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Abstract Sharing user information between systems is an area of interest for every
field involving personalization. Recommender Systems are more advanced in this
aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environ-
ments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems
and Intelligent Learning Environments, i.e. their student models, tend to be more het-
erogeneous and complex than traditional models used in Recommender Systems. To
share and reuse student models we must first understand the restrictions for porting or
reusing student models in new ITSs or ILEs. This paper proposes a classification of
student models in terms of their portability. Portability is measured via each model’s
accessibility, complexity, architecture, popularity, and description. We use this clas-
sification to analyse and then grade student models that have been published in the
AIED, EDM and ITS research communities in 2013 and 2014. The classification is
intended to be used by researchers both as a methodology to measure the portability
of a student model and as a guide to find existing reusable models.
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Introduction

In 1990 Nwana described the classic architectures used for Intelligent Tutoring Sys-
tems (ITSs). The architecture consisted of a student model, a pedagogical module,
an expert model, and an interface. The integration of these components created adap-
tive agents which could simulate some of the behaviours of human tutors. Since
then, there have been new architectures for creating smart tools for learning, but the
component which every approach shares is the student model. But what is a student
model?

Student models could be seen to perform two ‘super’ functions: acting as a
source of information about the student, and serving as a representation of the
student. In achieving these functions, they act in roles including corrective,
elaborative, strategic, diagnostic, predictive and evaluative. Nwana (1990).

Nwana’s statement reflects two main trends in student modeling. One trend focuses
on describing the attributes of the student, e.g., storing grades, preferences, and deci-
sions made. The other focuses in building representations that can reason about and
simulate student behaviour, e.g., if the student has answered the last 3 questions right,
the model will estimate the likelihood of the next answer being correct.

An example of a SM can be seen in Fig. 1 where a student uses a math tutor to
practice arithmetic. The answers of the student (right or wrong) will be used to update
what the tutor knows about the student, i.e., the SM. The model will then be used to
determine whether the student has achieved mastery over a particular arithmetic skill,
such as subtraction. If the student has achieved mastery, she or he is ready to move
to the next lesson, otherwise she or he needs more practice to achieve mastery. Many
models are used in a similar way, but the way in which each models calculates if the
student is ready for the next lesson is what makes them different. To sum up we can
say that a student model is a computational representation of a student which stores
information and, in some cases, simulates student behaviour.

Sharing user information between systems is an area of interest for every field
involving personalization. Recommender Systems (RSs) (Pu et al. 2012; Bobadilla
et al. 2013) share factual information of their User Models (UMs) through centralized

Fig. 1 Example of how a student model is used in an ITS
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structures or via translation interface languages (Carmagnola et al. 2011). UMs used
in ITSs (Nwana 1990; Woolf 2009) and Intelligent Learning Environments (ILEs)
(Brusilovsky 1994) are what we know as SM. Student models are heterogeneous
and complex, this makes them harder to share than the rest of UMs. For example
a UM in a RS typically represents factual information about the user’s preferences
in a web page, their location, click through rate, and time spent looking at items.
The SM in an ITS or ILE represents not only factual information, but also process
information such as simulated behaviours (Chou et al. 2003), patterns of knowledge
change, emotional states, facial expressions (Kort et al. 2001; Chen and Liu 2008;
Li et al. 2011; San-Pedro and Baker 2011; Hussain et al. 2011; Baker et al. 2012),
and may make predictions for user performance during learning (Sison and Shimura
1998; Stern et al. 1999; Beck 2000; Khajah et al. 2014; Jaques et al. 2014). Much
of the functionality in a SM involves pattern detection, prediction, and simulation.
To achieve this many SMs use machine learning (ML) and data mining. Sharing
information stored in machine learning components is not a trivial problem.

The differences between a UM and a SM are not explicitly defined, rather they
represent the result of focusing on different aspects of the interaction, i.e. user pref-
erences vs student learning processes. Recording the surface behaviour of users
browsing web pages differs significantly from modelling the cognitive and affec-
tive processes of students engaged in learning activities. So even though SMs can
be regarded as a subset of UMs, in practice they behave differently because they are
designed with different goals in mind.

The use of machine learning and data mining, and the wide variations between
models makes it difficult for ITSs and ILEs to share SMs in the same way that RSs
share UMs. However, this does not mean that SMs cannot be reused. In fact some
SMs are already reused, modified, and extended (Baker et al. 2012; Paquette et al.
2014; Dowell et al. 2014), but there is no simple way to know whether a model can be
re-implemented in another system without having a deep understanding of the model
and the system. This limits a model’s re-usability. It is often the case that only the
creators of the original system are able to reuse its SM, and it is common that doing
so means re-implementing the model for each new system. This is even more difficult
for third party researchers who are trying to reuse a SM created by other researchers
from different labs.

Knowing ahead of time which SMs are easier to reuse would save time for
researchers who wish to build an intelligent system without having to build all
of its components from scratch. By reuse we mean the utilization of previous
implementations in other applications, as well as their modification and tuning.

This work aims to measure the amount of effort required to integrate recent SMs
into other ITSs, ILEs, or UM sharing systems (Kobsa 2001; Vassileva et al. 2003; Niu
et al. 2004; Lorenz 2005; Schwartz et al. 2006; Zhang et al. 2006; Carmagnola and
Dimitrova 2008; Cena and Furnari 2009). The classification of the models can help
researchers find models with fewer restrictions, and potentially more akin to their
needs instead of developing new ones. Another reason for using previously developed
SMs is that it generates continuity which benefits the developers of the models and
research community. This work does not describe each of the models in detail and it
is not a survey of SMs.
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The paper is organised as follows. First we describe previous approaches for
classifying user models. Then we explain how we used the ideas from previous clas-
sifications to calculate portability. We then present the methodology we followed to:
choose the models to work with, measure the portability of each model, and cre-
ate a graded categorization of models based on their portability. After explaining the
criteria for grading we examine the categorization of portability through different
dimensions. We also estimate the reimplementation difficulty for each model. We
then analyse and discuss our findings. In the final part of the paper we make recom-
mendations as to how to quickly identify the portability of a model derived from a
machine learning classifier.

Previous Work and Ideas for the Classification of Student Models

According to Washizaki et al. (2003) portability is the ease with which software can
be transferred from one environment to another. There is, as far as we know, no
previous work that attempts to classify student models in terms of their portability
restrictions. Surveys such as Desmarais and Baker (2011), Kobsa (2001), Kobsa et al.
(2007), and Carmagnola et al. (2011) analyse factors that are related to student model
portability. So we turn to these surveys as previous work.

Desmarais and Baker (2011) made a survey of learner and skill modelling. In
this survey they provide descriptions of different types of student model in ITSs and
ILEs. Desmarais and Baker group models by their type: skill models, affect models,
meta-cognition, open learner, collaborative, and long term models among others. To
establish a common ground with most SM literature we use the definitions for types
of model from Desmarais and Baker (2011). We use these types of model to help
us segment the vast literature into more approachable subsets and to find portability
traits across similar models. Due to the increase in the use of Natural Language Pro-
cessing (NLP) as components of models to detect and predict learning (Dowell et al.
2014), we have extended the original types of student model to include a language
category. Language models as a category describe those models which map features
of student learning and performance detected via NLP. We also include an “other
models” category in which we place those SMs that were implemented less than three
times in the SMs we checked. Table 1 is integrated from the types of model reviewed
in Desmarais and Baker (2011) and our inclusion of the language models category.

