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Abstract: We have developed a prototype system, the MR Tutor, that aims
to help trainees learn a systematic method of describing MR brain images by
means of a structured image description language (IDL) [2]. The training sys-
tem makes use of an archive of cases collected for research purposes and previ-
ously described by an expert neuroradiologist. The system utilises a visualisa-
tion method – an Overview Plot – which allows the trainee to access individual
cases in the database as well as view the overall distribution of cases within a
disease and the relative distribution of different diseases. This paper describes
some of methodological and practical issues which we are currently investigat-
ing, in particular, the refinement of the image description language as a trainee
increases in expertise, and provision of support for diagnostic discrimination
as well as image description.

1 Introduction

We have developed an image description training system [8, 9] that aims to help radiology
trainees learn how to describe MR brain images in a systematic way by means of a structured
image description language (IDL). This language allows clinically meaningful features of
MR brain images to be recorded, such as the location, shape, margin and interior structure
of lesions. The training system makes use of images from an archive of about 1200 cases,
previously described in detail by an expert neuroradiologist (G. du Boulay) using the terms of
the IDL.

The MR Tutor currently exists as a number of different prototypes. The main prototype,
now implemented in Java, supports and scaffolds the process of describing single-sequence
sets of images for single lesions. Another prototype provides the facility to adjust the level
of support for the learner and to choose a case for tutoring based on the typicality and the
trainee’s performance so far. Depending on the expertise of the trainee it either produces
immediate feedback to a description or provides an overall critique at the end [10].
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One theme in the work is to provide the trainee with a new “way of seeing” the distribu-
tion of cases across diseases and to provide a largely visual means of making a differential
diagnosis. Another theme of the work is to construct a training system that will be effective
given the constraints under which neuroradiology is normally learned by apprenticeship, with
the constraints of working within a busy hospital environment.

This work is part of a wider project to provide support and training in radiology that
emphasises the value of systematic and careful analysis of images as the primary source of
data prior to the attempt to reconcile observations with the clinical history and patient data.
A further general aim of the work is to offer a standard language for describing MR images
that should be of value to experts as well as trainees in that it will allow one expert’s findings
to be more readily compared with another’s.

1.1 Image Description Language

The IDL describes the position and appearance of the features visible in the images rather than
the underlying disease, though the ontology of the language is influenced by a knowledge of
diagnostically important disease processes. The IDL has been constructed to be as complete
and detailed as possible, taking account of the wide range of diagnostic problems that occur
in neuroradiology and the variation of image appearance according to sequence type.

For the purposes of the prototype description training system, a simplified version of the
description language has been used. It provides an initial set of terms with definitions and
indicative examples to support discussion and sharing of knowledge amongst trainee neurora-
diologists and their supervisors. It also serves as a structured representation of knowledge for
the MR Tutor, enabling it to generate remedial responses to student errors.

1.2 Overview Plot

The image description training system employs a visualisation method — an Overview Plot
— which allows the trainee to view and access (i) the images themselves, (ii) the written
descriptions of the individual lesions in the image, and (iii) a two dimensional representation
of the multi-dimensional distribution of all cases of a disease chosen from the archive. The two
dimensional representation relates to, and is calculated from, the descriptions of the lesions.
Thus one can view the overall distribution of appearance of cases within a disease and the
relative distribution of different diseases, one against another. To this extent it is a kind of
case-based training system that provides a visual indexing mechanism to cases similar to the
case in hand.

We can consider a case as occupying a point in a many-dimensioned space of description
features. For the simplified language this space has some 30 dimensions, where each point
is a vector of binary values, each representing the presence or absence of a particular feature
value. Multiple Correspondence Analysis (MCA) is a statistical technique for data reduction
and visualisation [4]. It is used here to reduce the dimensionality down to two so as to provide
a ready means of overviewing the data. It does this by finding that plane which best spreads
out the subset of cases under consideration. MCA is similar to principal components analysis
but is applied to categorical/binary data as opposed to scalar data and assesses all possible
pairwise associations in the data.

Effectively, a set of X-Y weightings for each feature value is derived that can be used to
position any case in the 2-D space. The first dimension selects those high weighted features
that account for the highest proportion of the variability and the second dimension selects the
less strongly weighted combination of features.
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Figure 1: The small world of Glioma and Infarct

A property of the analysis is that disease contours can be superimposed on the 2-D plot
indicating degrees of typicality for cases of each disease. A case near the centre of the contours
is highly typical of the disease (it has feature values in common with many other cases of the
disease) whereas cases nearer to the periphery are less typical. A further property of the plots
is that the proximity of two points indicating cases of a particular disease in the plot, i.e. their
perceptual proximity, indicates the similarity of the two descriptions in the original multi-
dimensional space, see Fig. 1. The typicality contours match the psychological finding that
people can make finer similarity discriminations for more typically encountered cases.

1.3 Small Worlds

Once the trainee has learned how to use the image description language to describe and com-
pare cases within the context of a single disease, it is necessary to provide support for descrip-
tion and diagnosis in the context of confusable diseases.

