e. contribute most new information
to) agreeing strategy. This is a surprising and interesting phenomena that requires further investigation, as
agreeing how to tackle a problem could be considered a highly complex task which one would imagine
would benefit greatly from input from both parties.

The studies performed showed very evenly distributed contributions across role, with the driver

contributing only slightly more than the navigator. This negates claims that the driver and navigator roles
may be oriented toward different types of task, but further investigation is required if we are to fully
understand whether a task benefits from the driver and navigator focusing on different aspects (e.g.
working at different levels of abstraction).

It should be recognized that the companies studied were an opportunistic sample rather than chosen for

being particularly representative of the pair programming community. In addition, while verbalisation
occurs naturally in pair programming and the programmer is already being observed by his/her partner, one
should nevertheless consider the possible effect of being observed by an experimenter. Finally, it should be
noted that the coding of verbalizations as contributing to particular sub-tasks was only undertaken by one
person and not blind double coded for accuracy due to resource constraints.

Although the studies report highly positively on the overall collaborative nature of pair programming,

they also raise a number of further questions:

• Can software development tasks be designed to foster collaboration?
• Do the driver and navigator contribute at different levels of abstraction?
• What is the power balance in a pair – does one partner or role tend to lead decision making?
• Is collaboration the key to a ‘successful’ pair programming session?
• Is novice pair programming similarly collaborative in nature, and if not, can this be encouraged.

There is still much to learn about the nature of pair programming, particularly if we are to successfully

foster collaborative software development in the workplace and teach it in the classroom in order to reap
the many benefits it has been shown to have.

Acknowledgements

This work was undertaken as part of DPhil research funded by the EPSRC. The authors would like to thank
the participating companies: BBC iDTV project, BNP Paribas, EGG and LogicaCMG.

References

1. Williams, L. et al., Strengthening the case for pair programming, IEEE software, 2000. 17(4): p19-
25.

2. Jensen, R, A pair programming experience. The journal of defensive software engineering, 2003.
16(3): p.22-24.

3. Nosek, J.T, The case for collaborative programming. Communications of the ACM, 1998. 41(3):
p.105-108.

4. Cockburn, A. and Williams, L, The costs and benefits of pair programming, in Extreme
Programming Examined, G. Succi and M. Marchesi (Eds). 2001, Addison Wesley.

5. Tessem, B., Experiences in learning XP practices: A qualitative study. In Fourth International
Conference on Extreme Programming and Agile Processes in Software Engineering, 2003.

6. Lui, K. and K. Chan. When does a pair outperform two individuals? In Fourth International
Conference on Extreme Programming and Agile Processes in Software Engineering, 2003.

7. Williams, L. and R. Kessler, Pair Programming Illuminated. 2003, Boston: Addison Wesley.
8. Sharp, H. and H. Robinson. An ethnography of XP practices. In Fifteenth annual psychology of

programming interest group workshop, 2003.
9. Bryant, S., P. Romero and B. du-Boulay, Pair programming and the re-appropriation of individual

tools for collaborative software development, In press.
10. Chi, M., N. de Leeuw, M. Chiu and C. Lavancher, Eliciting self-explanations improves

understanding. Cognitive Science, 1994. 18: p439-477.
11. Hutchins, E., Cognition in the wild. 1995, Cambridge, MA: The MIT press.
12. Ainworth, S. and A. T. Loizou, The effects of self-explaining when learning with text or diagrams.

Cognitive Science, 2003. 27: p.669-681.
13. Ericsson, K. and H. Simon, Verbal reports as data. Psychological review, 1980. 87(3): p.215-251.
14. Cox, R., Representation construction, externalized cognition and individual differences. Learning

and instruction, 1999. 9: p.343-363.
15. Ericcson, K. and P. Polson, A cognitive analysis of exceptional memory for restaurant orders, in

The nature of Expertise, M. Chi, R. Glaser and M. Farr (eds). 1988, Lawrence Erlbaum Associates:
Hillsdale, USA.

16. Schooler, J.A., S. Ohlsson and K. Brooks, Thoughts beyond words: When language overshadows
insight. Journal of experimental psychology: General, 1993. 122(2): p166-183.

17. Suthers, D. Towards a systematic study of representational guidance for collaborative learning
discourse. Journal of Universal Computer Science, 2001. 7(3).

18. Jeong, H. and M. Chi. Does collaborative learning lead to the construction of common knowledge?
Twenty-second annual conference of the cognitive science society. 2000: Erlbaum, Hillsdale, USA.

19. Dillenbourg, P., What do you mean by collaborative learning? In Collaborative learning: Cognitive
and computational approachs, D. Dillenbourg, Editor. 1999. Elsevier: London, UK. P1-9.

20. Roschelle, J. and S. D. Teasley, The construction of shared knowledge in collaborative problem
solving, in Computer Supported Collaborative Learning, C. E. O’Malley, Editor. 1995. Springer-
Verlag: Heidelberg. O, 69-97.

21. Curtis, B., By the way, did anyone study any real programmers? Empirical studies of
programmers, E. Soloway and S. Iyengar (eds). 1986. P.256-261.

22. Bryant, S. Double Trouble: Mixing quantitative and qualitative methods in the study of extreme
programmers. Visual languages and human centric computing. 2004. IEEE Computer Society.

23. Bryant, S., Romero, P. and du-Boulay, B, Pair Programming and the re-appropriation of
individual tools for collaborative software development (in press).

24. Chi, M., Quantifying qualitative analyses of verbal data: A practical guide. The journal of the
learning sciences, 1997. 6(3): p.271-315.

25. Dick, A. and B. Zarnett. Paired programming and personality traits in Third International
Conference on Extreme Programming and Agile Processes in Software Engineering, 2002.

26. Hughes, J. and Parkes, S., Trends in the use of verbal protocol analysis in software engineering
research. Behaviour and Information Technology, 2003, 22(2): p127-140.

27. Pennington, N., Stimulus Structures and Mental Representations in Expert Comprehension of
Computer Programs, Cognitive Psychology, 1987, 19: p295-341.

28. Beck, K., Extreme Programming Explained: Embrace Change, 2000. Addison Wesley.
29. Johnston, A. and Johnson, C.S. Extreme Programming: A more musical approach to software

development. Proceedings of the 4th International conference in XP and Agile Processes in
Software Engineering, 2003. Goos, G., Hartmanis, J. and van Leeuwen, J. (eds): p325-327.