Table 1 presents the types of model which are relevant to our study; the criteria we
used to determine which types of models were relevant for our study is explained in
the methodology section. We put together Table 2, also from Desmarais and Baker
(2011), to show the techniques that are used to model skills. We use this table to infer
the type of model from the technique used in an ITS. For example, an ITS that uses
knowledge tracing (KT) will use a sequential model, whereas an ITS that uses “noise
input deterministic and” (NIDA) will use a non-sequential model. NIDA is used in
situations where several skills are required to perform a task. It uses a Q-matrix where
every skill in an item must be mastered to succeed. From these we can assume that
one model will detect the development of a skill using KT, and the other will detect
the presence or absence of a skill using NIDA.
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Kobsa (2001) and Kobsa et al. (2007) analysed Generic User Modeling Systems
(GUMS). GUMSs were amongst the first approaches for sharing user model infor-
mation between several systems. The initial approach in GUMS consisted of the
creation of systems that built generic models which could store any kind of infor-
mation from different domains. The goal was to have different systems consult a
shared model. The second approach consisted of having a third party system regu-
late a standard model format such that different applications could exchange their
models. GUMS are viable for models that work as repositories, but not for models
that emulate behaviours. In reality there are no GUMS, or user models for that mat-
ter, which can store every fact, represent every pattern, and emulate every behaviour
already modeled in computer science. In other words, it is very difficult to have a sin-
gle model that solves every problem and has the benefit of every model. This idea is
often referred to as the “no free lunch problem” in computer science (Dembski 2001).
Projects that attempt this can be found in the more fundamental field of knowledge
representation, where frames (Minsky 1975) and ontologies (Lenat and Guha 1989)
have been amongst the largest initiatives. Kobsa’s analysis of GUMS, however, pro-
vides insight as to what factors impact the capacity of sharing models, in particular
those related to architecture of the models.

Carmagnola et al. (2011) studied user model interoperability. Although interop-
erability and portability are not the same thing, there are several attributes that both
share. Carmagnola reviewed systems that exchange UMs, systems that provide adap-
tation services, and systems that share UMs across multiple applications. For each of
these systems she analysed their architectures, like Kobsa, and their implementations
to grade their interoperability. A similar approach can be used to grade portability.

In the following sections we will use the ideas and concepts presented in these
surveys to create our own factors which will be used to measure student model
portability. We believe that having a clear understanding of the traits that make a
SM portable is necessary to increase the use of UM sharing systems (Kobsa 2001;
Vassileva et al. 2003; Niu et al. 2004; Lorenz 2005; Schwartz et al. 2006; Zhang
et al. 2006; Carmagnola and Dimitrova 2008; Cena and Furnari 2009) and less for-
mal approaches for sharing student models. We now explain how metrics to measure

Table 1 Types of models

Type of Skill Affect Motivation Engagement Other Language

Models

Elements Presence of skill Anger Effort Gaming Rule Based Narrative

or factors (non-sequential models) Happiness Challenge Behaviours CBM Text

the models Development of skill Boredom Independence Off-task Sequencing Cohesion

detect through time Frustration Confidence Behaviours Rule Based Complexity

(sequential models) Uncertainty Unclassified Correctness

Confidence

Excitement

Interest
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portability were derived from previous work, and our approach for grading model
portability.

Methodology

As Washizaki et al. (2003) explain “...in application development with reuse, it is
difficult to use conventional metrics because the source codes of components cannot
be obtained”. For this reason metrics are based in questions that allow us to analyze
student models without having access to the source code.

Our goal is to create a classification that can be extended and improved in the
longer term. In accordance with this idea, we chose simpler metrics. More precise
metrics would be harder to calculate and simpler metrics can be refined upon. We
used the metrics to calculate factors and we grouped the factors into 4 general dimen-
sions. Table 3 shows the four dimensions: accessibility, complexity, architecture, and

Table 2 Non-sequential and sequential models

Models that detect the presence Models that detect the development of

of a skill (non-sequential models) a skill through time (sequential models)

Q-Matrix: defines the links between items and skills, Matrix Factorization Model: skill or

it is a form of transfer model which can link items to concept learning over time.

concepts, or even concepts together.

Noise Input Deterministic And (NIDA): uses Bayesian Knowledge Tracing (BKT):

q-matrix in a conjunctive approach. Based in Bayesian Theory it model’s

Noise Input Deterministic Or (NIDO): uses the learning of skills over time. They

q-matrix in a disjunctive approach. are also considered simple Bayesian

Networks

Deterministic Input Noise And (DINA): associates Principal Factor Analysis (PFA): used

the guess and slip parameters to items instead of to represent changes in knowledge

skills. Also uses q-matrix over time, uses PFA technique

Deterministic Input Noise Or (DINO): associates

the guess and slip parameters to items instead of

skills. Also uses q-matrix it is the compensatory

part of DINA.

IRT is “he ultimate skill transfer model” (single skill) Learning Factor Analysis (LFA): used

to represent changes in knowledge

over time, uses LFA technique

Multi-Dimensional IRT Logistic Regression (LR): simple

description of a pattern over time, uses

LR technique.
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Table 3 Dimensions

Dimensions Accessibility Complexity Architecture Popularity Description

Factors Open Source Inputs Model Origin Re-implemented Type of Model

Availability Type of Data Implementation Pedagogical Theory

Input Formats Modularity Approach

Computational Models Server/Client Purpose

Used Has been Ported

Data Mining

popularity, each with its corresponding factors. The description column was not used
for calculating a grade for the models, instead it was used for the analysis presented
in the section analysis.

We have 3 levels of grades. The first level is for each factor, the second level is
for each dimension, and the third is the general grade for each model. A detailed
description of how the grade of each factor is calculated is presented in the next
section. Dimension grades are calculated by summing the grades of each factor and
then normalizing the result. This normalized value is then mapped to values between
1 and 4. These values represent the portability restrictions of a student model in
that dimension: 1 means low portability restrictions, 2 and 3 mean mid and high
respectively. Grade 4 means that there was not enough information to calculate the
grade of the model in that domain. Our posture in this regard is that if there is no
available information of a model it is even harder to port that if it had high restrictions
for portability. The general grade of the model is calculated by summing the grades
of the dimensions. It is important to note that the fact that we normalize the factor for
each dimension means that we assume that each dimension is equally important. This
is a strong assumption to make and may bias our analysis, nevertheless, we believe
that it is a valid assumption to be used as our initial approach.

Notes on Factors

There are several notes about the factors that should be pointed out. The first is that
several of them show interdependence. We explain the possible dependencies in each
factor where we detected it. The second is that we penalized the lack of information
about a factor. Our rationale behind this was that if you cannot find information about
the model, it will be harder to port. This is represented in our mappings for the grades
of each particular factor in the following way:

1. low restrictions, in regard to this factor the model would be the easy to port.
2. mid restrictions, in regard to this factor the model would require significant work

to be re-used in another software.
3. high restrictions, in regard to this factor the model requires a lot of work to be

re-used in another system.
4. no information, there is not enough information of this factor to re-use the model.
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The third note to consider is that these labels are comparative by nature, we
chose the low mid high scheme because it seemed the natural way to compare very
heterogeneous categories. But it does not mean that they are equivalent in nature,
though we do make this assumption for our comparison. The reason for this is that
there is no previous work or stepping stone in the field regarding this aspect. The
most similar approaches are the ones cited from which we inspired our factors e.g.
Kobsa (2001), Carmagnola and Dimitrova (2008), andWashizaki et al. (2003). Hence
in our first approach we make this assumption. Finally there were some factor that
we could not incorporate, such as the number of systems that use a particular model
and the domain in dependence of each model. This is one of the reasons why the
popularity domain only has 1 factor. The reasons this factor was to measurement
difficulties.

Choosing the Models

The models were selected from the full papers presented in the AIED 2013,
EDM 2014 and ITS 2014 conferences. These conferences represent the community
involved in developing SMs. We chose this approach instead of a more historic one
(e.g. review models published in journals in the last 10 years), because we aim to
classify models that have been used recently. Working with recent models will allow
the classification to be used in a practical way with student models that are still being
used. The tradeoff of this approach is that some types of models will be overrepre-
sented while others might not show at all, this reflects the trends of the conferences
in those years.

When searching for the models we proceeded as follows: If a model was only
mentioned but not described in the proceedings, we included previous work where
the model was properly described and contacted the authors of the model for further
information. We were interested in SMs for single users, so collaborative user mod-
els were omitted to reduce the scope of the search and will be addressed in future
work. Open learner user models that do not have data mining or knowledge inference
components were also not included, since these type of models are already anal-
ysed in Kobsa (2001) and Carmagnola and Dimitrova (2008). Classic approaches
for student modeling such as Knowledge Tracing KT and Q-matrix approaches
were included through their instantiations in the systems reported in the consulted
papers.

Table 4 shows the SMs identified in the literature. The table shows the ID we
assigned to each model and the references to the papers in which it appeared. Amodel
can be presented in several papers, and a single paper can contain several models.
Papers such as San-Pedro et al. (2013) model ids 10 to 15, and Paquette et al. (2014),
model ids 37 to 48, contain more than 4 models each. An example of this can be seen
in Paquette et al. (2014) where model id 38 is used to detect confusion at the hypoth-
esis stage of an assignment, models id 37 and id 36 are different versions of the same
model and are used at different stages of the assignment. Another common case for
several models to be present in the same paper is the comparison of several models.
An example of this can be found in Käser et al. (2014b) where a user-disaggregated
model id 26, an additive factor model id 24, and a knowledge tracing model id 24 are
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zá
le
z-
B
re
ne
s
et
al
.2
01
4)

47
(P
aq
ue
tte

et
al
.2
01
4)

Fr
us
t.
J4
8

67
(D

as
ca
lu

et
al
.2

01
4)

8
(B
ak
er

et
al
.2

01
2)

C
on
f.

28
(P
ed
dy
co
rd
II
Ie

ta
l.
20
14
)

48
(P
aq
ue
tte

et
al
.2

01
4)

C
on
c.
R
eg
.

68
(G

lu
z
et
al
.2
01
4)

9
(B
ak
er

et
al
.2

01
2)

Fr
us
t.

29
(K

ha
ja
h
et
al
.2

01
4)

49
(L
ee

et
al
.2

01
4)

69
(W

an
g
an
d
H
ef
fe
rn
an

20
14
)

10
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

C
on

ce
n.

30
(G

ra
fs
ga
ar
d
et
al
.2
01
4)

E
ng
.

50
(L
ee

et
al
.2
01
4)

70
(S
ah
eb
ie
ta
l.
20
14
)

11
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

B
or
ed
om

31
(G

ra
fs
ga
ar
d
et
al
.2
01
4)

Fr
us
t.

51
(L
ee

et
al
.2

01
4)

12
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

Fr
us
t.

32
(G

ra
fs
ga
ar
d
et
al
.2

01
4)

A
ff
ec
t

52
(M

ill
s
et
al
.2
01
4)

13
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

C
on
f.

33
(G

ra
fs
ga
ar
d
et
al
.2

01
4)

C
on
fi
de
nc
e

53
(M

ill
s
et
al
.2
01
4)

14
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

O
ff
-t
as
k

34
(G

ra
fs
ga
ar
d
et
al
.2
01
4)

Fr
us
t.

54
(M

ill
s
et
al
.2
01
4)

15
(S
an
-P
ed
ro

et
al
.2
01
3)

(P
ar
do
s
et
al
.2
01
3)

G
am

in
g

35
(G

ra
fs
ga
ar
d
et
al
.2

01
4)

E
xc
ite
m
en
t

55
(J
aq
ue
s
et
al
.2

01
4)

16
(D

zi
ko
vs
ka

et
al
.2

01
3)

(D
zi
ko
vs
ka

et
al
.2

01
4)

36
(G

ra
fs
ga
ar
d
et
al
.2

01
4)

In
te
re
st

56
(B
os
ch

et
al
.2

01
4)

17
(D

as
ca
lu

et
al
.2

01
3)

37
(P
aq
ue
tte

et
al
.2

01
4)

B
or
ed
om

J4
8

57
(B
os
ch

et
al
.2

01
4)

18
(K

äs
er

et
al
.2
01
3)

38
(P
aq
ue
tte

et
al
.2

01
4)

C
on
f.
J4
8

58
(V
an
L
eh
n
et
al
.2
01
4)

19
(D

es
m
ar
ai
s
an
d
N
ac
eu
r2

01
3)

39
(P
aq
ue
tte

et
al
.2

01
4)

Fr
us
t.
JR

IP
59

(K
op
p
et
al
.2
01
4)

20
(G

ol
di
n
an
d
C
ar
ls
on

20
13
)

40
(P
aq
ue
tte

et
al
.2

01
4)

C
on

c.
R
eg
.

60
(D

ow
el
le
ta
l.
20
14
)



Int J Artif Intell Educ

compared. We will now explain in detail each of the dimensions and their respective
factors.

Dimension: Accessibility

Kobsa (2001) analysed the support for open standards that different GUMS have and
spoke in favour of this aspect. We extend this idea to models based in open source
principles in general. We assume these SMs will be predisposed to be shared because
they are free to use and accessible. Besides Kobsa’s insights, we believe that access
to the model is an important factor; for if the model cannot be accessed, it matters
little if it is portable or not. To determine accessibility we ask two questions: “Is the
model open source?” and “Is the model available, if so where?”.

Open Source

We group, the possible answers of the first question into 4 categories:

1. Completely open source, any one can access and modify the model to better suit
their needs.

2. Depends on commercial software or hardware. This includes the models that are
in themselves free but that require a commercial hardware or software to be used.

3. Not open source. This includes models that require a license to be used, or that
are part of a commercial application.

4. No information. There was no information regarding this aspect.

Availability

We group, the possible answers of the second question into 4 categories:

1. Online, the model can be accessed and downloaded by anyone.
2. Authorization is required. This includes the models that are available only with

access to a database, as well as those that are available upon request.
3. No, the model is private and it is not available online.
4. No information, there was no information found in the reported literature

Dimension: Complexity

We assumed that a more complex model would have greater restrictions on portabil-
ity. We counted the number of inputs, heterogeneous sources, and formats using an
approach similar to Washizaki et al. (2003) metrics for complexity of software com-
ponents. “Simply, the smaller the number of business methods without parameters,
the smaller the possibility of having dependency outside the component.” Washizaki
et al. (2003). By looking at dependencies as requirements we rephrase this as the
smaller number of inputs, different types of data used, computational techniques,
and formats, the fewer restrictions a SM should have. To address these factors we
asked the following questions: “How many inputs or sources of information does
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the model require?”, “How many different types of data are used?”, “How many
different formats is this information in?”,“How many different computational tech-
niques or models does the student model involve?”, and “Does the model use data
mining?”.

Inputs

We decided to use input as a factor because it represents a data requirement. The
grade was calculated by summing the number of inputs the model uses and then it
was normalized using:

xi − min(x)

max(x) − min(x)
(1)

where the highest number of inputs was 11 from models ID 32, 33, 53, and 66 (see
Table 4 for a list of all the student models analysed). The lowest number of inputs
was 1 for models ID 16, 17, 19, 21, 28, 60, 61, 62, 64, and 68. The normalized value
was then mapped to one of the: low (x < 0.3), mid (0.3 ≤ x < 0.7) or high (0.7 ≤ x)
portability restrictions. In Table 5 we present an example of how the grades were
assigned.

Since the granularity of inputs reported in the literature varied, it was not enough
to look just at the number of inputs. To complement this factor we also checked the
type of data used and the format the inputs were in. There would be dependence

Table 5 Inputs

Inputs Count Normalized Grade Restrictions

The percent of past actions on the skills 2 0.1 1 Low

involved were incorrect

Presence of actions in the clip where the

student made a wrong answer

Student Identity

Class Identity

Skill Identity 5 0.4 2 Mid

Correct answers

Log attempts

GOOD METHOD

VERIFY INFO

SINGLE ANSWER

SEVERAL ANSWERS

UNDO GOOD WORK 9 0.8 3 High

GIVE UP

TIME ON TASK

MISUSED RUN MODEL

HYBIRD FUNCTION
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between these factors (input, type of data, and input format), but our method would
better represent the cases where a model has a very large number of simple inputs
with just one format or a model that has a small number of inputs but from very
diverse sources.

Type of Data

When speaking of type of data, we refer to those described in Kobsa (2001) and
Carmagnola and Dimitrova (2008), where the type of data was used to describe the
data exchanged by user modeling systems. We extracted the following from a larger
list of types of data in Carmagnola and Dimitrova (2008):

1. Usage, what the user did during his interaction with the system, i.e. logged
behaviors and actions.

2. User, information about attributes of the user: knowledge, skill, and demographic
aspects.

3. Social, information about the user’s membership to communities and interaction
with other users.

4. Domain, information about the application, e.g. contents, products, concepts.

We believe that heterogeneous types of data increase model complexity, as each
new type of data must be logged from a different source thus increasing logging
and representation requirements. As with the inputs we counted the total number of
different types of data used in a model and then we normalized and partitioned the
result to obtain 3 categories: low, medium, and high portability restrictions.

Input Format

The input format grade was calculated by summing the number of different formats
of inputs, then we normalized and mapped as was done with inputs and types of data.

Computational Techniques used

When talking about re-usability (Washizaki et al. 2003) explain that being able to
understand what a component does is an important factor. We try to represent this
aspect by assuming that the more computational techniques a model has, the harder
it will be to understand and to apply. The grade was calculated by summing the
number of different computational techniques used by the SM. This reflected that a
model that mixes several techniques will have more restrictions. The total number of
computational techniques was then normalized to obtain 3 categories: low, medium,
and high portability restrictions. Table 6 shows the way grades were assigned.

Data Mining

It should be noted that data mining approaches have been used to create more general
models. The fact that these models are more general should encourage portability,
however in order to create the model or update it, data (usually in large amounts) is
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Table 6 Computational Technique

Computational Technique Grade Restrictions

REPTree 1 Low

Hand made Detectors and hand made rules, Heuristic and Expert rules 2 Mid

ELO system Performance Factor Analysis Dynamic Bayes Network/HMM 3 High

required. For this reason we chose to label the use of data mining as adding restric-
tions to the portability of the model. This was because in order to use a data mining
in the model one needs to already have the data with which to train the model. To
determine which models used data mining we compared the computational tech-
niques and student models reported in each paper with Table 1. If the models fitted
parameters for knowledge tracing, used natural language processing, or used classi-
fiers, we presume that the authors used data mining. We assume that techniques that
use data mining and update their models through time will present higher restrictions
depending on the way data mining is used. For example, for sake of the argument
lets say we had two student models: a Naive Bayes Network which was constantly
updated and a function to predict factor f (x). The Bayesian Network uses data
mining to create and to update its conditional probability, but a function such as:
f (x) = FactorA ∗ 0.3 + FactorB ∗ 0.8 doesn’t use data mining at all will not
require data, or if the function was fitted using some regression technique, then data
mining was used only for its creation. In other words the Bayesian has a continual
requirement for data and the function doesn’t need it all, or only needs it once. With
these scenarios in mind we grouped the data mining answers into 3 categories:

1. No, the model does not use data mining
2. Yes, only for model creation
3. Yes, updates itself at run-time

Dimension: Architecture

The way a student model is implemented provides information regarding practi-
cal issues. “External dependency indicates the component’s degree of independence
from the rest of the software which originally used the component.” Washizaki et al.
(2003). We counted dependencies and encapsulation to determine model portability.
Since we did not have access to the source code, we asked questions that would allow
as to infer dependencies and physical restrictions such as: how was the student model
built? What frameworks, languages, APIs were used in its implementation? How is
the model encapsulated? Does it require a server?

Model Origin

The way the model was conceived carries strong implications as to where the model
can be used. From our own observations of the field, we created three groups of
approaches which represent the way in which student models are created:
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1. Standalone, the model is built by itself hence it is not integrated or restricted to
any application, it is equally portable to any system.

2. Created or authored with a tool, the model is therefore restricted to the system it
was created within or to the system it was created for.

3. Extension, the model is an extension of a pre-existing system meaning it is
customized to a particular software and has strong dependencies to it.

Implementation

In their analysis of interoperability, Carmagnola and Dimitrova (2008) compared the
languages user modeling systems use to share information. From this idea and from
Washizaki et al. (2003) notion of dependence we decided to count the number of dif-
ferent elements involved in the model’s implementation. This factor complements the
computational techniques factor. Whereas in computational techniques we checked
for model complexity in abstract terms, here we checked for its complexity in terms
of its implemented dependencies. The assumption was that a higher number of tech-
nologies integrated will make the model harder to port to another environment. The
grade was calculated by adding the number of different computer languages, frame-
works, and libraries, and then normalizing the count. A higher number of components
and tools implies more configuration and interfacing tasks. An example is shown in
Table 7.

Modularity

Good modularization leads to loosely coupled systems. The more loosely coupled
a systems is, the easier it is to change its components and integrate them into other
environments. SMs can be encapsulated into modules to be reused as libraries, soft-
ware components, web services, or agents among others. We assume that if a SM
was generated through data mining using data from a 3rd party system, then the SM
is by default encased in a separate module. This is a safe assumption because, other
than the data, there is no dependency between the SM and the 3rd party system. We
grouped modularity into 4 categories:

1. Single module
2. Not implemented in a system

Table 7 Implementation
Implementation Grade Restrictions

Coh-Metrix 1 Low

Java, 2 Mid

Swing

Prolog,

Java, 3 High

Android
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3. Several modules
4. Integrated in a system, hence no modularization

Server Client

Kobsa (2001) and Carmagnola and Dimitrova (2008) both analyze the architec-
tures of user modeling servers. This gave us the idea of looking into server
architectures. A student model running from a server will have different restric-
tions than a model running locally in an ITS. It is more likely for a server
SM to port to another environment because servers tend to assume they will be
consumed as services. Therefore they are designed to communicate with other
programs, but not to be constantly ported or relocated. A more complex architec-
ture will need additional interfaces between the server and the client. Besides the
design restrictions, server client architectures often require a physical server which
also adds to the complexity. In this aspect a standalone client represents fewer
restrictions.

1. Client, single standalone client architecture
3. Server-client architecture

Ported to other Systems

We assume, that models that have already been used in other systems are more
portable. Hence if a system has been ported before, we say it has low restrictions for
portability, if it has not we say it has high restrictions.

1. Yes, the same instance of the model was used in another system.
3. No, similar models were implemented with a similar methodology but they were

not the same model.

Dimension: Popularity

Systems that have larger communities of users and developers tend to have bet-
ter documentation and are easier to use. We asked if the model had been re-
implemented in another system. We assumed that SMs that had been re-implemented
in more than one system were more popular and therefore should have fewer
restrictions.

Re-implemented

There are several standalone models from the field of EDM which have not been
integrated into any software, or that haven’t been re-implemented, we counted those
models as “has not been re-implemented”.

1. Has been re-implemented
3. Has not been re-implemented
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Context Sensitivity: a Case in Which Ported Models Mights not Work

In Kobsa (2001) the author lists the desirable traits a GUMS should have in order to
increase its generality. One of such traits is domain independence. This means that
a model can represent the aspect it is meant to represent, regardless of the domain
it is in, i.e., regardless of the context. Lets say, for the sake of the argument, that an
affect model was put in practice to determine whether a student likes or not work-
ing with a math tutor. If the affect model works just as well with a physics tutor;
then we could argue that the affect model is independent from the math and physics
domain.

Making a model domain independent is hard because the definition of domain
can be subjective. For example if we needed to define the domain of physics for and
ITS: Should this domain include the concepts of Calculus? Is Calculus a domain in
itself? Or is it part of the domain of math and not of physics? Questions like these are
common. The answers of these questions lie with the maker of each tutoring system.
The domain can be defined as a conceptual label given to a group of concepts or
skills by the creator of the tutor.

In practice, the term domain is commonly used to refer to the area of interest of
the skills we wish to develop. Therefore to talk about a model that has no domain
could be argued to be a model that does not represent anything. We excluded a
domain independence factor because it could not be measured in a practical way.
But the fact remains that context is an important player in whether a student model
might work with another ITS or not. Models that are more related to the student traits
than to the contents of a tutor, such as affective, motivation or gaming models are
not exempt from context. This is also true for those model involving machine learn-
ing, which can overfit to the system that generated the training data (Paquette et al.
2015). This means that a student might behave differently when addressing a math
problem compared to a physics problem. The interface also plays an important role
in how the student will behave, since the interface dictates what a student can and
cannot do.

It seems intuitive to think that the more differences there are in the domain and
interfaces, the more changes will be observed in the behavior of a student. The lesson
here is that even if a model can easily be ported from one ITS to another, it might
not work, so even after porting it, the model should be tested to measure how the
new context and new data impacts the ported model. An example of how to measure
a model generality can be found in Paquette et al. (2015) where a model for gaming
was tested across different ITS for the same domain or Muldner et al. (2011) where a
similar comparison was made to determine which was a better predictor for gaming
behavior: the problem or the student.

The reason why it is so hard to measure whether a model will work in a differ-
ent context ahead of time is because, in reality it is not an issue of how general a
model is, but rather one of whether it can be used in a particular ITS. We could
argue that a model that has been successfully tested with several ITS would be more
general than one that has not. But the work involved in porting most models to
several ITS just for sake of measuring how sensitive to the context they are is not
practical.
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Comparison of Student Models

In order to calculate and then rank the models’ portability we used the four dimen-
sions specified in Table 3: accessibility, complexity, architecture, popularity. Each
of the factors graded in each dimension was mapped in the following way: grade 1
for low restrictions, grade 2 for middle restrictions, grade 3 for high restrictions, and
grade 4 for no information. The grades were then added and normalized to calculate
the grade of each dimension. To calculate an overall grade for the model we summed
the grades of each dimension and mapped in the following way:

• 4 - Represents the models with least types restrictions we found (Very Low).
• 5,6 - Represent the models with low restrictions (Low).
• 7,8 - Represent the models with medium restrictions (Mid).
• 9,10 - Represent the models with high restrictions (High).
• 11,12 - Represent the models with very high (Very High).
• 13 or higher - Represent that there was too little information of the model (No

info).

The minimum possible value is 4 because it represents the summing of the 4 cat-
egories where each got a grade of 1 (Low restrictions). For a model to get a grade
above 12 means that there is very little information about the model which makes it
very hard to port or re-implement.

Tables 8, 9, 10, and 11 show the SMs surveyed. Each table groups the models by
their overall restrictions for portability. The tables contain the grade of each dimen-
sion for that model, what the model is meant to detect and the approach used in the
model.

Analysis

The classes defined for this work are coarse because we chose to simplify several
aspects to make the classification useful. These means that there might be consider-
able differences between some models that fall in the same class. Another important
aspect to be considered is that the chosen models were surveyed from a 2 year span
and so may well be biased to the interests and tracks that were chosen for those years
in each conference. Rather than looking at the whole history of SM we have looked
only at a brief 2 years snapshot of models. We do not assume that the classified mod-
els represent every SM effort in the field. Indeed it would be useful to extend this
work to include both past and future SMs. To get a general picture of the distribution
of models, we put together in Fig. 2a histogram of portability restrictions showing
how many SMs there are in each class i.e. very low, low, mid, high, very high, and
no info.

For a model to be classified as having very low restrictions it would need to be:
open source, available online, have been re-implemented or ported to other systems,
using a single computational technique with a small number of inputs and with lit-
tle heterogeneity, be implemented in a single language or framework, be encased
in a single module or library, and be able to operate as a stand-alone client. This
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is an utopian view since matching all these traits would mean a trade-off against
the model’s capacity to perform adequately. We therefore looked not for a particular
ideal model, but for the ideal traits that the models in the area share, and so hoped
to provide insight as to where improvements can be made. We observe that 34 %
of the classified models have low restrictions, almost 19 % of them have medium
restrictions, and 40 % the SM (24 % and 16 % respectively) are hard or very hard
to port. The fact that 53 % of the models have low or mid portability restrictions
can be interpreted as half the models show promise to be ported. In Fig. 3 we show
the histograms for the restrictions of each dimension. At a first glance we can see
that the accessibility and complexity dimensions present the overall lowest restric-
tions. Popularity and architecture present the higher restrictions. This could reflect
the aspect in which SMs are more mature, i.e., the community is more concerned
with making their models available and understandable, than with their architectures
and replication.

Analysis of Accessibility

Accessibility is a dimension in which several models have low restrictions, from
which we can assume that many researchers in the ITS, AIED, and EDM
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Fig. 3 Comparative chart of the population of our classes per dimension
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Table 12 Analysis accessibility
Open Source restrictions Availability restrictions

Low 49 % Low 10 %

Mid 4 % Mid 47 %

High 11 % High 13 %

No Info 36 % No Info 30 %

communities are providing ways for other researchers to access their models. In
Table 12 we looked at the individual factors used to calculate the accessibility grade:
open source restrictions and availability restrictions. As we can see in Table 12 half
of the models are open source, which means that we can freely reuse and modify
the SM. However, access to the models’ implementations and source code requires
authorization. In many cases this minor restriction can be explained by the require-
ment of web repositories like github https://github.com/ that users register with before
accessing private project branches. Private branches are a form of access regulated
repositories for ongoing software projects. The problem with private access reposito-
ries is that sometimes the developers or creators of the systems are extremely busy or
are no longer around to grant access to other researchers to their projects. An inter-
esting fact is that 30 % of the SM do not report how to access or if their SMs can be
used.

Analysis of Complexity

When looking at the factors used to calculate complexity presented in Table 13, we
can observe that most restrictions spring from the use of data mining. The data to be
mined is likely to incorporate restrictions of its own. To reduce the restrictions in
the complexity dimensions implies reducing the model’s complexity and this is not
trivial a problem. Reduction of complexity by itself is considered a contribution; in
fact every year contributions to the area are made by presenting models that perform
similarly but with a reduced complexity (Käser et al. 2014b; Clement et al. 2014),
which impacts on ease of development or processing time.

Table 13 Analysis complexity

Computational Data Type of Input

Techniques Mining Inputs Data Format

restrictions restrictions restrictions restrictions restrictions

Low 96 % Low 10 % Low 47 % Low 90 % Low 90 %

Mid 3 % Mid 44 % Mid 27 % Mid 9 % Mid 4 %

High 1 % High 46 % High 26 % High 1 % High 6 %

No Info 0 % No Info 0 % No Info 0 % No Info 0 % No Info 0 %

https://github.com/
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Figure 4 shows the inputs, input format, and types of data factors that are used for
calculating model complexity. We make this graphical comparison because we found
an interesting relation between the factors. The input factor by itself is not enough
to determine complexity, since a system could have hundreds of inputs which come
from the same source. To balance this we incorporated the input format and the types
of data the SM uses. This reflects that a SM can have few, but very hard to get or very
hard to process inputs. The input data also restricts what kind of model is to be used
and different types of data will be predisposed to different models. The grouping
criteria for types of data are taken from Carmagnola et al. (2011) and they are: user,
usage, domain, social, environment, inferred, and reasoning. When looking at Fig. 4
we see that there is little heterogeneity in the portability restrictions arising from the
types of data and the input formats present in each SM. In general “usage data” is
the most used type of data, which is common in educational data mining. This is
because most usage data is extracted from “user logs” which is the most common
type of input format. It is interesting to observe that there is no correlation between
the inputs factor and the other two, which we would expect to show some degree of
dependency.

Analysis of Architecture

Table 14 shows the factors used to calculate the architecture dimension. Only 3 % of
the models reviewed have been ported which means that the little re-utilization there
is, is mainly done by re-implementation. Re-utilization of the models is achieved

Table 14 Analysis architecture

Origin Implementation Modularity Server Client Ported

restrictions restrictions restrictions restrictions restrictions

Low 27 % Low 56 % Low 44 % Low 46 % Low 3 %

Mid 27 % Mid 13 % Mid 41 % Mid 0 % Mid 0 %

High 46 % High 1 % High 6 % High 30 % High 93 %

No Info 0 % No Info 30 % No Info 9 % No Info 24 % No Info 4 %
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to a degree by re-implementing models or by extending the software that contains
the model, as seen in the origin column of Table 14. The origin represents the
approach or the historic relation of the SM and the system, i.e., if the SM was
developed as a standalone model, as the heart of the system, or as an extension of
an ongoing system. It should also be noted that most of the models that have low
restrictions in the origin column come from the EDM conference, where authors
commonly present their models and predictors without attaching them to any sys-
tems. As stated by Beck (2014), models presented in EDM have great potential to
solve problems or complement the work done in other conferences such as AIED
and ITS. A natural way to perform this task would be to make the SM as portable as
possible.

Analysis of Popularity

As can be seen in Table 15, 34 % of the SMs analysed have been Re-implemented.
Most of these models are affect models, which is logical since affect models com-
plement skill models. The reason behind this is historical. Originally SMs focused
on knowledge and later on skill modeling became the main concern. Since one of
the main goals of the field is the development of skills, new SMs for affect, motiva-
tion, and engagement (Baker et al. 2012; San-Pedro et al. 2013; Paquette et al. 2014)
are used, not to substitute, but to improve previously existing ITS which only used
SM for skills. The bigger picture here being the joint effort to improve the learning
process through the cooperative work of several student models.

Analysis of Types of Models

In Fig. 5 we present the relative proportions of different types of SM. We include the
different types found in the surveyed papers and in the not contemplated category we
put the models which did not fit with any of the well known models or approaches.
We can see that there is a strong trend for affective models. This is not surprising
given the time period for which the literature was sampled. In Fig. 6 we present the
overall grades for portability restriction in each type of model. Here we can observe
which types of model tends to have fewer restrictions. Affect models overall show
the highest number of models with low restrictions. This might be explained by the
fact that affect models complement other student models and therefore have been
developed in way that reduces their portability restrictions. A bimodal distribution

Table 15 Analysis popularity
Re-implemented

Restrictions

Low 34 %

Mid 0 %

High 64 %

No Info 1 %
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can be seen in the affect models in Fig. 6. This distribution can be explained by
two strong trends within affect models. The original trend was the use of external
sensors to find physiological traits, such as eye movement, heart rate, pressure, pos-
ture, and humidity among others. The use of external sensors significantly increases
model restrictions, since the SM needs to deal with additional hardware, additional
software interfaces, additional types of data, and more computational techniques. The
second approach is to use data mining in users’ logs to infer a student’s emotional sta-
tus (Jaques et al. 2014). This approach has significantly fewer requirements since it
does not depend on external sensors as it only uses system logs (Baker et al. 2012;
San-Pedro et al. 2013). It must be noted though that most of the models in this cate-
gory come only from a small group of authors (Paquette et al. 2014; Grafsgaard et al.
2014; San-Pedro et al. 2013; Pardos et al. 2013), however the bimodal distribution
makes sense given the two main approaches taken in the field.
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Reimplementation Difficulty

Besides measuring portability we also measured reimplementation restrictions. If a
model is not portable then at least we could estimate the amount of work it would
take to manually replicate it. So models where the source code can be extracted and
adapted are portable; and those where it is easier to re-implement the entire model
itself are easily replicable. By this definition every model listed in this work should
be replicable since they are published in scientific sources, but the amount of work
required to do so would vary greatly from model to model. We established 2 cate-
gories: low difficulty and high difficulty. Low difficulty means that, assuming that
the inputs for the model are available, the SM could be re-implemented in a few
lines of code and would take little time, (as in hours). High difficulty means that the
model implementation is more complex and the amount of code or time required to
re-implement it is unknown.

A Neural Network, or a Q-matrix model will be much harder to re-implement than
a math formula, like a linear equation. For reimplementation difficulty, we consider
2 factors:

1. If the model is a single equation, e.g., a model for affect detection is “AffectVa-
lence(x) = Engagement*.3 + StressLevel*.8”;

2. If the model is explicitly published including its optimal weights or configuration
values.

If the model did not meet both of this requirements, it was considered to have high
reimplementation difficulty.

In Table 16 we show a comparison between the difficulty in manually re-
implementing a SM and the overall portability grade of a SM. The comparison
highlights for which cases it would be better to port the SM and for which it would
be easier to re-implement it.

We can see in Fig. 7 that most models are difficult to re-implement. In Fig. 8 we
show a graphical representation of Table 16 where portability and reimplementation
difficulty are compared for each model. Here we can see that, though some models
have high restrictions for porting, they can be re-implemented more easily, but in
general portability tends to be a more viable option than reimplementation.

Discriminating the Importance of Factor in our Categorization

Bobadilla et al. (2013) used data mining to organize the most relevant papers in the
area of recommender systems. To determine which factors have more impact in porta-
bility we used a similar idea. Instead of using publication attributes and keywords
as Bobadilla et al. (2013); we used the factors we proposed and their corresponding
grades. We generated a minimal expansion trees using J48 (from the Weka data min-
ing suite available at http://www.cs.waikato.ac.nz/ml/weka/) to find the determining
factors in our categorization. The J48 algorithm creates a tree where the top node is
the attribute that reduces entropy the most, which means the attribute at the root of the
tree helps classify data in the smallest number of steps. The algorithm then repeats

http://www.cs.waikato.ac.nz/ml/weka/
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Table 16 Reimplementation difficulty vs overall grade

ID Reimplementation Grade Purpose of the model:

difficulty

1 High Mid Affective intervention

2 High High Detect knowledge:predict performance

3 High High Detect knowledge:predict performance

4 High Mid Detect knowledge:predict performance

5 High Low Predict learning with eyetracking

6 High Low Detect concentration

7 High Low Detect boredom

8 High Low Detect confusion

9 High Low Detect frustration

10 High Low Detect concentration

11 High Low Detect boredom

12 High Low Detect frustration

13 High Low Detect confusion

14 High Low Detect off-task

15 High Low Detect gaming

16 High Mid Classify students answer

17 High Mid Detect level of compexity

18 High Veryhigh Predict performance

19 High Mid Predict performance

20 High Mid Predict performance

21 High Low Detection of errors

22 High High To estimate current level of knowledge

23 High Mid Predict performance

24 High High Predict performance

25 High High Predict performance

26 High High Predict performance

27 High Mid Emulate KT models and combine it with

IRT to get evaluation of subsets of skills

28 High Mid the model is used to choose Hints strategies

from different students and suggest it to othe students

29 High Veryhigh Predict performance

30 Low Veryhigh Predict Engagement

31 Low Veryhigh Predict Frustration

32 Low Veryhigh Predict Student Learning

33 Low High detect leve of confidence

34 Low High Detect Frustration

35 Low High Detect Excitement

36 Low High Detect interest

37 High Low Detect Boredom in a student’s Hypothesizing stage
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Table 16 (continued)

ID Reimplementation Grade Purpose of the model:

difficulty

38 High Low Detect Confusion in a student’s Hypothesizing stage

39 High Low Detect Frustration in a student’s Hypothesizing stage

40 High Low Detect Concentration in a student’s Hypothesizing stage

41 High Low Detect Boredom in a student’s Experimenting stage

42 High Low Detect Confusion in a student’s Experimenting stage

43 High Low Detect Frustration in a student’s Experimenting stage

44 High Low Detect Concentration in a student’s Experimenting stage

45 High Low Detect Boredom in a student’s Analyzing stage

46 High Low Detect Confusion in a student’s Analyzing stage

47 High Low Detect Frustration in a student’s Analyzing stage

48 High Low Detect Concentration in a student’s Analyzing stage

49 Low High Detect Boredom

50 Low High Detect Flow

51 Low High Detect Frustation

52 High High Predict Disengagement at any page

53 High VeryHigh Predict Disengagement at first page

54 High VeryHigh Predict Disengagement after first page

55 High MID Predict Boredom and Curiosity with eyetracking alone

56 High High Detect confusion using face recognition

57 High High Detect frustration using face recognition

58 High VeryHigh Detect an emotional state and use that to generate

a message

59 High High Detect conditions to avoid mind wondering

60 High MID Detect learning performance

61 Low MID Diagnoses concept knowledge

62 High MID To estimate current level of knowledge of a skill.

63 High VeryHigh To estimate current level of knowledge of a skill.

64 High VeryHigh To estimate learning of an individual

65 High VeryHigh Suggest Hint to get to the desired state of knowledge

66 High MID Detect visual representation more akin to user

67 High VeryHigh determine reading comprehension level

68 High High Determine if a student is able to use natural deduction

in propositional logic correctly

69 High VeryHigh To reasses student knowledge and estimate it in long term.

70 High High Predict student success or failure

the process for each branch in a recursive way until all the members left to classify
belong to the same class. We trained the algorithm using our portability factors and
their calculated grades, and as an output extracted a tree whose top levels contained
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the factors that best discriminated the SMs in terms of portability. We excluded the
unique attributes such as approach and references, and we used a 10 fold cross val-
idation. The class we used was the models general grade. The resulting tree can be
seen in Table 17. The tree is built on the assumptions that we have explained in this
paper. This is because our assumptions impact our data and tree reflects the relations
between such data.

J48 points towards has been reimplemented (reimplementation in Table 17), open
source, and model origin as the highest impact factors. The has been reimplemented
factor should not be confused with the reimplementation difficulty. Interpreting the
tree we can say that to quickly determine if a model is portable or not, one should
first check if the model has been re-implemented, if the model is open source, and
how was the model implemented. We think has been reimplemented is the main fac-
tor because if a student model has been reimplemented or replicated, the odds are that
it was designed to be shared since its conception. Another possibility is that the com-
munity shaped model in such way as to be able to reuse it. It makes sense that open
source is an important factor because it is likely that authors that make their model
available online would take design and implementation decisions that would favor
re-usability. If there is no information regarding whether the model is open source
then one should look at the origin of the SM. As we mentioned before, the way a
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Fig. 8 Comparison between each model’s reimplementation difficulty and portability restrictions. In the
vertical axis 0 indicates very low portability restrictions or low difficulty of reimplementation. 5 means that
the model has high difficulty or very high restrictions. This figure is a graphical visualisation of Table 16
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Table 17 Discrimination of factors using J48

model is built (as an extension, a standalone model, or created with some author-
ing tool) implies several design decisions which will impact on whether a SM can
be shared or not. The other 3 factors that show up in the tree are input format, the



Int J Artif Intell Educ

number of components used in the implementation, and modularity. All the factors
present in the tree make sense for they are all desirable traits in shareable software,
but we are trying to distinguish why some might be better indicators than others
for portability. J48 points towards has been reimplemented (reimplementation), open
source, and model origin as the highest impact factors. The has been reimplemented
factor should not be confused with the reimplemented difficulty. In other words, to
quickly determine if a model is portable or not, one should first check if the model
has been re-implemented, if the model is open source, and how was the model imple-
mented: as an extension, a standalone model, or created with some authoring tool.
We think reimplementation is the main factor because if a student model has been
reimplemented or replicated, the odds are that it was designed to be shared since its
conception or the community shaped in such way as to be able to reuse it. It makes
sense that open source is an important factor because it is more likely that authors
that intend to share their model by making it available online would take design and
implementation decisions that would favor re-usability and as a consequence porta-
bility. If there is no information regarding whether the model is open source then
one should look at the origin of the SM. As we mentioned before, the way a model
is built implies several design decisions which will impact on whether a SM can
be shared or not. The other 3 factors that show up in the tree are input format, the
number of components used in the implementation, and modularity. All the factors
present in the tree make sense for they are all desirable traits in shareable software,
but we are trying to distinguish why some might be better indicators than others for
portability.

The input format as explained in the factors section carries strong implications
regarding interfaces. The more different formats the data is in, the more interfaces
will be required to process the data and hence the more work will be required.
The implementation factor presents and similar situation where the more tech-
nologies involved the harder it becomes to understand and build interfaces for all
of them.

Modularity is largely related to the other architecture parameters and in general it
is used as a criteria for sharing and interconnecting systems, so it is not surprising that
it should be present amongst the determining factors for measuring the portability of
a SM as well.

Wrapping Student Models

An important aspect which has not be covered so far is how to describe student mod-
els. Standards such as IEEE Public and Private Information for Learners (PAPI for
Learners) (IEEE-LTSC 2001), IMS Learner Information Package (LIP) (IMS Global-
Learning Consortium 2005b), and IMS eportfolio (IMS GlobalLearning Consortium
2005a) are used to “wrap” student information in meta-data descriptors. This was
originally done to share learner information between different learning management
systems like Blackboard and Moodle. These XML wrappers are meant to work with
best practices guides and information models to safeguard the use the information and
provide transparency between the systems that share the content. The standards used
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to describe user information could also be used to make cleaner and more practical
descriptions of student models.

PAPI, LIP, and eportfolio can be seen as structures to be filled with the learner’s
goals, skills, objectives, preferences, and evidence of work among others. These
wrappers however are not straight forward to use with more complex student mod-
els. To store student models such as the ones classified in this paper, extension tags
would need to be used. IMS standards, like LIP and eportfolio, incorporate exten-
sion tags in their XML schema to deal with extra content. The advantage of using
wrappers is that student models might then be easier to search for and classify with
automated tools and inference engines like the one used by Heckmann (2005). This
ideal scenario however seems a faraway reality, for wrapping all these models would
require a field-wide standardization effort.

Using the Classification

There are several ways in which our classification can be used:

• Find a suitable SM. When a developer wishes to create an ITS or ILE without
having to create a new SM, he or she can use Tables 8, 9, and 10 to find a SM
suitable to his needs. If developers wish more detailed information about the
models, they can consult the complete table at http://goo.gl/6jQSgY.

• Estimate a SM portability. When developers wish to estimate if a SM would be
easy to port they could ask the questions provided by the J48 in Table 4:

– Has the SM been reimplemented before?
– Is the SM open source?
– How many technologies or framework are used in the implementation

of the model?

• Benchmarking.When developers wish to create a flexible portable SM, they can
use our classification and grading scheme to compare his SM to others. If any
authors wish to update the information on their models they can send the updated
information about their models and we will update the main table at http://goo.
gl/6jQSgY.

We should note that after the classification for finding student models or esti-
mating portability, the researchers should still check for aspects related to context
sensitivity domain dependence. This aspect could very well determine whether it is
useful to port the student model or not.

Conclusions

Based upon previous work in systems for sharing student models and software porta-
bility we have proposed a set of factors to measure student model portability. The
factors are subject to the several assumptions we made and do not contemplate the
domain independence, which means that even if a SM is successfully ported it might

http://goo.gl/6jQSgY
http://goo.gl/6jQSgY
http://goo.gl/6jQSgY
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not perform well. A way to reduce this difficulty is by trying to make sure that the
ITS for which the model was built and the one the model will be used in are as similar
as possible, especially in their interface and domain.

We applied the factors to a group of SMs from the AIED, EDM, and ITS confer-
ences from 2013 and 2014 to generate a classification of models. The models were
classified by their portability restrictions. The classes were low, high, and mid. The
models with low restrictions are those which should be easier to re-use in other ITSs.
From this we found that in the models we analysed affective models were the ones
that showed the least restrictions for portability.

The levels of restrictions can be seen as the amount of problems a researcher
might face when porting a model. It is up to the tutor designer to choose whether
to implement a new model from zero or to reuse an existing one. A key factor in
this decision should be the experience of the designer in making tutors. Designers
who are creating a tutor for the first time should probably implement the models
from zero so they can better understand how tutoring system work. More experienced
designers, however, might make better use of this classification. They can use it to
quickly find candidate systems and make estimations based on the metrics proposed
here to see whether the effort involved in porting a student model out-weights the
effort of implementing it from zero.

In general not every model should be ported. There are several authoring tools
that can be used to quickly develop tutoring systems which can probably be used to
quickly create student models as well. But authoring tools take some time to catch up
to state of the art student model because new techniques are constantly being used in
the area. It is here where we think that porting presents a plausible solution. Those
models that are part of the state of the art but have not been integrated into some
authoring tool are the ideal models to be ported.

To better understand the importance of each factor we used a machine learning
algorithm, J48, to discriminate among the factors’ classification properties. There
was not enough data in general to build a solid classifier, so we used the J48 to
make educated guesses regarding the importance of the factors. In general the models
precision is bound to be low (around 70 %) due to the large amount of attributes, the
reduced number of instances, and noise in the data. The results of the classification
show that the quickest way to determine if a model is easy or hard to port is by asking
if it has been re-implemented before, if it is open source, and how many technologies
are involved in its implementation. The analysis of all of these factors might seem
obvious since we are comparing desired characteristics in models. But what we think
is interesting from the analysis is the priority between the factors, i.e. which ones
have more importance when determining portability. To provide further guidelines as
to how SMsmight be made more portable, we discussed standards for sharing student
information such as PAPI and LIP, and how they might be used to wrap student
models in meta-data in order for the to be found more easily and easier to understand.

It is clear that our classification can be improved. There are many determining fac-
tors that we might have overlooked, or simply could not get our hands on. We tried to
counter this by using simple metrics (counting repetitions and normalizing into low,
mid, and high restrictions) so that future work can easily extend or modify our clas-
sification. A simpler approach is a good starting point for building a classification,
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and will be a good baseline for future more refined classifications to come. We think
this is a step towards a sharing set of mind. With regard to guidelines and advice,
we have compared the difficulty of re-implementing current models with the restric-
tions of portability, so authors wishing to reuse any of the SMs analysed may choose
the simpler path, i.e. importing the SM and creating interfaces vs implementing the
complete model using the material published in recent papers.

As for future work, besides the refinement of its factors and extending the cov-
erage of literature, several issues remain open. One is how to represent or measure
domain independence of implemented SMs in a practical way. Another is the exten-
sion of the classification and its factors to include collaborative SMs and other type
of models that were excluded from this work. Finally there is the idea a about a
repository similar to Datashop where models could be hosted and shared using the
IMS standards and organized perhaps by their portability, purpose and domain. All in
all, we hope this initial analysis will start a conversation on student model portabil-
ity, and how to better measure this attribute in components of intelligent software for
education.
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