Medical experts possess highly structured knowledge that provides various kinds of short-
cut to the small set of hypotheses that need to be considered in any situation. When presented
with a new case they rapidly home in on a number of “critical cues” that guide them to con-
sider a small set of possible hypotheses of possible diseases (“small world”) [6, 7].

In the tutor we are dividing the diseases up into small worlds (e.g. two, three or four
members each), corresponding to sets of confusable diseases, and compute separate composite
weightings for each small world, see Fig. 1.

1.4 Organization of the Paper

At present the MR Tutor is being developed in a number of ways, in particular: (i) to give
support for diagnosing as well as describing, based on the diagnostic notion of a small world
[1], (ii) to improve the interface in line with the results of an earlier workplace study, (iii) to
provide better tutorial support both for the processes of describing and diagnosing as well as
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for the quality of outcomes of description and diagnosis, and (iv) to find ways of assisting the
expert to describe images for the archive by providing means of semi-automatically analysing
images, e.g. determining the nature of the lesion boundary, given that its location has been
found by hand.

This paper concentrates on two of the methodological and practical issues which we are
currently investigating. These are, first, the relationship between the simplified and the full
image description language and, second, support for diagnosis as well as description. The
main emphasis here is on how the system can adjust the complexity of the task and its support
as trainees grow in expertise.

2 Adjusting Task Complexity

2.1 Simplified and Full Description Language

The prototype tutor has been developed using a simplified version of the description language
requiring some 30 lesion features to be described. Two further simplifications have been made
thus far: (i) to restrict the cases to those involving a single lesion, and (ii) to use images from
a single sequence or echo for each case. The full, “expert” version of the description language
includes separate descriptions for each image sequence/echo as well as detailed descriptions
(e.g. the region, major position, exact location, margin, structure, shape, area, conformity
to anatomical feature, interior pattern (if any) and its intensity) of the lesion (or the largest
of each type of lesion visible, where there are multiple lesions), as well as correspondence
between described parts of lesions seen under different sequences and descriptions of atrophy,
other signs and other abnormal signals for the case as a whole [2].

Completing such a detailed description is hard work and time-consuming, especially where
multiple sequences/echoes and/or multiple lesions are involved — a description of the largest
of each lesion “type” is required for each sequence/echo. Expending such effort makes sense
in the context of a research project but is harder to justify in day-to-day work, and to some ex-
tent in apprenticeship-style training based on day-to-day work. So it is important to increase
the complexity carefully when moving from the simplified towards the full image description
language.

Uncovering more of the complexity of the language as the trainee becomes more expert
will have an effect on how the overview plots look. Changing the list of features used in de-
scriptions will require a recomputation of all weights in the MCA. This may have the effect
of changing the distribution of cases in the overview plot as different features may now ac-
count for the variability among cases. So the trainee may not only be faced with an evolving
language but also an evolving set of overview plots.

2.2 Multiple Sequences/Echoes

The coordinates of a case in the overview plot, either for a single disease or for a small world,
are currently computed based on a single sequence (i.e. T2 weighted) and a case is represented
by a single point.

The distribution of points of a particular disease, glioma (say), in the overview plot de-
pends on whether the overview plot is constructed just for that disease (i.e. glioma) or for that
disease plus others (e.g. a small world). The reason that the shape of the distribution may
change is that the MCA will compute a different set of weights to construct the best fitting
2D subspace for the cases of glioma on their own compared to glioma plus some other dis-
ease(s). As a key aspect of training is to understand how different image features contribute
to discrimination between diseases in a small world, it follows that the overview plot must be
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constructed from the cases of the appropriate small world since this MCA plot will be based
on the linear combination of feature values that best spreads the cases in the small world.

Most of the cases in our archive have images from several sequences/echoes (typically
two or three) and multiple sequences/echos raise a further issue for the overview plot repre-
sentation. When more than one sequence or echo is available we could provide an overview
plot for each sequence/echo or a single overview plot across all sequences/echoes. There
may be some value in presenting a view of the diseases on each sequence/echo to illustrate
how different sequences/echoes provide more or less separation of the diseases. However this
presents the trainee with a difficult additional task — that of integrating information from
several overview plots. We are currently extending the methodology so that overview plots
for each sequence/echo may be viewed together with an overview plot constructed from a
principal components analysis (PCA) of the MCA results from each sequence/echo. PCA can
be used at this stage because the MCA results are weights expressed in real numbers.

3 Support for Diagnosis

3.1 Choosing Small Worlds

We are currently conducting experiments with expert radiologists to determine plausible small
worlds to include in the system. This experiment involves asking radiologists to suggest
differential diagnoses that are are hard to discriminate (and also to indicate the frequency
of occurrence), as well as to comment on suggestions for small worlds made by our own
expert (G. du Boulay). In terms of developing the tutor we will be constrained initially by the
distribution of cases available in the archive — we may not have enough examples of some
diseases to populate all the small worlds suggested — but the study will indicate for which
diseases further cases and their descriptions will be needed. The frequency of occurrence
information will be helpful in determining the relative population sizes of the diseases in the
tutor to reflect case mixes at different kinds of hospital.

In the longer term it may prove useful to allow the trainee additionally to “assemble”
a small world from individual diseases. At present the MCA is conducted off-line and its
results hand-coded into the prototype tutor. Allowing an arbitrary small world to be assembled
would require the MCA to be computed for that particular small world, as storing the MCA
weights for every possible combination of diseases would be too costly in storage terms.
However running an MCA analysis is computationally costly and requires some statistical
validation, and its not yet clear whether this would impose unacceptable time delays in the
tutor’s response.

3.2 Diagnostic Discrimination

In [1] we describe a method of helping the trainee to use their visual intuition to first home in
on an initially plausible small world, and then to refine that choice in the light of systematic
analysis of all the available images and any other available data. It will be straightforward to
check on the degree to which the trainee follows this diagnostic methodology, has examined
all the slices (in all the sequences) and made reasonable use of the overview plot to call up
and examine potentially similar cases.

An important part of the process of discrimination is reconciling the possibilities suggested
by the (primary) image data with the (secondary) information in the case notes. At present
the knowledge representation of the system is based predominantly on the image description
language and thus on what the lesions look like, where they are located and how they affect
nearby areas of the brain. Although clinical and other patient data is available (and can be

6



viewed by the trainee at certain points in the process), this data has not yet been incorporated
into the knowledge representation of the system. Doing this could enable the development of
the system to comment on the trainee’s beliefs about confirming and disconfirming evidence
in the secondary data.

While many of our small worlds will contain diseases that are genuinely hard to discrim-
inate, further analysis of our archive is likely to provide evidence of those “critical cues”
that may be helpful in particular discriminations [3]. These cues can then be incorporated
explicitly into the tutoring strategy.

Another area of development would consist of advice about what further image data might
usefully be collected to refine a particular discrimination. This was provided in an earlier
system, BRAINS, for CT scans [11, 12].

3.3 From the Overview Plot to Descriptions

Once the trainee has made a description of a case, that description can be displayed as point
in the overview plot. When such a point lies in a region of overlap between diseases, it may
be useful to determine which parts of the description would need to change in order for the
point to move nearer or further away from a particular disease’s centre of typicality.

The mapping from descriptions to coordinates is many-one. Each description yields a
unique point in the overview plot under MCA analysis. But because it is a projection in
multi-dimensional space onto two dimensions, a single point in the overview plot can be pro-
duced by many descriptions. Given a space that is densely populated by cases, and making
an assumption that the space is smooth one can interpolate a small number of plausible case
descriptions for a particular point. This enables the computation of which parts of the de-
scription would need to change in order for the point to move nearer or further away from a
particular disease’s centre of typicality.

3.4 Partial Descriptions

In some situations it may be helpful (and save time) for the trainee to enter only a partial
description of a case, e.g. concentrating on location and shape of the lesion only. However,
one of the acknowledged problems with MCA is the handling of missing data. It is not ap-
propriate simply to equate absence of data on a feature value with a feature value known to
be absent (code ‘0’). This raises a difficulty in the representation of partial descriptions where
only some feature values are specified, in that it is not obvious how to code the remaining
features. Partial descriptions would be very useful in that they would (in principle) allow a
quick entry of data to get a sense of where a case lies in the disease spaces, followed by more
detailed input of certain parts of the description if that looked a sensible course of action.

One possibility might be to represent a case with missing data as a region rather than as
a point in the overview plot. Where the missing data consisted of feature values with small
weights (i.e. features values that do not account for much of the variability among cases in that
small world), such a region would be small. The converse is also true, so a partial description
that omitted a highly weighted feature would cover a large region of the plot — thus indicating
the importance of the missing data.

Another possibility might be to estimate the missing data heuristically, on a similar basis
to the backward mapping described above.
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3.5 Geometric and Topological Intuitions

We have already looked at the degree of accuracy with which novices, intermediates and
experts are able to place new cases (given their descriptions) in a partially populated overview
plot for a single disease. This study showed that experts placed new cases in a similar way to
the MCA analysis — and were closer to the MCA than either intermediates of novices [5].

We are about to embark on a number of other studies of geometric and topological intu-
itions supported by the overview plot, in particular using plots of small worlds, rather than of
single diseases. One such study will measure the extra diagnostic leverage (if any) provided
by overview plot, especially how judgements of relative odds between diseases are influenced
by the visual feedback of seeing the description of a new case as a point in the overview plot.

4 Conclusions

This paper has described current developments in the MR Tutor — a system that aims to
help trainees learn a systematic method of describing and then diagnosing from MR brain
images by means of a structured image description language. It has concentrated on adjusting
the complexity of the task to match the increasing expertise of the trainee, especially via
the relationship between the simplified and the full image description language. It has also
discussed provision of support for diagnosis as well as description via enhancements to the
overview plot.

The MR Tutor has recently been reimplemented in Java and is currently being extended
with a more versatile interface for displaying image sequences. We are also exploiting more
of the images from the archive within the tutor, exploring how best to incorporate images (and
their descriptions) containing contrast enhancement, and investigating ways of constructing
image descriptions semi-automatically.
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