
Java debugging strategies in

multi�representational environments

Pablo Romero� Benedict du Boulay� Richard Cox� and Rudi Lutz
Human Centred Technology Group�

School of Cognitive � Computing Sciences
University of Sussex� Falmer� BN� �QH� UK�

juanr�cogs�susx�ac�uk

Abstract

This paper reports part of the qualitative analysis of a Java
debugging experiment whose quantitative analysis has been reported
elsewhere� Java program debugging was investigated in computer science
students who used a software debugging environment �SDE� that
provided concurrently displayed� adjacent� multiple and linked
representations consisting of the program code� a visualisation of the
program� and its output�

The aim of the qualitative analysis is to characterise the debugging
strategies employed by participants� both at the level of focus of
attention and representation use as well as in terms of the general
reasoning strategy deployed� A modi�ed version of the Restricted Focus
Viewer �RFV� � a visual attention tracking system � was employed to
measure the degree to which each of the representations was used� and
to record switches between representations�

The experimental results are in agreement with research in the area
that suggests that people start a debugging session by trying to
understand the code of the program before they attempt to locate any
bugs� Two di�erent strategies to locate bugs were detected� by spotting
something odd in the program code and by comparing information from
the di�erent external representations available� These strategies may be
linked to cognitive characteristics of the programmer such as level of
programming skill and display modality preference�

� Introduction

Professional programmers typically employ debugging packages� prototyping
and visualisation tools in software development environments� These tools
routinely provide a range of external representations of both the static and
dynamic states of the program in addition to the code itself� A measure of
professional expertise is the facility with which these representations are
coordinated to form a multifaceted but coherent understanding of the
program� A similar situation applies to novice programmers� They often spend

�



a large amount of their time attempting to understand the behaviour of
programs when trying to discover errors in the code� To perform this task�
they normally work with both the program code and the debugger output�
trying to coordinate and make sense of these two representations�

Despite the importance of coordinating multiple representations in
programming� little is known about how multi�representational systems are
used for this kind of programming task� This paper reports part of the
qualitative analysis of an investigation into multiple representation use in
novice program debugging �Romero� Lutz� Cox� � du Boulay� ������ That
investigation examined the distinction between modality and perspective as
applied to external representations �de Jon� Ainsworth� Dobson� van der Hulst�
Levonen� � Reimann� �		
��

The term �modality� is used to mean the representational form used to present
or display information� rather than in the psychological sense of a sensory
channel� A typical modality distinction is between propositional and
diagrammatic representations� While modality is concerned with form�
perspective is concerned with content� Perspective refers to the programming
information types that a representation highlights� Computer programs are
information structures that comprise di
erent types of
information �Pennington� �	
�b�� and programming notations usually
highlight some of these aspects at the cost of obscuring others �the
match�mismatch hypothesis� �Gilmore � Green� �	
��� The information types
of concern here are data structure and control �ow�

��� Debugging

To date� there have been numerous investigations of debugging behaviour
across a range of programming languages �Gilmore� �		�� Romero� �����
Vessey� �	
	�� and previous research has also examined the e
ect of
representational mode upon program comprehension �Good� �			� Merrill�
Reiser� Beekelaar� � Hamid� �		�� Mulholland� �		�� Patel� du Boulay� �
Taylor� �		���

Studies relating to debugging strategies are of special interest to this
investigation �Je
ries� �	
�� Gugerty � Olson� �	
�� Carver � Klahr� �	
��
Kessler � Anderson� �	
�� Katz � Anderson� �	

�� According to Katz and
Anderson ��	

�� debugging strategies can be classi�ed into those that re�ect
either forward reasoning or backward reasoning� The �rst category comprises
those strategies in which programmers start the bug search from the program
code� while the second involves starting from the incorrect behaviour of the
program and reasoning backwards to the origin of the problem in the code�
Examples of forward reasoning include comprehension� where bugs are found
while the programmer is building a representation of the program and hand

simulation� where programmers evaluate the code as if they were the
computer� Backward reasoning includes strategies such as simple mapping and
causal reasoning� In simple mapping the program�s output points directly to
the incorrect line of code� while in causal reasoning the search starts from the
incorrect output going backwards towards the code segment that caused the

�



bug�

However� debugging studies have tended not to employ debugging
environments that are typical of those used by professional programmers �i�e�
multi�representational software debugging environments� SDEs�� Such
environments typically permit the user to switch rapidly between multiple�
linked� concurrently displayed representations� These include program code
listings� data��ow and control��ow visualisations� output displays� etc� So the
issue of how multiple representations are used and coordinated in debugging
and in an object�oriented paradigm is relatively unexplored�

The aim of this paper is to investigate the coordination of
multi�representational environments for Java debugging� In particular� this
work aims to characterise the debugging strategies employed by participants�
both at the level of focus of attention and representation use as well as in
terms of the general reasoning strategy deployed�

The next section of the paper describes the software environment used in the
experiment and gives a brief outline of the procedure followed� In the following
section the utterances and debugging strategies of two participants are
contrasted� There is then a discussion and suggestions for further work�

� Method

The aim of the experiment� part of whose qualitative analysis is reported here�
was to relate debugging behaviour� especially representation use and
coordination� to debugging strategy and accuracy� and to representation
modality and perspective� The quantitative analysis for this experiment has
been reported in Romero et al� �������

��� Software development environment

The software development environment �Java SDE� that we employed in our
experiment enabled participants to see the program code� its output for a
sample execution� and a visualisation of this execution� A screen shot of the
system is shown in Figure �� Participants were able to see the several program
class �les in the code window� one at a time� through the use of the side�tabs
��coin�� �pile�� �till� in the example shown�� Additionally� the visualisation
window presented a visualisation of the program�s execution similar to those
found in Object�Oriented software development environments� This
visualisation highlighted either a data structure or a control��ow perspective�
These representations were selected because research in Object�Oriented
program comprehension has suggested that function and data element
information is highlighted in languages of this programming paradigm while
control��ow is obscured�

The DeFT framework has been proposed by Ainsworth and Labeke ������ for
systems that work with multiple external representations� Although this

�



Figure �� The debugging environment used by participants

framework is concerned with learning� some of the issues it raises can be
applied to multi�representational systems of other sorts� It comprises three
fundamental aspects� the functions of the representations� the cognitive tasks
that must be undertaken by a user of these systems� and the design
parameters that are unique to learning with multiple external representations�
For the purposes of this analysis� only functions and cognitive tasks will be
taken into account�

The functions of the representations are the roles each representation and
representation subsystem play within the whole system� For example�
representations might complement each other because they encode di
erent
information or because they support di
erent cognitive processes�

Cognitive tasks are the activities that users must undertake in order to� for
example� understand how each representation in the system encodes
information� how to select the appropriate representation to use at any given
moment� and how to coordinate the representations in the system�

Generally speaking� the code represents the speci�cation of the solution to a
problem in the programming language� For the speci�c problems in the
debugging exercise� the solution consists mainly of simulating the behaviour of
entities in the real world� In this way� the output represents some aspect of
this behaviour in symbolic terms� Finally� the visualisation represents certain
aspects of the execution of the program�

The main purpose of the debugging environment is to help users to build a
robust mental representation of the program under consideration so that they
can discover and correct any potential errors� In this way� the functions of the
external representations of this debugging environment were mainly to play

�



complementary roles and to assist in the construction of a deeper and more
comprehensive understanding of the program�

There were two kinds of complementary roles played by these external
representations� one concerned with processes� the other concerned with
information� In the graphical visualisation condition� di
erent comprehension
processes can be brought into play because the code and output
representations are mainly textual� The representations also provided
additional information because although all information about the program is
implicit in the code� the input for the sample interaction was only available in
the visualisation and output representations�

The way in which the representations support the construction of a deeper
understanding is by helping users to identify the di
erent perspectives or
information types comprised by the program� According to Pennington
��	
�a�� developing a mental representation that comprises these di
erent
perspectives as well as to rich mappings between them is characteristic of good
programmers�

In our experiments� these representations� and the Java SDE� were static in
that participants were presented with selected pre�computed information about
the program execution� We chose to present information in this limited way so
that we could control for issues like the increased complexity of dealing with a
full debugging environment and the ephemeral nature of the information
presented by a dynamic debugging tool� which could have played a role in the
discrepancy of results reported by Mulholland ��		�� and Patel et al� ��		���

The SDE was implemented on top of a modi�ed version of the Restricted
Focus Viewer �RFV� �Blackwell� Jansen� � Marriott� ������ The SDE presents
image stimuli in a blurred form� When the user clicks on an image� a section
of it around the mouse pointer becomes focused� In this way� the program
restricts how much of a stimulus can be seen clearly and allows visual
attention to be tracked as the user moves an unblurred �foveal� area around
the screen� Use of the SDE enabled moment�by�moment representation
switching between concurrently displayed� adjacent representations to be
captured for later analysis�

��� Participants and procedure

The experimental participants for the main experiment were forty nine
computer science undergraduate students from the School of Cognitive and
Computing Sciences at Sussex University� U�K� All of the participants had
taken a three month introductory course in Java� but their programming
experience varied from having only taken this course to a few extra months of
Java experience and even having worked as professional programmers�

Participants performed �ve debugging sessions� The �rst one was a warm�up
session and it employed a functional visualisation� The four main sessions
followed� two of them using a data structure and the other two a control��ow
visualisation� Also� two of them employed a textual and the other two a

�



graphical visualisation�

Each debugging session consisted of two phases� In the �rst phase participants
were presented with a speci�cation of the target program� This program
speci�cation consisted of two paragraphs that described� in natural language�
the problem that the program was intended to solve� the way it should solve it
�detailing the solution steps� specifying which data structures to use and how
to handle them�� together with some samples of program output �both desired
and actual�� When participants were clear about the task that the program
should solve and also how it should be solved� they moved on to the second
phase of the session�

In the second phase of a debugging session participants were presented with
three windows containing the program code� a sample interaction with the
program and a visualisation which illustrated this interaction� They were
allowed up to ten minutes to debug each program� They were instructed to
identify as many errors as possible in this program and to report them
verbally by stating the class �le and line number in which they occurred as
well as a brief description of them� They were also encouraged� besides
reporting the errors� to think aloud throughout this second phase� Some
participants chose to speak much more than others�

The target programs consisted of �ve short Java programs� The programs of
the two main debugging sessions were seeded with four errors� and the
�warm�up� session�s program was seeded with two errors� The errors of the
main debugging sessions� programs can be classi�ed as �control��ow� and �data
structure��

Participants described aloud where the errors were located and their nature�
The audio recordings of the debugging sessions were analysed to identify the
participants� debugging accuracy�

� Results

The quantitative analysis of this experiment suggested that graphical
representations might be more useful than textual ones when the degree of
di�culty of the debugging task poses a challenge to programmers�
Additionally� the results of that analysis linked programming experience to
switching behaviour� suggesting that although switches between the code and
the visualisation are the most common ones� programming experience might
promote a more balanced switching behaviour between the main
representation� the code� and the secondary ones �Romero et al�� ������

For the purposes of the qualitative analysis� the data for two of the six most
vocal participants only were taken into account� These two were chosen
because of their di
ering programming backgrounds and di
ering verbal
ability scores� Their overall debugging accuracy was similar and it was hoped
to expose contrasting di
erences in their debugging strategies� Throughout
this analysis� these two participants will be referred as Participants � and ��

�



Participant � had considerably more programming experience than participant
�� Participant � had worked as a professional programmer� knew at least three
other programming languages apart from Java� had �
 months of general
programming experience and �� months of experience with Java� On the other
hand� participant � had not worked as a professional programmer did not
know any other programming languages apart from Java and had only �
months of both general and Java programming experience� The results of the
individual di
erences pre�tests were similar for these two participants� except
for the case of the verbal ability test� The score for Participant � in this test
was good while that of Participant � was poor�

This analysis compares verbal utterance and log �les for these two participants
to explore whether individual di
erences and di
erent levels of experience were
related to the information types referred to by their verbalisations as well as
their general debugging strategy� In order to carry out this comparison� the
utterances of these two participants were categorised both in terms of general
strategy and the information types they referred to� The utterance
categorisation scheme is similar to those applied in Mulholland ��		�� and
in Bergantz and Hassell ��		���

This verbal information was supported by synchronous data from the log �le
to create a better picture of their debugging strategy�

��� Utterance analysis

Tables � and � present the verbal utterances data for the two participants�
Table � shows the relative percentages of the di
erent types of utterances� The
�nal row Total number of utterances shows the total number of utterances in
each debugging session� It can be noticed that Participant � provided more
utterances of the type spotting suspicious code than Participant �� Also�
Participant �� unlike Participant �� did not provide utterances of the type
communication of compliance� On the other hand� Participant �� unlike
Participant �� did not talk in terms of agenda management� This table does
not exhibit any obvious pattern which characterises sessions by experimental
condition�

Table � shows the percentages of the di
erent information types referred to by
the participants� Notice that the utterances taken into account for this table
are a subset of the total number of utterances of participants� this table only
considers those verbalisations referring directly to the program code� Most of
these code references occurred under the utterance type code description� but
also included some in the hypothesis testing� error reporting or noticing
inconsistency types in table �� among others� The column labeled
undetermined is for those utterances which described the code super�cially�
almost reading it out loud� and therefore could not be classi�ed as comprising
a speci�c information type� It can be noticed that Participant � talks mostly
in terms of data structure� while Participant � produces utterances of
undetermined type�

�



Utterance type Example Participant � Participant �
dg dt cg ct dg dt cg ct

Hypothesis
testing

Should be around line
������

� �� 
 � � � �

Representation
related

��I�ll try the other screen � 
 � � � �

Con�rmatory yeah it was right what I
said before���

� � 
 � �

Code
description

so you�ve got three
classes���got name age
sex

�� �
 �� �� �� �� �� ��

Visualisation
description

Ok all the inputted coins
are going to pile zero

� 
 �

Output
description

just saying male� male
male

	 �

Agenda
management

I�ll come back and look
at that

� � � �

Self�awareness
of di�culty

I �nd it very di�cult � �� �� � �� 
 �

Noticing
inconsistency

which doesn�t really
make sense��

� � � � �

Point of insight that�s why it keeps on
saying �oh its zero� in
the visualisation

� � �

Analogy We�ve got the same
things as before

� � �

Meta�cognitive this output on the side is
quite helpful

� �

Communication
of compliance

I�m just looking at
the usual program
interaction

�� �� 	 ��

Error reporting For a start that � P
shouldn�t be � it should
be ����

� � � � 
 
 	 �

Spotting suspi�
cious code

bu
er reader equals new
bu
er reader� that does
seem a bit odd

� � � � � �	 �

Total number of
utterances

�� �� �� �
 �� �� �� ��

Table �� Relative percentages of the di
erent types of participants� utterances�
dg � data structure graphical condition� dt � data structure textual condition�
cg � control��ow graphical condition� ct � control��ow textual condition






Information
type

Participant � Participant �

dg dt cg ct dg dt cg ct
Control��ow ��� 
� 	� �� ��� �� �
� ���
Data
structure

��� ��� ��� �	� ��� ��� �
� ���

Undetermined ��� ��� ��� ��� ��� ��� ��� ���

Total num�
ber of
utterances

�� �� �� �� �� �� �� ��

Table �� Percentages of the di
erent information types referred to by the par�
ticipants� dg � data structure graphical condition� dt � data structure textual
condition� cg � control��ow graphical condition� ct � control��ow textual con�
dition

��� Debugging strategy analysis

The debugging sessions analysed shared several characteristics� First� both
participants started these sessions by making long �xations at the code
window� reading the program almost like reading prose� from top to bottom�
These initial code browsing episodes might have been necessary for them to
familiarise themselves with the code� These code browsing episodes varied in
length� sometimes they were relatively short� while at other times they
extended to cover almost all the debugging session� Occasionally participants
would discover a suspicious piece of code within these initial code browsing
episodes� Sometimes this spotting a suspicious piece of code would prompt
participants to report this piece of code as containing an error�

Such an initial code browsing episode to get familiar with the code is in
agreement with studies that have suggested that when debugging someone
else�s code� programmers devote an initial period of time to do program
comprehension �Je
ries� �	
�� Kessler � Anderson� �	
�� Katz � Anderson�
�	

�� Spotting suspicious pieces of code during these episodes could be
classi�ed as a comprehension debugging strategy �Katz � Anderson� �	

�� in
which participants �nd bugs while building a representation of the program�

After these initial code browsing episodes� the referred participants would
sometimes engage in several coordination of representations episodes� These
episodes were characterised by frequent switches between the code and one of
the other two representations� In these episodes� it seems that participants
were trying to build a more robust understanding of the program by
integrating information from di
erent external representations�

Sometimes� errors were reported after a coordination of representations
episode� Participants combined a forward and backward reasoning strategy in
these episodes� Sometimes� by interpreting the code� they would create
expectations about the content of one of the other representations� If these
expectations were not met� the participant tried to locate the place in the code

	



Participant � Participant �
dg dt cg ct dg dt cg ct

Coordination episode � � � � � � �
Episode leading to report � � � �
Successful episode � � � �
Spot suspicious code � � � � � � �
Spotting leading to
report

� � � � � � �

Successful spotting � � � �
Errors detected � � � � � � � �
Initial code browsing
episode time percentage

�� �� �� �� �� 		 �� ��

Table �� Number of coordination of representations episodes and of suspicious
piece of code spottings� dg � data structure graphical condition� dt � data
structure textual condition� cg � control��ow graphical condition� ct � control�
�ow textual condition

which might be responsible for this inconsistency� as this place could be the
source of the error� On other occasions they would notice a deviation from the
desired behaviour of the program in either the visualisation or the output
window� and try to link it to the place in the code where it originated as this
location could contain the error�

These episodes seem to be a combination of hand simulation and causal

reasoning debugging strategies �Katz � Anderson� �	

�� because participants
would reason backwards and forwards between the code and the other two
available representations� These combination of strategies seem to be due
mostly to the employment of a multi�representational debugging environment
and in particular to the visualisation representation�

In some cases� participants could not identify the error after a coordination of
representations episode� In these cases� an impasse was produced and they
would normally return to a code browsing episode�

Table � shows the number of coordination of representations episodes and of
suspicious piece of code spottings� The rows after these events show the
number of times they prompted participants to report an error and also how
many times these reports were correct� This table also presents the number of
bugs detected and percentage of time devoted to code browsing episodes�

One important di
erence between Participants � and � was that Participant �
devoted a high proportion of his debugging session time doing code browsing
episodes and reported a high proportion of errors by spotting a suspicious
piece of code� It is relevant here to note that Participant � showed a high level
of skill when translating between representations as well as verbal skills in the
experiment pre�tests� He also had more programming experience than
Participant �� This seems to indicate that he chose to concentrate mainly on
the code only� not because of a lack of ability or con�dence to coordinate the

��



other two representations� but because he preferred to work in a uni�modal�
textual environment�

� Discussion

Previous studies �Je
ries� �	
�� Gugerty � Olson� �	
�� Katz � Anderson�
�	

� distinguished clearly between hand �mental� simulation� in which the
program was evaluated by the programmer as if she were the computer and
causal reasoning� in which an error was spotted in the output of the program
and then traced backwards to the code� It seems reasonable to assume that
having a representation that could be considered as an intermediate type of
output could promote a strategy in which the program would be mentally
simulated and its expected behaviour veri�ed step by step on the visualisation
representation� Di
erences between this expected behaviour and the one
re�ected in the visualisation could prompt possible error hypotheses� But it is
also possible that the visualisation could contain inconsistencies not related to
the hand simulation expectations� but to those that have to do with the global
functionality of the program �the price of an item suddenly changing to a
negative number� for example�� In this latter case� the programmer would
probably reason backwards from this inconsistency to the code to discover a
possible error�

The problem solving strategy of these two participants was di
erent in that
Participant � had relatively short code browsing episodes and engaged in
frequent coordination of representations episodes� Participant �� on the other
hand� had long code browsing episodes and spotted suspicious pieces of code
more frequently during these initial code browsing episodes� He might have
chosen to concentrate largely on the code� not because of a lack of ability or
con�dence to coordinate the other two representations� but because he
preferred to work in a uni�modal� textual environment�

Despite similar debugging accuracy scores for the two participants� there were
di
erences in debugging strategy� Marked individual di
erences in reasoning
strategy associated with similarities in performance have been found on other
computer�based tasks such as proof development in �rst�order
logic �Oberlander� Stenning� � Cox� �			�� In this case� Participant � had
considerably more programming experience than Participant �� He also
showed a higher level of skill when translating between representations as well
as in verbal abilities in the experiment pre�tests� Taking this into account� it
was surprising that he did not show a better debugging accuracy than
Participant �� One possible explanation for this is that his choices of
debugging strategies were not optimal� For example� by choosing a
comprehension debugging strategy he engaged in a relatively large number of
reports of suspicious pieces of code� These reports were unsuccessful most of
the times� The fact that the comprehension debugging strategy was not highly
e
ective for him suggests that he might have been better o
 by engaging in
more coordination of representations episodes instead�

A clear di
erence in the types of utterances of these two participants was that

��



Participant � talked mostly in terms of data structure� while Participant �
produced utterances of undetermined type� It seems reasonable to assume that
this di
erence is related to their di
erence in the choice of debugging
strategies� Possibly data structure utterances were preferred to control��ow
ones given that Java as an Object�Oriented language would highlight function
as well as static data element information whilst obscuring control��ow
information �Corritore � Wiedenbeck� �			� Wiedenbeck � Ramalingam�
�			��

It is worth noting that there were no noticeable di
erences either in debugging
strategy or in utterance type due to the type of visualisation employed
�control��ow and data structure� textual and graphical�� However� it is clear
that these results should be taken with caution as only a small proportion of
the participants was taken into account�

� Conclusions

This study investigated Java program debugging strategies through the use of
a software debugging environment that provided concurrently displayed�
adjacent� multiple and linked representations and that allowed visual attention
switches of participants to be tracked�

The experimental results suggest that the employment of a
multi�representational debugging environment and in particular of a
visualisation representation might have promoted participants to use a
debugging strategy that combined a forward and backward mode of reasoning
about the program code and the rest of the available representations� In this
debugging strategy� programmers performed frequent switches between the
code and one of the other two representations� In these episodes� it seems that
participants were trying to build a more robust understanding of the program
by integrating information from the di
erent external representations available�

The results of the experiment reported here need to be reinforced by further
empirical studies with di
erent experimental settings� One experimental factor
that is important to manipulate is the use of a dynamic debugging
environment instead of� as in this case� a static one� The use of a dynamic
debugging environment might impose an additional cognitive load on
participants but will enhance the ecological validity of the experimental task
by providing an interactive �and more authentic� SDE environment�

� Acknowledgements

This work is supported by the EPSRC grant GR�N���		� The support for
Richard Cox of the Leverhulme Foundation �Leverhulme Trust Fellowship
G���RFG����������� and the British Academy is gratefully acknowledged�
The authors would like to thank the participants for taking part in the study�

��



References

Ainsworth� S�� � Labeke� N� V� ������� Using a multi�representational design
framework to develop and evaluate a dynamic simulation environment�
In Proceedings of the ���� Dynamic Information and Visualisation

Workshop Tuebingen� Germany�

Bergantz� D�� � Hassell� J� ��		��� Information relationships in PROLOG
programs� how do programmers comprehend functionality��
International Journal of Man�Machine Studies� ��� ������
�

Blackwell� A�� Jansen� A�� � Marriott� K� ������� Restricted focus viewer� a
tool for tracking visual attention� In Anderson� M�� Cheng� P�� �
Haarslev� V� �Eds��� Theory and Application of Diagrams� Lecture Notes

in Arti�cial Intelligence ���	� pp� �������� Springer�Verlag�

Carver� S� M�� � Klahr� D� ��	
��� Assessing children�s logo debugging skills
with a formal model� Journal of educational computing research� ��

Corritore� C� L�� � Wiedenbeck� S� ��			�� Mental representations of expert
procedural and object�oriented programmers in a software maintenance
task� International Journal of Human Computer Studies� ��� ���
��

de Jon� T�� Ainsworth� S�� Dobson� M�� van der Hulst� A�� Levonen� J�� �
Reimann� P� ��		
�� Acquiring knowledge in science and mathematics�
The use of multiple representations in technology�based learning
environments� In van Someren� M� W�� Reimann� P�� Boshuizen� H�
P� A�� � de Jon� T� �Eds��� Learning with Multiple Representations� pp�
	���� Elsevier Science� Oxford� U�K�

Gilmore� D� J� ��		��� Models of debugging� Acta psychologica� 
� ����
��������

Gilmore� D� J�� � Green� T� R� G� ��	
��� Comprehension and recall of
miniature programs� International Journal of Man�Machine Studies�
�� ���� ����
�

Good� J� ��			�� Programming Paradigms� Information Types and Graphical

Representations� Empirical Investigations of Novice Program

Comprehension� Ph�D� thesis� University of Edinburgh� Edinburgh�
Scotland� U�K�

Gugerty� L�� � Olson� G� ��	
��� Comprehension di
erences in debugging by
skilled and novice programmers� In Soloway� E�� � Iyengar� S� �Eds���
Empirical Studies of Programmers� �rst workshop� pp� ����� Norwood�
New Jersey� Ablex�

Je
ries� R� ��	
��� A comparison of the debugging behaviour of expert and
novice programmers� In Proceedings of AERA annual meeting�

Katz� I�� � Anderson� J� R� ��	

�� Debugging� an analysis of bug location
strategies� Human�Computer Interaction� �� ��	��		�

��



Kessler� C� M�� � Anderson� J� R� ��	
��� A model of novice debugging in lisp�
In Empirical Studies of Programmers� �rst workshop Norwood� New
Jersey� Ablex�

Merrill� D� C�� Reiser� B� J�� Beekelaar� R�� � Hamid� A� ��		��� Making
processes visible� sca
olding learning with reasoning�congruent
representations� Lecture Notes in Computer Science� 
��� ��������

Mulholland� P� ��		��� Using a �ne�grained comparative evaluation technique
to understand and design software visualization tools� In Wiedenbeck�
S�� � Scholtz� J� �Eds��� Empirical Studies of Programmers� seventh

workshop� pp� 	����
 New York� ACM press�

Oberlander� J�� Stenning� K�� � Cox� R� ��			�� Hyperproof� Abstraction�
visual preference and modality� In Moss� L� S�� Ginzburg� J�� � de Rijke�
M� �Eds��� Logic� Language� and Computation� Vol� II� pp� ��������
CSLI Publications�

Patel� M� J�� du Boulay� B�� � Taylor� C� ��		��� Comparison of contrasting
Prolog trace output formats� International Journal of Human Computer

Studies� �
� �
	�����

Pennington� N� ��	
�a�� Comprehension strategies in programming� In Olson�
G� M�� Sheppard� S�� � Soloway� E� �Eds��� Empirical Studies of

Programmers� second workshop� pp� ������� Norwood� New Jersey�
Ablex�

Pennington� N� ��	
�b�� Stimulus structures and mental representations in
expert comprehension of computer programs� Cognitive Psychology� �	�
�	������

Romero� P� ������� Focal structures and information types in Prolog�
International Journal of Human Computer Studies� ��� ��������

Romero� P�� Lutz� R�� Cox� R�� � du Boulay� B� ������� Co�ordination of
multiple external representations during java program debugging� In
Wiedenbeck� S�� � Petre� M� �Eds��� ���� IEEE Symposia on Human

Centric Computing Languages and Environments� pp� �������� IEEE
press� Airlington� Virginia� USA�

Vessey� I� ��	
	�� Toward a theory of computer program bugs� an empirical
test� International Journal of Man�Machine Studies� �� ���� ������

Wiedenbeck� S�� � Ramalingam� V� ��			�� Novice comprehension of small
programs written in the procedural and object�oriented styles�
International Journal of Human Computer Studies� ��� ���
��

��


