HOW TO WORK THE r
LOGO MACHINE

=“=““*!E5EEE=;==E====E=========iii=-17
i

BY

BeENEDICT DU BouLAy
AND

TiM 0'SHeA

[' DiA:1. OCCASIONAL PAPER

NO, U

DEPARTMENT OF ARTIFICIAL INTELLIGENCE

L UNIVERSITY OF EDINBURGH

L oun

-

= -

HOW TO WORK THE

LOGO MACHINE:

a primer for ELOGO.*

by

Benedict du Boulay and Tim O'Shea

D.A.I. Occasional Paper
No. 4.

*To be used in conjunction with D.A.I. Occasional Paper No.

"Teaching Children LOGO: a metaprimer for ELOGO"

(:) du Boulay and 0'Shea November 1976
All rights reserved

-

-

e N O U » w N

10.
i
12,
133
14,
15,
16.
17
18.
19
20,
21.
22,
23.
24,
28;
26,
20
28.
29,
30.
31.
32
33,

CONTENTS

PREFACE
ACKNOWLEDGEMENTS
INTRODUCTION

USING THE DRAWING DEVICES
TYPING TO LOGO

YOUR OWN PROCEDURES

TIDY LOGO
CORRECTING MISTAKES IN YOUR PROCEDURES
TWO MEMORIES (Part 1)

PROBLEM BUG

YOUR OWN "POCKET" CALCULATOR
CALCULATING RESULTS
SUPER-PROCEDURES and SUB-PROCEDURES
BREAKING DOWN PROBLEMS
PROCEDURES WITH INPUTS (Part 1)
PROCEDURES WITH INPUTS (Part 2)
CHANGING PROCEDURES (Part 2)
TWO MEMORIES (Part 2)
PROCEDURES WITH INPUTS (Part 3)
POLYGONS

PROCEDURES WITH RESULTS
RECURSTION

SPIRALS

TRUE or FALSE

CONTROL PROCEDURES

QUIZZES

STOPPING PROCEDURES

TRACING PROCEDURES

HOW LISTS WORK

FINDING THINGS IN LISTS

COMING BACK OUT OF RECURSION
WORKING ON LISTS

CONSTRUCTING LISTS

VARIABLES

USING PUBLIC BOXES

Page

13
17
24
26
29
33
34
37
41
46
51
55
56
58
61
66
70
73
78
79
81
84
86
90
93
96
99
103
106
111
115

ZEFHQHEG"J‘MUOW}

APPENDICES

PRINTING

MORE ABOUT DRAWING CIRCLES
THE TURTLE STATE

THE LOGO CLOCK

PAPER TAPE

AN ABBREVIATION FOR VALUE
MORE ABOUT DEFINING PROCEDURES
GLUEING THINGS TOGETHER
BOTH and EITHER

THE END OF THE LIST

WHILE

AND

GO

RUN

Index of procedure names (alphabetic)
Index of procedure types

Index of markers and prompts

Errata

Page

118
120
121
124
125
127
128
129
131
133
135
137
138
139

140
143

144
145

|

PREFACE

This LOGO primer consists of

(a) An ordered set of 33 worksheets designed to introduce the

basic concepts of the Edinburgh implementation of LOGO.

(b) An unordered set of 14 appendices designed to introduce
various additional LOGO facilities which a student may
need to complete a project. These are much terser

than the worksheets.

(c) A glossary of LOGO primitives.

The primer has been written for use by two specific groups of people
working in our LOGO Laboratory. It is designed for a very particular
implementation of LOGO* which has particular syntax, error messages,
devices and filing system.

These notes have been used by eleven to thirteen year old boys and by
trainee and serving school teachers. They have also been used by the

Edinburgh undergraduate Artificial Intelligence course and by visitors
to the Department.

The way in which the primer is intended to be used in teaching is
described in a companion paper™”, This paper also lists deficiencies,

problems and possible improvements to the primer.

We would be most grateful to receive any critical comments on the

content, organisation or style of the primer.

%
'Design Considerations for ELOGO' by McArthur, du Boulay, O'Shea
and Howe.

dos
'"Teaching Children LOGO: a Metaprimer for ELOGO' by 0'Shea and

du Boulay.

ACKNOWLEDGEMENTS

The content and organisation of this primer owe a great deal

to the work, comments and help of Ricky Emanuel, Colin McArthur
and Richard Young. We are indebted to Jim Howe for his support
and encouragement in the writing of the primer. We thank

Jean Parker and Margaret Pithie for their patient hard work in
producing this document and Doreen du Boulay for sustaining our

efforts.

Many boys and teachers gave enormous help through their work

with and comments on earlier versions of these notes.

The work is funded by a Social Science Research Grant No.
HR 2981/1. Benedict du Boulay receives a Social Science

Research Council Studentship.

INTRODUCT ION

These notes are to help you learn and use LOGO. LOGO is a language
which the comﬁuter understands. These notes assume you have no
previous knowledge of computers. Each one explains some new ideas in
LOGO, The names of these ideas will be written in capitals and under-
lined as they are introduced., Some of the words in the notes are
words which are part of LOGO. These will be written in capitals but

not underlined.

Each of these notes describes things you can do with the computer.
Some of these may give you ideas for your own projects. Always

explore any ideas, especially if you are not sure that they will work.

—

2
1. THE BUTTON BOX

The button box is a device which is used to send messages to the computer.

The button box can be used to control either the turtle or the music-box

via the computer.

A. Controlling the turtle

The computer can drive the turtle FORWARD., BACKWARD, LEFT or RIGHT.
It can also make it HOOT. When the turtle moves it leaves a line on the

floor by means of a pen fixed at its centre.

Pressing a button is COMMAND which the computer will EXECUTE and you will
see the EFFECT. When all the lights are off the computer is WAITING for

a command from you.

e —
r'"_:ID D BUTTON BOX
‘_J[] L_ HORRING TUORTLF
[:JE]] MEMORY
_D_D | 2} j
YOUR
BUTTON BOX WORKING f: MUSTIC BOX
MEMORY :ﬁ
COMPUTER

EXERCISE 1: Press every button except those labelled DEFINE,
END and RUN.

FoRward | |Folward | |ForwAR)
Backwarp| | Baacward | (3 ciowie)
\ 5 T DEFINE
RiGhT Lmau' RIGHT
5 15 Yo END
| LErFT LEFT LEVT
5 15 0 || |RUN

To understand how fhe turtle will be affected by commands, imagine vourself
in the position of the turtle, If you were told FORWARD 5 you would walk
5 péces forward in whatever direction you happened to be facing, If you
were told RIGHT 15 you would rotate on the spot towards the right through
15 degrees,

If you had paint on your feet you would see the effect on the floor of a

sequence of such commands!

The important things about the turtle are where it is, its POSITION and
which way it is facing, its HEADING. The POSITION and HEADING together
are called the TURTLE STATE. FORWARD and BACKWARD commands change only
the position part of the turtle state. LEFT and RIGHT change only the

heading part of the state.

EXERCISE 2: Find out what sequence of commands will make the

turtle face the opposite direction.
How many degrees are there in one complete turn?

Use the turtle to draw a triangle with equal size

angles and equal length sides.

The computer has a WORKING MEMORY. It is divided into two parts, one for

the button box and one for you. In the button box part of working memory

.are stored instructions of what EFFECT on the turtle each command should have.

You can use your part of the working memory to STORE A SEQUENCE OF COMMANDS.

for example, a sequence to draw a triangle. Such a sequence of commands is
called a PROCEDURE. Storing a procedure in working memory is called DEFINING
A PROCEDURE.

To define a procedure press the DEFINE BUTTON.

EXERCISE 3: Press it.

This sets the computer in a special STATE, called the DEFINING STATE. When

the computer is in this state the light in the define button stays on. Each
command button that is pressed is added into your part of the working memory
as the next command in your procedure. You can continue to add commands
until your procedure is complete, While you are defining your procedure,

the commands you give will NOT be executed, they will be stored away.

s o e O e . . 'i---.-....“

EXERCISE 4: Press command buttons to make a procedure.
EXERCISE 5: When you have finished your procedure press the END BUTTON.

This tells the computer that you have finished defining your procedure. The

computer returns to the WAITING STATE when it is waiting to execute any

command immediately. The light in the define button goes out.

Now that you have stored a procedure in working memory you can command the
computer to execute the whole sequence of commands which make up your procedure.
The computer reads this sequence from your part of the working memory. This

is called RUNNING A PROCEDURE. You can run your procedure by pressing the
RUN BUTTON.

EXERCISE 6: Run your procedure.

While the computer is executing your procedure it is in EXECUTING STATE and

will ignore new commands. As the computer executes each command in your

procedure the appropriate button will light up.

If you want to run your procedure again, just press the run button again,

when the computer is waiting.
EXERCISE 7: Run your procedure a few more times.

If you want to define another procedure just press the store button again.
The old procedure will be forgotten and the computer will be put in the

defining state to store away your new procedure.

EXERCISE 8: Define a procedure to draw a hexagon (6 sided figure)
with equal sides and equal angles. Hint: 1it takes

360 degrees for the turtle to turn right round once.
Define a procedure to draw an octagon (8 sided figure).

Define a procedure to draw a diamond.

Define some other procedures for your own pictures.

B. Controlling the music-box

In the button box part of working memory there are also instructions for

working the music-box.

A || A® B—' ;mwe
_;?_l c* f
b || €
Buttons marked Ay A 5 senss 3G, G play the notes of a single octave.

EXERCISE 9: Play all the notes in the octave,

If you want notés from an octave higher, press the OCTAVE BUTTON and

then the note you want, Notes will continue to be in the higher octave
until you press the octave button again (like a ballpen, one press for up,

another press for down).
EXERCISE 10: Play the higher octave.
Play both octaves.
Play a tune.
The define, end and run buttons do the same job as before.

EXERCISE 11: Define a procedure to play Frére Jacques, this is how it

starts:

c,D,E,C,C,D,E,C,E,F,G,E,F,G
Can you finish it off?

B Ay G B e o

=¥

SUMMARY

The computer can be in one of three states: WAITING, DEFINING, EXECUTING.

WAITIN G
STATE

NG LIGHTS onN

GWE
(oMM DEANE
oMM D
AN SHED END
STATE STATE
ﬁ_ [JAMHH_N D_LK'r_HT'_QN_-] DEFINE LIGHT on
The arrows show you how to change the state of the computer. The boxes

represent the three states,

The TURTLE STATE is its position and heading.

When the turtle goes FORWARD it moves in whatever direction it happens to
be facing (POSITION changes). When the turtle turns LEFT or RIGHT it
rotates on the spot (HEADING changes). When the turtle turns right round
it turns through 360 degrees.

F"““"""-"—ﬁa'ﬂ

2. USING THE DRAWING DEVICES.

da

B rerer< i S PYAYS e pica :_::\ D
- ks \
. —_— FIRST USER \ DISPLAY
A PLOTTERA
o L]
Goﬁaﬁc:ﬂ%o SECOND USER
THIRD USER
TELETYPES
FOURTH USER N
ol .
‘PLOTTERB TURTLE

COMPUTER
WORKING MEMORY

DRAWING 'DEVICES

The working memory of the computer is divided into five sections, one
L]

.

for LOGO and one for earh user,

A. Starting

When LOGO types

_ WHO ARE YOU:
then type your full name and then press the GREEN COMMAND BUTTON.
LOGO will

You will then be given a section of the working memory.

'taen type a PROMPT

W:

am

which means it is in the WAITING STATE and is waiting for your next
CDMMAND.‘. LOGO's job is to execute your COMMANDS one at a time.
Each command will have an EFFECT,

B. Chnosing a drawing device

Just as you used the button box for drawing so you can use LOGO.
® %

"But now you have a choice of four drawing devices, two PLOTTERS, the

DISPLAY or the FLOOR TURTLE.

You must tell 0G0 qhich drawing device you wquld like your teletype
to be connected to. There are PROCEDURES to connect you to the

devices.

The NAMES of the procedures are:

DISPLAY
TURTLE
PLOTTERA
PLOTTERB

To command LOGO to connect your teletype to one of the drawing devices
you must type the name of one of these procedures and press the green
command button. This button tells LOGO that you have finished typing

a command and that this command must be executed at once.

EXERCISE 1: Connect yourself to a drawing device.

If you are using the floor turtle, put it in the middle of its board.
The display has an imaginary turtle which draws on its screemn.
The plotters use their pens as turtles. These imaginary turtles

always start in the middle of their drawing area.

The four procedures for connecting to the drawing devices are stored

in LOGO's section of the working memory.

When LOGO reads the name of a procedure you have typed, it looks it
up in the working memory to find out what should be done, and then

executes the sequence of instructions associated with that name.

If you type the name of a procedure which LOGO cannot find in its

working memory, LOGO types an appropriate MESSAGE.

EXERCISE 2:* Try typing

W: CLOTTERA

C. Drawing
The names of the procedures for drawing were the labels used on the
button box:-

FORWARD

BACKWARD

LEFT

RIGHT

Each procedure is like a WORKER who knows how to do a particular

| P —r— T S

job and will execute that iob when commanded to by having his name
called. Some of these workers need information to be able to do

their jobs.
EXERCISE 3: Type FORWARD and press the green command button.

It is no good just commanding FORWARD without telling this worker
how far to move forward. Giving this information is called giving
an INPUT.

We give an input by typing the name of the procedure and then a
space and then a number. The number is the number of steps to go

forward, in whatever direction the turtle is facing.

EXERCISE 4: Try typing
' W: FORWARD 125
: W: BACKWARD 16
i
When LOGO reads the name of the procedure FORWARD it looks it up in
its working memory and finds that this worker needs an input. LOGO

continues reading your command from left to right looking for the

]

input.

The space between the procedure name and the input is important.

It tells LOGO where the procedure name stops and the input starts.

EXERCISE 5: Try typing
W: FORWARD?7

The message from LOGO tells you that it could find no procedure

called FORWARD? in its working memory. LOGO could not execute your

command 1s now WAITING for. another command.

The two procedures each need an :uput to tell them how much to rotate,

EXERCISE 6: Try typing
W: RIGHT 62
W: LEFT 33

If you are connected tc a plotter, watch its COMPASS!

Try driving the turtle to draw a

square for example.

LOGO expects only one command at a time, If you give more than one
command before pressing the green command button, only the first command

on the line will be executed and the rest ignored.

EXERCISE 7: Try typing
W: FORWARD 24 LEFT 50 BACKWARD 256
W: 256

LOGO expects a command and does rct know what to do vith the number 256.

There is a procedure for putting the turtle back in the centre of its

drawing area. The name of the procedure is:
rEMTRE

The turtle will be moved to the centre with its PEN up so that no
line is drawn. The turtie will be left facing towards the right, with

its pen down again.

EXERCISE 8: Trying running CENTRE.
Try to draw a triangle with equal sides

Try tc draw a hexagon with six equal sides.

You can also move the turtle without drswing a line if you first raise
its pen. There are procedures to raise and lower the turtle's pen.
Once the pen 1s raised, no more lines will be drawn until you lower it.

The names of the procedures are:-

LIFT
DROP

28 8 8 88 00 d0 - E S . i e .

—
-

11

The pens on the plotters are held a little off the paper except
when they are actually moving to stop ink splodges. The effect of

running LIFT is to keep the pen off the paper even when it is moving.

EXERCISE 9: Draw some separated shapes.

L

Sometimes you may lose track of exactly what the TURTLE STATE is.

There is a procedure which will draw you the turtle, which you can

‘use when you are connected to the DISPLAY or the PLOTTERS. The name

of this procedure is:

WHERE

There are two other special procedures. One for clearing the

display screen and one for making the floor turtle HOOT. The names
of these procedures are:

CLEAR
HOOT

EXERCISE 10: If you are connected to the display,
try running WHERE then moving the
turtle FORWARD and run WHERE again.
Run CLEAR.

D. Changing your drawing device

There is a procedure to discomnect you from your drawing device.
Its name is:

FREE

EXERCISE 11: Swop drawing device with someone, but

stay sitting at the same teletype.

E. Finishing the LOGO sessior

There is a procedure which empties your section of the working memory

ready for a new user.

drawing device.

When LOGO types the PROMPT W:
to EXECUTE a single COMMAND.
of a PROCEDURE, with an INPUT if needed, and then press the GREEN

COMMAND BUTTON.

The procedure also disconnects you from any

The name of the procedure is:

GOODBYE

SUMMARY

it is in the WAITING STATE, waiting

You give a command by typing the NAME

Here is a table of new LOGO procedures.

NAME OF PROCEDURE

DISPLAY
TURTLE
PLOTTERA
PLOTTERB
FORWARD
BACKWARD
LEFT
RIGHT
LIFT
DROP
CENTRE
CLEAR
HOOT
WHERE
FREE
GOODBYE

INPUT

no input
no input
no iaput
no input
one number
one number
one number
one number
no input
no input
no input
no input
no input
no input
no input

no input

EFFECT OF PROCEDURE

connects teletype to display
connects teletype to floor turtle
connects teletype to plotter a
connects teletype to plotter b
moves forward

moves backward

rotates leftwards

rotates rightwards

raises pen

lowers pen

turtle to centre, facing right
clears display screen

floor turtle hoots

draws turtle on display or plotters
disconnects drawing device

empties working memory.

I

==

i

L3

3. TYPING TO LOGO

This note describes how to use the teletype and how to correct typing

mistakes.

LOGO reads a difference between 1 (number) and 1 (letter).

reads a difference between O (number) and O (letter).

There is a shift key, or button, as on a normal typewriter.

LOGO alsp
This is

used when there are two characters printed on one button, e.g.

Lt you do not touch the shift key and press (::) you will type the
lower character 2. Holding the shift key down and pressing @

will type the upper character "

A. Correcting typing mistakes

If you make a typing mistake you can make it invisible to LOGO, but not

rub 1t off the paper. If the last character you typed was wrong just

press

This will make that last character invisible to LOGO which will type you +

EXERCISE 1: Connect to a drawing device and type
W: FORWAD+RD 123

If the mistake was not the last character typed, you must press

sufficient number of times to make all the characters back to the

mistake invisible to LOGO and then continue on again from the mistake

For example: W: GOOFBYE++++DBYE

Lf your mistake is right at the beginning of a long line it may be easier

to tell LOGO to ignore the whole line and start again.

Hold

14

the @ button down and press X,LOGO will type T and the whole line

will be ignored. LOGO will give you a new prompt.
EXERCISE 2: Try typing
W: RACKWARD 55671
Wz

B. PRINTING

There is a procedure named PRINT which needs one INPUT. PRINT has
the EFFECT of making the teletype type the input you give it.

EXERCISE 3: Try typing
W: PRINT 79

Find the largest number you can command to be printed.
PRINT can also have a WORD as its input.
EXERCISE 4: Try typing
W: PRINT CAT

The reason LOGO sent you a MESSAGE and did not type CAT was because
LOGO looked for a PROCEDURE named CAT in its working memory and could

not find one there.

To mark the difference between the NAME OF A PROCEDURE TO BE EXECUTED
and a WORD TO BE USED AS INPUT, we use a special character ". This

we will call the quote sign. When LOGO reads this it assumes that

the word immediately following is to be used as an input and is not to

be executed.

EXERCISE 5: Try the following
W: PRINT "CAT
W: PRINT 'RHUBARB
W: PRINT "PRINT
W: PRINT "Z2z2zz2222

15

LOGO words do not have to be English words.

ff’//ffzzza
EXERCISE 6: Try

W: PRINT "HELLO "MOTHER "HOW “ARE "YOU

PRINT expects only ONE INPUT so LOGO does not know what to do with

the extra words.

To have more than one word as an input you must put all the words
into a LIST. A LIST is like a stack of boxes each of which could
hold words or numbers. The boxes are all stacked on a pallet so

that they can be picked up as one stack.

|

16

The list can be the one input for PRINT.

The beginning of a list, the top of the stack, is marked with [and

the end of the list, the pallet is marked with]. These two characters
are called LIST BRACKETS. We call cach box of the stack an ELEMENT of
the LIST.

EXERCISE 7: Try typing
W: PRINT [HELLO MOTHER HOW ARE YOU]
W: PRINT (2222222221
W: PRINT [I AM 21 TODAY]
W: PRINT [1 23 45 6 7]

LOGO does not look in the boxes to find procedures to execute.

EXERCISE 8: Try typing
W: PRINT [FORWARD 1001

SUMMARY

You can make LOGO ignore typing mistakes.
There are only three types of INPUT you can give procedures.
These are NUMBERS, WORDS or LISTS.

NAME OF PROCEDURE INPUT EFFECT OF PROCEDURE

PRINT one number, teletype types input.
or one word,

or one list,

¥

17

YOUR OWN PROCEDURES

4
_— ——

A. Defining your own procedures

When you used the button box you were able to store a single sequence

of commands in the working memory. This was called DEFINING A PROCEDURE.

This was useful because once the procedure was defined you could run it

over and over again without having to remember or press the individual
commands .

LOGO allows you to define as many separate procedures as you like and
stores them all in your section of the working memory. Because you
can have more than one procedure in the working memory it is necessary

to give each procedure ftd own NAME so that you can run the one you
want.

Defining a préde?uré is like telling a WORKER how to do a job. Your
instructions to the worker will be an ordered sequence of commands.
For example:-

0. U B0IL AN EGG

1 GET AN EGG

2 BOIL SOME WATER

3 PUT THE EGG IN THE WATER
4 WAIT A FEW MINUTES

5 TAKE THE EGG OUT OF THE WATER
THATS ALL

In order to define a procedure you must put LOGO in the DEFINING STATE.
There is a procedure named

DEFINE

to do this which needs one input. This input must be a LOGO word.

It 1s used to make the NAME of your new procedure.

When the computer is in the DEFINING STATE the PROMPT changes to

D:

You can use any LOGO word, e.g. FRED or "SQUARE which you must make
up yourself.

18

In our example we show how we define a new procedure which will be

named SPIKE whose job will be to draw a spike.

W: DEFINE "SPIKE
D: 1 FORWARD 55
D: 2 LEFT 110
D: 3 FORWARD 80
D: 4 LEFT 140
D: 5 FORWARD 80
D: END

When LOGO is in the DEFINING STATE commands will not be éexecuted, they
will just be stored away TIDILY in LINE NUMBER ORDER as instructions
for the worker named SPIKE. ' Uk

The procedure named END changes LOGO back to the WAITING STATE and tells

LOGO that the worker has been .given all his instructions.

Once the procedure is defined it is stored in the working memory until

you run GOODBYE which empties the working memory.

EXERCISE 1: Define the procedure SPIKE.

You may name it something else 1f you wish.

KZ LEF"HO
3 FoRWARD 8
& L‘E’:"Tl' o
9 Forwne) €0

'
1
E
L
1
1
:
1
=
a
1|
1
||
g
|
|

19

B. Running your own procedure

In the button box you pressed a special button to run the one

procedure you could define.
In LOGO we run procedures by typing their names without the quote sign.

LOGO assumes that names without quote signs are procedures to be
executed. Running your procedure is like telling the worker to
actually carry out the imstructions you have already told him.
For example: "Boil an egg, please!".

To run the procedure SPIKE we just type its name WITHOUT THE QUOTE
SIGN.

EXERCISE 2: Run the procedure SPIKE
W: SPIKE"
W:

Run the procedure a few more times.

SPIKE' S job is to shpérﬁihe-the execution of his five commands in the
right order. Each one of his commands contains the name of one of
LOGO S procedures, or workers. SPIKE will have to supervise these

other workers. Executing a procedure is a PROCESS which takes time.

‘To help explain how SPIKE supervises his workers we will draw some
SNAPSHOTS from a MOVIE of him doing his job.

When we run SPIKE by typing
W: SPIKE

LOGO looks up the name SPIKE in its
working memory and calls the worker
SPIKE.

SNAPSHOT 1

o o e s e S s s s mm— p— | m—

SPIKE reads his first command and
calls up the worker FORWARD from
working memory. SPIKE hands over
to FORWARD and leaves a marker‘on
the line he has reached to remember

how far he has got.

| SNAPSHOT 2

= e ome s s omms mem wmms wmmms s m— — —

FORWARD needs one input and reads
it from the line in SPIKE which
called him. FORWARD does his work
and then tells SPIKE when he has
finished.

SHAPSHOT 3

SPIKE looks at his marker and moves
to his next command which involves

calling up LEFT.

SNAPSHOT 4

—_ = — — e TR —

Sometime later, when SPIKE has
executed all his five commands,
having called up five other workers,
SPIKE tells LOGO that he has

finished.

SNAPSHOT 5

LOGO types the prompt W: It is
waiting for a new command. The
EFFECT of SPIKE was to draw a spike.

SNAPSHOT 6

T 7

v
C. Seeing your own procedures' typed out by LOGO

There is a procedure you can run to have LOGO type out the whole of

one of your own procedures. . This procedure needs one input, the LOGO

word used to make your procédure name. The name of this procedure

18-

SHOW

EXERCISE 3: SHOW the procedure SPIKE
W: SHOW "SPIKE

EXERCISE 4: Try typing

W: SHOW SPIKE

When you typed this LOGO tried to draw a spike and
you got a funny message. This was because SPIKE did
not have a quote sign ip front of it. So LOGO tried
to execute it.

)

You now know enough about LOGO to make a whole variety of procedures.

Here are some ideasi—

EXERCISE 5: You could draw procedures for a diamond,

a hat, or any other shape.
You could try this procedure out on

your friends.

W: DEFINE "SURPRISE
D: 1 PRINT [THE PERSON SITTING AT THIS TELETYPE]
D: 2 PRINT "IS

D: 3 PRINT "VERY
D: 4 PRINT "VERY
D: 5 PRINT "VERY
D: 6 PRINT "P
D: 7 PRINT "A
D: 8 PRINT °T
D: 9 PRINT "I

D: 10 PRINT "E
D: 11 PRINT "N
D: 12 PRINT T
D: END

In note 6 we will tell you what to do when the EFFECT of running your

procedure is not what you intended:

A 2 & & & S B OB O B S B E O & A Em sm S

SUMMARY

LOGO can be in one of three states:= WAITING, EXECUTING or DEFINING.

DEFINE

END

BTG
STATE

DEFIWNIN G-
STATE

D:

The PROMPT tells you in which state LOGO is.

The new procedures are:

NAME OF PROCEDURE

DEFINE

END

SHOW

INPUT

LOGO word to be a

procedure name

no input

LOGO word which is

a procedure name

EFFECT

puts LOGO 1in the

defining state.

puts LOGD in the
WAITING STATE.

types out procedure.

24

5. TIDY LOGO
———

LOGO in the DEFINING STATE is very TIDY. It stores the commands of

your procedures in the order of their line numbers even if you type

the commands 'in the wrong order!

The line numbers do not even have to count up in ones. You could
have 3,2.7,103,54 or 10,20,30,40 as line numbers. LOGO always puts
the commands in the order of size of the line numbers, with smallest

first.

EXERCISE 1: Try defining this procedure FUNNY
in this wrong order.
W: DEFINE "FUNNY

D: 50 FORWARD 120
D: 10 FORWARD 120
D: 33 FORWARD 120
D: 70 FORWARD 120
D: 40 LEFT 135

D: 60 LEFT 45

D: 20 LEFT 45

D: END

What shape would it draw ?

RUN the procedure to see if you were right.

SHOW the procedure to see that LOGO has tidied it.

While you are defining a procedure, and LOGO is still in the DEFINING
STATE you may notice that you have typed in a line wrongly. Just
type the line again with the same line number. Tidy LOGO will not
let a procedure have two lines with the same number. So the old line

will be rubbed out and replaced with the new version.

25

EXERCISE 2: Why do you think LOGO does not allow

two lines 1n a procedure with the same
numbexr?

How will LOGO tidy the following
procedure AWFUL ?

Check your answer by defining it

as 1t 1s below.

W: DEFINE AWFUL
D: 5 FORWARD 80
D: 5 FORWARD 180
D: 10 LEFT 90
D: 15 FORWARD 280
D: 20 LEFT 90
D: 5 FORWARD 280
D3 45

D: 12 FORWARD 280

D: END

Now SHOW procedure AWFUL.

In future we will usually define procedures with the line numbers
counting in tens, 10,20,30 etc. This leaves room for other lines
to be INSERTED if we forget them.

SUMMARY

LOGO TIDIES your procedures by putting the lines in order.

el

R, WY

26

6. CORRECTING MISTAKES IN YOUR PROCEDURES

There are two kinds of mistake or BUGS which may make you wish to CHANGE

one of your procedures:

(A) the procedure does not have the EFFECT you wanted
(PROBLEM BUG).

(B) there is a command in the procedure which LOGO cannot execute
(GRAMMAR BUG)

In this note we will show you how to deal with grammar bugs. In a later

note we will deal with problem bugs.

EXERCISE 1: Define this procedure with its mistake,
W: DEFINE "GROTTY
D: 10 FORWARD 100
D: 20 DAFT 90
D: 30 FORWARD 100
D: END
RUN the procedure.

The MESSAGE tells you:-

which command cannot be executed
why the command cannot be executed
which procedure contained the command 4

which line of the procedure contained the command
To correct the bug in this procedure we need to REPLACE line 20.

EXERCISE 2: Try typing a replacement for line 20, e.g.
W: 20 LEFT 90

LOGO did not know what to do because it did not know which procedure you

wanted to change. There are usually a lot of procedures all with line
20 s!

There is a procedure named
CHANGE

which needs one input. This input is the quoted name of the procedure
you wish to change. When CHANGE is executed LOGO is put in the
DEFINING STATE. The prompt changes to

D:

27

Once LOGO is in the defining state we can retype any line we want to
change. Tidy LOGO throws away the old version of the line and stores

the new one.

.EXERCISE 3: CHANGE the procedure GROTTY
W: CHANGE "GROTTY
D: 20 LEFT 90
D: END

Lines not mentioned are not changed.
Type SHOW “GROTTY to see how line 20 has

been replaced.

In the same way new lines can be INSERTED if need. All we have to do

is run CHANGE and type in lines with the right new numbers.

EXERCISE 4: Insert new lines into GROTTY so that

it draws an open box

Sometimes it is necessary to DELETE lines from a procedure. Again you
just run CHANGE and then run the procedure DELETE. This procedure needs
one input which is the line number of the line you wish to delete. The

procedure DELETE can only be run after LOGO is in the defining state.

EXERCISE 5: Delete lines 10, 20 of GROTTY so that
its effect is now to draw an L shape
W: CHANGE "GROTTY
D: DELETE 10
D: DELETE 20
D: END
Run and SHOW the latest version of GROTTY.

Tidy LOGO will not allow you to store away two procedures with the same

name.

EXERCISE 6: Try to DEFINE GROTTY again
W: DEFINE "GROTTY

28

SUMMARY

You can change one of your procedures by running CHANGE and making the

appropriate correction. Lines may be REPLACED, INSERTED or DELETED.

The new procedures are

NAME OF PROCEDURE INPUT EFFECT
CHANGE Quoted name of Sets LOGO in
procedure to be DEFINING STATE
changed

DELETE line number line is deleted.

29

Zia TWO MEMORIES
e

ONQ’ OFE CALUM'S SCOTT'S
X HANS' DUGALD'S
SHAUN'TS KENNETH'S
FIRST USER - 5
SE COND USER DAVID'S PHILIP'S |
] [T
GREGOR'S | GRAEME'S
THIRD USER JASON'S ROBIN'S
FOURTH USER
WORKING MEMORY PERMANENT MEMORY

Any procedures you define are stored in your part of the WORKING MEMORY
until you finish your LOGO SESSION by running GOODBYE. If you wish to

be able to run one of your procedures at another session and do not

want to have to define it again you can command LOGO to REMEMBER the
procedure. LOGO will REMEMBER it by first making a COPY of the procedure.
Then LOGO will transfer the COPY to your part of a special memory called
the PERMANENT MEMORY.

Procedures in the permanent memory are safe even if LOGO is switched

off or breaks down.

The procedure for remembering is named
REMEMBER

This procedure needs one input. This input should either be the quoted
name of one procedure to be remembered or a single LIST of procedure names,

for example

"SPIKE or [SPIKE SQUARE TRIANGLE]

LOGO never looks inside a LIST for procedures to EXECUTE.

EXERCISE 1: Command LOGO to REMEMBER the procedures you
have defined in WORKING MEMORY today. If
yvou have not defined a procedure vet, define
one.

W: REMEMBER "SPIKE
SPIKE REMEMBERED

The permanent memory has a magnetic disc. This works in much the same

way as a magnetic tape cassette in a tape-recorder.

30

It is usually a good idea to command LOGO to REMEMBER your procedures

once you have defined them since they will be safe should LOGO break down.

LOGO only makes a COPY of a procedure when it remembers it, like a photo—
graph. If you CHANGE the original procedure in WORKING MEMORY the 'copy,
or photograph' in PERMANENT MEMORY will not be affected. Photogr@pha of

yourself as a baby do not chaﬁge as you get older!

EXERCISE 2: Make sure that you have commanded LOGO to
REMEMBER all the procedures you wish to keep.
Then run GOODBYE
Then start a new session by typing ELOGO
Try to run any of the procedures that used

to be in working memory.

When you start a session the working memory is empty. Before you can
run one of your remembered procedures you will have to command Eggg'to‘
RECALL the procedure from the permanent memory. The name of the
procedure which does this is

RECALL

This procedure needs one input, either a single procedure name or a list
or names, just like REMEMBER. |

EXERCISE 3: Command LOGO to RECALL all of your procedures

from permanent memory.

When LOGO RECALLS a procedure from permanent memory it just makes a COPY
of the procedure and transfers the copy to working memory. This means
that whatever you do to the copy in working memory you will always have

the original version safe in permanent memory.

If you ever give LOGO a command which would make it put a copy of a

procedure with a certain name into a memory where there is already a

31

procedure with the same name then the procedure put in last is the one

kept.

This is just like TIDY LOGO in the defining‘state. If you define a
procedure with two lines with the same line number then the line typed

last is the one kept.

In the same way TIDY LOGO does not let you DEFINE two procedures with

the same name.

EXERCISE 4: Define a procedure named TWIN
W: DEFINE "TWIN
D: 10 FORWARD 100
D: END
TWIN DEFINED
Then try to define TWIN again.

If you want to erase a procedure from working memory so that LOGO no

longer knows the definition you must run the procedure
UNDEFINE

which needs one input which should be the name of your procedure to be
undefined.

EXERCISE 5: Erase the definition of TWIN
W: UNDEFINE "TWIN

Now you could define a new procedure TWIN

if you wished.

If you wish to erase a procedure from the permanent memory you command

LOGO to forget it by running the procedure
FORGET
which needs one input, like REMEMBER.
EXERCISE 6: Command LOGO to FORGET a procedure in permanent
memory. Be careful to choose one you do NOT

want to keep!
W: FORGET "SPIKE

— -

32

SUMMARY

SPIKE

CHANGE "FRED :> FRED

{ REMEMBER
SQUARE SQUARE a

SQUARE | roRGET "SPIKE

e[S

DEFINE "JIM ~
i

TRIANGLE RELALL TRIANGLE
. TRIANGLE
UNDEFINE "TWIN ~_
> DRW
YOUR SECTION YOUR SECTION
OF OF
WORKING PERMANENT
MEMORY MEMORY

Only procedures in working memory may be run or changed or undefined.

Only procedures in permanent memory may be kept from day to day.

A procedure in working memory may be copied (photographed) into

permanent memory by running REMEMBER.

A procedure in permanent memory may be copied into working memory by

running the procedure RECALL. = It may be forgotten by running FORGET.

The new procedures are:-

NAME OF PROCEDURE INPUT
REMEMBER procedure name or list of
names
RECALL procedure name or list of
names
UNDEFINE procedure name
FORGET procedure name

EFFECT

- copies from working

to permanent memory

copies from permanent

to working memory

erases definition

from working memory

erases definition from

permanent memory.

33

8. PROBLEM BUG

When you try the following exercise your work will probably be
attacked by a PROBLEM BUG.

EXERCISE 1: Define a procedure named SQUARE which
draws a square.
Define a procedure named TRIANGLE which
draws a triangle.
Command LOGO to draw a house by running
SQUARE and then running TRIANGLE.

You probably found that the roof did not go where you wanted it to.

This is caused by a PROBLEM BUG. We call the process of solving such
problems DEBUGGING.

HINT: Think about the TURTLE STATE, its heading and position,

after it has drawn the square.

SUMMARY

One of the best breeding grounds for problem bugs is when you use

several of your own procedures together.

34
9. _ YOUR OWN "POCRET" CALCULATOR
We have described procedures as WORKERS. Su far all the workers have

been run because they produce some EFFECT. In most cases the effect

has depended on an INPUT. The workers are very well disciplined.

They always listen for their input FROM THE RIGHT.

———

RV ARS 100
f AN i
" .
/ v P“t t\'t-m L L\e “n'a\q £
Nt ‘
.a-'—"'l
"{/’ / d = I
,f’ ,r”'//;T uses hands dec EFFECT
‘f" ——

The workers will only carry out their effect once they have the correct

number of inputs,
EXERCISE 1: Try running the drawing procedure named
ARC

This procedure needs two number inputs.

Find out what the worker uses each input for.

There are other kinds of workers which do not pfoduce an effect.
These workers use their inputs to calculate a RESULT which they speak
to the worker ON THEIR LEFT. We are unable to see this RESULT unless

we arrange for it to be the input of a worker who produces a visible

effect. The name of a procedure which only gives a RESULT is

ADD

This procedure needs two inputs, both of which should be numbers.

35

EXERCISE 2: Try typing
W: ADD 4 S
W: PRINT ADL &4 5

In the second line of the exercise two workers were arranged so that
the RESULT from ADD was the INPUT to PRINT

Remember all the workers look for their inputs to their right.

There are several other procedures which calculate a result. They

each need two number inputs. Their names are

SUBTRACT
MULTIPLY
DIVIDE

EXERCISE 3: Commaqd LOGO to do calculations for you using
these procedures
Command LOGO to add up three numbers. This is
hard as the procedure ADD needs only two inputs!

HINT: Arrange more than one worker ADD in your command.

L
L
L
L
1
|
L
L
L
3
1
1
|
|
I
]
|
|
1R

36

LOGO only knows about integers (whole numbers) so the procedure

DIVIDE calculates its result to NEAREST WHOLE NUMBER below the answer.

EXERCISE 4: Try
' W: PRINT DIVIDE 8 3
W: PRINT DIVIDE 5 12

There is a procedure named
REMAINDER

which needs two inputs. This procedure gives as its result the

remainder obtained when its second input is divided into its first
input.
EXERCISE 5: Try
W: PRINT REMAINDER 22 5

SUMMARY

Some procedures like PRINT or FORWARD produce an EFFECT. Other
procedures like ADD or SUBTRACT calculate and give a RESULT. In

order to see this result it has to be the input of a procedure which
gives an effect.

The names of the new procedures are:-

NAME OF PROCEDURE INPUT RESULT
ADD two numbers adds numbers
SUBTRACT two numbers subtracts second number from first
MULTIPLY two numbers multiplies numbers
DIVIDE two numbers divides second number into first
REMAINDER two numbers remainder when second number

divided into first

ARC two numbers draws arc curving left of radius
given by first input and angle

given by second input.

-

-

— I N Ay S

)
>
-

,'-k

37

10, CALCULATING RESULTS
e

In the last note we showed you how you can give LOGO complicated

commands . These commands are made by arranging the workers sc

that each one looks for its inputs on the right and hands on its

result to the worker on its left.

The worker at the extreme left must produce an effect rathar than

hand on a result. Otherwise we will never know what the workers
did.

You can give LOGO very complicated commands if you wish, But it is

important to understand how LOGO reads your command,

EXERCISE 1: Try to work out what LOGO will print when
you command
W: PRINT ADD 7 SUBTRACT 5 2
W: PRINT SUBTRACT 7 ADD & 2

LOGO reads your command from left to right locking for the correct
number of inputs for each procedure it finds. On the next page we
have drawn a series of SNAPSHOTS from a movie of LOGO executing a

SINGLE COMMAND. Remember a single command is just ome line of

typing.

In the snapshots we have used boxes to represent the workers. The
arrows going into a box from the right are inputs. Any arrow
coming out of a box on its left is its result. A box with no arrow

coming out is a worker who produces an effect, e.g. like PRINT.

e i

SNAPSHOT

38

Wi PRINT ADD 7 SUBTRACT 5 2

1

i

L

PRINT

-

SNAPSHOT

PRINT

e

LOGO trieg to
execute PRINT

but PRINT neeads
an input

SNAPSHOT

*\ ADD

SNAPSHOT

PRINT

+

ADD

LOGO tries to
find the result of
SUM as the inpuit

but ADD needs TtWo
inputs itself

SNAPSHOT

i

et meees s m——

PRINT

& ADD

the first input 18
7 but another 18
needed

SNAPSHOT

FRINT

s ADD . SUBTRACT

BT

the result of
SUBTRACT will be
the 5ecmn}_iﬁgut i

SNAPSHOT

PRINT

+ ADD SUBTRACT

but SUBTRACT
itecelf peeds twd
inputs

SNAPSHOT

SNAPSHOT

PRINT

+ ADD SUBTRACT

5 is the first
input for
SUBTRACT

ORINT

ADD SUBTRACT

and 2 is the
second 1lnpout

SNAPSHOT

e e s e B A

SNAPSHOT

PRINT

ADD

SUBTRACT has
enough inputs.
result is 3

its

PRINT

e 1

ADD hag its two
inputs. Its
result is 10

SHAPSHOT

PRINT has its 1npuE
and has the effect
of printing 10 at
the teletype

e

1

-“..

- 0N = !_ B A A - . e e e m

39

EXERCIESE 2: Draw a similar series of snapshots to show how

the following command is executed:

W: PRINT

SUBTRACT 7 ADD 5‘2

Type in the following commands after working

out what

LOGO will print (can you work it

out faster than LOGO does?)

W: PRINT
Wi PRINT
W: PRINT
W: PRINT
Wi PRINT
W: PRINT
W: PRINT

ADD SUBTRACT 2 5 7

MULTIPLY ADD 2 5 7

ADD 2 MULTIPLY 5 7

MULTIPLY 2 ADD 5 7

ADD MULTIPLY 2 5 7 9

ADD 1 '

ADD ADD ADD ADD 10 100 1000 10000 100000

Remember that there is a difference between procedureq 11ke PRINT whlch L

produce an EFFECT and those like ADD which give a RE?ULT

B . .

40

EXERCISE 31 Try using a procedure which produces an effect,

g ar 1 =

like FORWARD as if it gave a result
W: PRINT FORWARD 100

The input for FORWARD can be the result

of some other procedure. Try

W: FORWARD ADD 100 200

Using BRACKETS

You can put in ROUND BRACKETS to help you see which inputs belong to

which procedure., Tor example:

W: PRINT ADD (MULTIPLY 2 5) 7
W: PRINT ADD 2 (MULTIPLY 5 73

Inside any matching pair of round brackets, (), you can put a
procedure and its inputs. Any of these inputs could be the result

of some other bracketed procedure with its inputs.

l You can reed LOGO round brackets in the same way as you vread brackets

in mathematics.

- EXERCISE 4: Work out what the effect of the following

command will be and then check your answer.

‘s PRINT ADD (MULTIPLY 3 4) (MULTIPLY 2 CADD 1 5))

SUMMARY

LOGO reads commands from left to right. The command will often be an

‘arrangement of procedures, Each procedure will look for inputs on its

right and give results to the procedure on its left. The procedure
on the extreme left will always be the last to be executed and should

produce an effect rather than give a result.

L |
1
X
1
L
;
L
’
3
1
1|
1
1
]
1
’
]
1

41

11, SUTER-PROCEDURES AND SUB=PROC!

o
L L T T T R T T T R e I L R B e T R

Here is 2 single procedure which will have the effect of drawing a house

when rumn.

W: DEFINE TOUSE
Di 10 SQUARE
D: 20 LEFT 60

: D: 30 TRIANGLE
D: END

EXERCISE:1 : Define and run the procedure named HOUSE.

If you goi an error messapge when vou tried to run HOUSE it may have
been because LOCO did not have a copy of the procedure SQUARE in its

working memory.

EXERCISE 24 -Xf you have a procedure SQUARE in permanent memory
RECALL it to working memory.
Otherwise define a suitable equare procedure.
Do tha pame for the procedure TRIANGLE,
Now run HOUSE.

You may have to get rid of some problem bugs before tha HOUSE procedure

has the effect you want.,

Such a procedure HOUSE which has your own procedures inzide it is called
a SUPER-PROCEDURE,

~ The procedures inside are called SUB-PROCEDURES.

The worker HOUSE supervises your owm workers, SQUARE and TRIANGLE, as well
as the LOGO procedure LEFT. This is done in just the same way as the

procedure SPIKE supervised his workers in note 4.

On the next page are drawn some snapshots from a movie of the procadure

HOUSE being executed,

- e p— — — —

42

70 SQUARE
20 LEFT 60

/
30 TRIANGLE

SNAPSHOT 1

e b G m e e S S e e e S See e R e s B RS RS e e

@SQUARE] 1 FORWARD (100
/
20 LEFT 60 2 RIGH119
]
~~ 130 EgIANGLE FoﬁyAgP)1oo

b RIGHfrﬁo

> FORNAR% 100
6 RIGHT &0

7 FORHARS 100
8 RIGHT 60
SNAPSHOT 2

e e

SQUARE FORWARD| 100
]
20 LEFT 60 2 RIGHT 90
30 TRIANGLE > FRRYARD} 100
(14 REGHT{90

5 FORWARD 100
6 RIGHT‘?O
FORWARD 100
8 RIGHT 90

SNAPSHOT 3

We run procedure HOUSE

W: HOUSE

— mn e e S e S S mmm wm R S S S ey e

HOUSE calls on worker
SQUARE. HOUSE leaves

a marker on line 10

e s e R e Sem Emm mew Em mem eSS S Emm o e e

SQUARE calls on
FORWARD providing
him with his input
of 100. SQUARE
leaves a marker on

his‘line 1;

43
SAQUARE next calls

on RIGHT giving him

G0 as hig inmput

qgﬂ SQUARE i—F@RHA&Q}%O@-

70 LEFT/ &0 RIGHT 90

30 TRIANGLE 3 FORWARD| 100
: b RIGHT, 40

5 FORWARD 100

6 RIGHT 90

7 FORWARD 100

8 RIGHT 90

SNAPSHOT 4

— e Em e S e B B B Eme St G e s B S S S B Smes e Sem G S s s R e S S s S R Geme mmm e e e T e e e e e S

m eventually SQUARE

finishes all his

work, He reports:

g Hee Lo g J
W._Few@_%o tO HDU\JC tT:-iL 1‘.&

AR EHE-04 has finighed.
s—mmvmpﬂaeg
%~ﬂ$%h%~ﬂ@- oali
5_EORWARD 100

6-RIGHTI00. |

? FQR‘I‘PB 19@

0 LEFT) 60
30 TRIANGLE

SNAPSHOT 5

— e e S e me e e s e e B Een S e G s GBS S s M mEE S s e Mem e Smn e s SEm mms Ema R e e B S S Gt Bl

HDURE HOUSE next calls
LEFT providing hinm
with his input of 60
LEFT 60 *
30 TRIANGLE

e

SNAPSHOT 6

t

b4
\II:_:J(__L{HJ A :SE\EL l-!f)US.E next calls on
| 0] §*~ J TRIANGLE. HOUSE'S
. (% {._ (i\ marker is now on line
@wmn;} 1 FORWARD, 100 30
20-LEF1-6D- = RIGHT e
TBIAMGLE | i ;?Eh#R32300
L] 5 FORWARD 100
6 RIGHT|120

T—

SNAPSHOT 7
e —
ST SR 100
v Y, P TRIANGLE calls on
FORWARD giving him
1O-SQULRE- (DrorwarD) 100 the input 100
! L i :
I_E_e'—bEFﬁ'-—éQ- 2 RIGHT 120 TRIANGLE marks line l.
GO) TRIANGLE 3 FORWARDJ 100 _
- %l 4 RIGHLA20 4y
5 FORWARD 10 (
6 RIGHT |120
———
SNAPSHOT 8
(HOUSE:
@ o . Eventually TRIANGLE

finishes all his work.
He reports to HOUSE who
thus also finishes.

The drawing of the house

is now complete,

SNAPSHOT 9

45

EXERCISE 3: Try to define a procedure named TOWER which uses

SQUARE and TRIANGLE as sub-procedures,

5

/\

Can you define a procedure STREET which uses HOUSE

as a sub—-procedure?

/\

\/

Can you define a procedure TOWN which uses STREET

as a sub-procedure?

£

A\

/

JAVAVAN

\

SUMMARY

A plastic LEGO set has a number of different building blocks., These

can be assembled into a whole variety of different models.

In LOGO your sub-procedures can be assembled into a whole variety of

different super-procedures,

N O e e e) e e e e B S SN SN S e e S

\

. N

12. BREAKING DOWN PROBLEMS

-
s

L/
‘ /7

This picture, designed by a LOGO student could be drawn in one of three

ways:

a)

b)

)

By giving single drawing commands one after the other (about 100,
count them), This has disadvantages: it is easy to lose track,
if you make a mistake you have to start from the beginning again.
If you want to draw the picture again you have to repeat the whole

sequence of commands.

By making one procedure of all the long sequence of commands.
This has many of the disadvantages of method a), plus the fact that

it is hard to debug.

By breaking down the problem of drawing the whole picture into the
smaller sub-problems of drawing parts of the picture. In this
flower picture one sub-problem is that of drawing the diamond shape

which appears nine times.

This last method has several advantages: the big problem of drawing

the flower is broken down into smaller problems which will usually be

easier to solve.

’1

==

S el e om0 N 029G 029Oal 0 Sl SN S S S A S S O D a0 S SN
.

= 1

47

The different pieces of the flower can be debugged separately and

corrected before putting them together to draw the whole flower.
These different pieces can be used to make other pictures.

The sub-procedures you write will be easier to debug because you will

be able to match them to the different parts of the whole picture.

We are going to show you how to draw the flower by BREAKING DOWN THE
LARGE PROBLEM INTO SMALLER SUB=PROBLEMS,

EXERCISE 1: Define and debug a procedure to draw a diamond.
Hint: you may find it useful to arrange for your
procedure DIAMOND to leave the TURTLE in the same state

as it found it!

The flower bloom can be made by writing a procedure which draws a petal
and turns a bit, keeping going until it has drawn all the petals, as
you might draw such a bloom using a stencil cut out in the shape of a
diamond.

Using your procedure DIAMOND as a sub-procedure this is how one might

define a procedure to draw the bloom:

W: DEFINE"BLOOM

D: 10 DIAMOND

D: 20 RIGHT 45
D: 30 DIAMOND

D: 40 RIGHT 45
D: 50 DIAMOND

D: 60 RIGHT 45
D: 70 DIAMOND

D: 80 RIGHT 45
D: 90 DIAMOND

D: 100 RIGHT 45
D: 110 DIAMOND

D: 120 RIGHT 45
D: 130 DIAMOND

D: 140 RIGHT 45
D: 150 DIAMOND

D: 160 RIGHT 45
D: END

48

This is long-winded! It can be shortened because there is a repeated

pattern to the commands:- diamond,right,diamond,right etc.
EXERCISE 2: Define the procedure which draws a diamond and turns right,

W: DEFINE BLOOMBIT
D: 10 DIAMOND
D: 20 RIGHT 45
D: END

We could then change BLOOM so that it uses the subprocedure BLOOMBIT.

W: DEFINE"BLOOM

D: 10 BLOOMBIT
D: 20 BLOOMBIT
D: 30 BLOOMBIT
D: 40 BLOOMBIT
D: 50 BLOOMBIT
D: 60 BLOOMBIT
D: 70 BLOOMBIT
D: 80 BLOOMBIT
D: END

This new version of BLOOM is shorter than before. But because we have
named and defined a sub-procedure BLOOMBIT which we wish to have repeated
eight times by BLOOM we can use a special LOGO procedure. The name of
this procedure is

REPEAT

It needs two inputs., The first input must be a number. The second

input must be a procedure to be repeated that number of times. A procedure
like REPEAT 'which controls how a command is executed is called a

CONTROL PROCEDURE.

EXERCISE 3: Try defining BLOOM as follows:-
W: DEFINE"'BLOOM
D:1 REPEAT 8 BLOOMBIT
D: END

run BLOOM to see how it draws the bloom.

-
|

49

The following diagram illustrates how the bloom is put together. The
boxes represent your different procedures. Boxes marked LOGO"S OWN |
procedures contain only procedures which LOGO knows already. The arrows

out of a box point to the sub-procedures it uses, 1

' l BLOOM
| LOGD'S OWN I BLOOMBIT
v
DIAMOND | ’ LOGO'S OWN '
|
+ |
l LOGO'S OWN

EXERCISE 4: Try defining a procedure for the stem of the flower,
For example:
W: DEFINE STEM
D: 10 FORWARD 160

D: 20 LEAF.
D: 30 FORWARD 40
D: END

We have referred to a procedure LEAF which we have not yet defined. J
LOGO accepts this; but if you try to RUN the procedure STEM before
LEAF is defined LOGO will not know how to execute LEAF and give you a

message.

EXERCISE 5: Try to run STEM.
Now define a suitable LEAF procedure and runm STEM

again.

- S S e M B e B B B B B D B G S A A am o

EXERCISE 6:

EXERCISE 7:

EXERCISE 8:

EXERCISE 9:

EXERCISE 10:

When you have debugged your STEM and LEAF procedures
agsemble these with the sub-procedure BLOOM into a
super-procedure FLOWER whose job it will be to draw

the whole flower.,
Try changing FLOWER to put more leaves on the stem.

Try writing a procedure GARDEN which draws a row of

flowers.

Draw a diagram showing all the sub-procedures of
FLOWER like our diagram for BLOOM.

REMEMBER all your new procedures. (FLOWER cannot
work without its sub—procedures, These must be

remembered as well).

SUMMARY.

Problems can be dealt with by breaking them down into sub-problems and

writing procedures to solve each of these sub-problems.

The new procedure is:

NAME OF PROCEDURE INPUTS EFFECT

REPEAT

nunber,procedure a control procedure to
repeat the execution of
its second input a number

of times

51

13. PROCEDURES WITH INPUTS (Part 1)

SO

The mountain range is made out of triangles, The triangles are all

different sizes. An easy way to try to draw this would be to use the
same triangle procedure to draw all the triangles. This procedure
would have to be told how big a triangle it was to draw in each case.
It would be a procedure with an input, like FORWARD, The input would
tell it how large to draw the triangle.

This is what it could look like:-

W: DEFINE "PEAK "SIZE

D: 10 FORWARD VALUE "SIZE
D: 20 LEFT 120

D: 30 FORWARD VALUE “SIZE
D: 40 LEFT 120

D: 50 FORWARD VALUE "SIZE
D: 60 LEFT 120

D: END

The title line of the procedure contains the name of the procedure and
the name of one input. Procedure "PEAK will now expect a value for its
input, named "SIZE, when it is run. We can choose any LOGO word to be the

name of the input,

/i)/E AK Inpu'c:

10 FORWARD VALUE "SIZE
20 LEFT 120
30 FORWARD VALUE "SIZE
40 LEFT 120
50 FORWARD VALUE "SIZE
60 LEFT 120

EXERCISE 1: Type in the definition of PEAK
EXERCISE 2: Run the procedure PEAK with different inputs e.g.

W: PEAK 10
W: PEAK 180

EXERCISE 3: Run the procedure with no input
W: PEAK

EXERCISE 4: Run the procedure with two inputs
W: PEAK 10 180

Run the procedure with a word input, rather than a number
W: PEAK "BIG

y

|
:
:
n
1
)

o o o o 9O o QO

Your procedures can have more than one input. Here is a procedure
which will write thank-you letters. The procedure needs three inputs,
the person you are thanking, the present you got and what you used the

present for.

W: DEFINE "THANK "PERSON "PRESENT “USE
D:
: 20 PRINT VALUE “PERSON

: 30 PRINT [THANK YOU FOR THE]
: 40 PRINT VALUE “PRESENT

: 50 PRINT "PRESENT

: 60 PRINT [WHICH I USE FORI]

: 70 PRINT VALUE “USE

: END

10 PRINT "DEAR

EXERCISE 5: Type in this definition and then run the procedure with

three inputs e.g.

THANK “GRANNY “WATCH [TELLING THE TIMEI]

THANK [UNCLE JIM AND AUNTIE MARY] "COMPUTER [SITTING ONI

A list is one input.

PRINT, “DEAR
20 PRINT VALUE "PERSON
30 PRINT [THANK YOU FORI
40 PRINT VALUE "PRESENT
50 PRINT "PRESENT
60 PRINT [WHICH I USE FHORI
70 PRINT VALUE "USE

54

Both PEAK and THANK use a new LOGO procedure named

VALUE

VALUE needs one input. To show how VALUE works we look at lines
40 and 50 of procedure THANK

40 PRINT VALUE "PRESENT
50 PRINT "PRESENT

When line 50 is executed the word "PRESENT is printed. When line 40
is executed, procedure VALUE assumes the word "PRESENT is a NAME.
In this case "PRESENT is the NAME of the second input for THANK.

So VALUE takes the second number word or list given to THANK when it

is run. VALUE gives this number, word or list to PRINT,
EXERCISE 6: Try running THANK with a variety of inputs e.g.

W: THANK “DEAR “LOVELY [TARGET PRACTICE]
W: THANK [TELLING THE TIME] "GRANNY "WATCH
W: THANK “22ZZ 842 75

EXERCISE 7: Define a procedure INVITE which prints out party

invitations

EXERCISE 8: Define a procedure RECTANGLE which needs two inputs,
the length and breadth of the rectangle. The procedure

should draw a rectangle.

EXERCISE 9: CHANGE your RECTANGLE procedure so that in addition to
drawing a rectangle it also prints out the area and

perimeter of the rectangle e.g.

W: RECTANGLE & 3
AREA

24

PERIMETER.. !

22

W:

SUMMARY

Your own procedures can have inputs just like LOGO'S procedures. Each
input is named with a LOGO word. VALUE is used to get the number, word or

list named by the input. The new procedure is:

Name of procedure input result
VALUE quoted LOGO word fetches value named by

word

D G e G G e B G G e R B B B N AR AW S

35
14, PROCEDURES WITH INPUTS (Part 2Z)
_— e e T

In the last note you defined a procedure PEAK which needed ome input.

Such a procedure can be used as a sub-procedure like any other.

is a super-procedure which uses PEAK as a sub-procedure,

W: DEFINE "MOUNTAINS
D: 10 PEAK 150
D: 20 PEAK 70
D: 30 PEAK 20
D: 40 PEAK 95
D: END

EXERCISE 1: Define a procedure RANGE which draws a
mountain range using PEAK as a sub-

procedure

EXERCISE 2: Define a super-procedure CONIFER which

draws

(Hint: a useful sub-procedure would be ARROW which

draws /™ different sizes)

SUMMARY

Your procedures with inputs can be sub-procedures.

Here

=)

56

15 CHANGING PROCEDURES (Part 2)
e ——

There are various reasons for changing the title line of a procedure,
E'gd

1. To change its name.

2. To change the number of inputs the procedure has,

EXERCISE 1: Define and run a procedure which prints
out a message, e.g.
W: DEFINE "HAPPY
D: 10 PRINT [GOOD MORNING]J
D: 20 PRINT [WHAT A LOVELY DAY]
D: END

This procedure can be changed so that it greets a particular person
by name. First we must put LOGO back in the DEFINING STATE and make
the changes we want, for example

EXERCISE 2: Give your procedure an INPUT which it can use.
For HAPPY we would type
W: CHANGE “HAPPY
D: RETITLE "HAPPY "WHO
D: 15 PRINT VALUE "WHO
D: END

EXERCISE 3: SHOW your changed procedure.

EXERCISE 4: Run your changed procedure.

57

We have used a new procedure named

RETITLE

This procedure can only be run when LOGO is in the defining state.
RETITLE does the following with its INPUTS which must be LOGO words.
The first word is used to make a new name for the procedure.

Any other words become the names of the inputs for this changed

procedure.

EXERCISE 5: Give your procedure a different name and
make it print a different message.
For example, we could change HAPPY to
MISERY and it could run as follows:—
W: MISERY "FRED
GOOD” MORNING

FRED ~
ITS RAINY 'AND FOGGY AGAIN TODAY
W:
SUMMARY
NAME OF PROCEDURE INPUTS EFFECT
RETITLE New procedure name Changes TITLE LINE

and new input names

.‘

-

. e S e S S A

58

16. TWO MEMORIES (Part 2)
= == === == =

There is a procedure named
DEFINED

to help you keep track of what is in your working memory. This

procedure needs no input,

EXERCISE 1: Try typing
W: PRINT DEFINED

The result of DEFINED is a list of the names of all the procedures in

your section of working memory.
There is a similar procedure named
REMEMBERED

whose result is a list of all the names of your procedures in permanent

memory.

EXERCISE 2: Try typing
W: PRINT REMEMBERED

REMEMBERED can also be used if you want to copy all your procedures

from permanent memory to working memory in one go.

EXERCISE 3: Try typing
W: RECALL REMEMBERED

Notice that RECALL is able to take either a list of procedure names as

an input or a single procedure name.

EXERCISE 4: Try typing
W: PRINT DEFINED

The names of all the procedures now in working memory are printed.

59

DEFINED can also be used at the end of a LOGO session if you want to

copy all the procedures in working memory to permanent memory.

EXERCISE 5: Try typing
W: REMEMBER DEFINED

Notice that REMEMBER like RECALL can also have a list as input.

You may want to copy procedures from somebody else's permanent memory.

You have to run a procedure named
BORROW

BORROW needs one input. This must be a list containing the name of the

person whose procedure you want to copy.

EXERCISE 6: Try typing
W: BORROW [TIM OSHEA]

Now you have been connected to TIM OSHEA's permanent memory.
EXERCISE 7: Try typing
W: RECALL REMEMBERED

and run any of the procedures you get

copies of.

EXERCISE 8: Try and REMEMBER one of the procedures in your

working memory.

You will get a message telling you that you cannot do this. This is
because you are not allowed to remember procedures in other people's

permanent memories!

60

To get connected back to your own permanent memory (and disconnected

from TIM OSHEA's) run the procedure

RETURN
which needs no inputs.

EXERCISE 9: Try typing
W: RETURN

EXERCISE 10: Use BORROW and RETURN to put a copy of somebody-

else's procedure in your permanent memory.

SUMMARY
NAME OF PROCEDURE INPUT RESULT EFFECT

DEFINED none list of procedure names none

REMEMBERED none list of procedure names none

REMEMBER word or list none copies procedures
into permanent
memory.

RECALL word or list none copies procedures
into working
memory.

BORROW list none connects you to
another permament
memory.

RETURN none none connects you back

to your own
permanent memory.

ay O e e e e e - e e e A - e D e

61

17. PROCEDURES WITH INPUTS (Part 3)

In notes 13 and 14 we showed you how to define a procedure which takes

variable inputs.

EXERCISE 1:

It should be

DEFINE
10
20
30
40
50
60
END

EXERCISE 2:

Such procedures could be used as sub-procedures.

RECALL your procedure PEAK, which draws
variable sized triangles.

Show the procedure PEAK

"PEAK "SIZE

FORWARD VALUE "SIZE
LEFT 120
FORWARD VALUE “"SIZE
LEFT 120
FORWARD VALUE "SIZE
LEFT 120

hat

Define a procedure HAT which uses PEAK as a sub-

procedure, It should draw a hat.

One solution might be

W: DEFINE "HAT
D: 10 FORWARD 20
D: 20 PEAK 100
D: 30 FORWARD 100
D: 40 FORWARD 20
D: END

62
However this HAT only fits one size of head. The procedure HAT can
itself have a variable input. The worker HAT will have to tell the

worker PEAK about the value of its input so that PEAK draws the right

size of triangle.

EXERCISE 3: Define this procedure which can draw hats of any
size. We have based it on our original procedure
HAT.

W: DEFINE "WITCH "HEAD
D: 10 FORWARD 20
D: 20 PEAK VALUE "HEAD
D: 30 FORWARD VALUE "HEAD
D: 40 FORWARD 20
D: END

Run WITCH with different value inputs.

The following snapshots are from a movie of the worker WITCH supervising

its other workers.

We run WITCH

W: WITCH 75

The worker WITCH 1is
10 FORWARD 20

I .3 called
20 PEAK %ALUE "HEAD
P
20 FORWARD VALUE "HEAD
40<;DRW RD 20
SNAPSHOT 1
~75 but WITCH needs one input
which it gets from the line
which called it. As far
10 FORVARD 20 as WITCH is COﬂCEand the
20 pEAK' VALUE "HEAD name of its input is "HEAD
] i :
30 FORWARD VALUE "HEAD BHS QER YHIUA OLE 99

40 FORWARD 20

SNAPSHOT 2

o

63

10) FORWARD 20
b
20 PEAK VALUE "HEAD

30 IE)PERRD VALUIiSﬂ_EA

40 FORWARD 20

SNAPSHOT 3

10 FORNA%D VALUE "SIZE
20 LEFT 120

30 FDEy RD VALUE
40 "LEFT| 120

50 FORWARD VALUE "SIZE
60 LEFT|[120

PEAK VALUE "HEAD

J ;
30 I?Z{%E__&Rb VALUE dl_EA
40 FORWARD 20

"SIZE

SNAPSHOT 4

10 FORWARD VALUE SIZ
20 LEﬁh 20
30 FQBUARD VALUE “s12Z
40 LeeT| 120
50 FORWARD VALUE "SIZE
60 LEFT} 120

; .
EA; "
20) P Al {ﬁLUE HEAD

30 Eg&HﬂRDVALUECﬂEAU
40 FORWARD 20

R

SNAPSHOT 5

= B — B~ — B — |

- -

WITCH calls up FORWARD who
gets his input 20 from the
line in WITCH which called

him

WITCH then reaches his line
20 . He calls up PEAK.

But PEAK needs one input.

WITCH then calls up
VALUE who get his
input "HEAD. VA_UE
finds out from WITCH
that "HEAD is the name
of the value 75,

VALUE gives 75 as his
result to PEAK.

L

64 .
FEAK now has his input

namec "SIZE which

the value 75, He aﬁ‘
ready to execute his
first line.

FDRVJARD VALUE 'SIZE

20 LEF
RWARI!VALUE H D_‘___,..f 30 q RD VALUE SIZE
oRWARD 20 40 ijuf120
50 FORWARD VALUE "SIZE
60 LEFT|120

SNAPSHOT €

S :] PEAK calls on FORWARD.
But FORWARD needs an
input. So PEAK calls

FDRWAE ALUE "SIZE up VALUE.
0 LEFT 1

OFOE;ARDVALUE Ef;e
D 20 0 LEFT 120

0 FORWARD VALUE "SIZE

l
PEAK|VALUE "HEAD
30 FORWARD VALUE "HEA
ORY c VAL
40 FORWA

é{)pEAﬁJAEPE HEAD
50 FORWARD VALUE “HEAD}—"30 FORWARD VALUE g;}E’f
|
40 FORWARD 26 o Lerr 130
50FORHAR4VALUE'SIZE
60 LEFT 12D
SNAPSHOT 8

S50 VALUE finds out from PFAK that "SIZE is the name of the value 75. This 1s given

as the input to FORWARD. The rest of the procedures are executed in turn until WITCH
finishes,

65

EXERCISE 4: RECALL your HOUSE procedure.
Change HOUSE and its subprocedures so that

you can draw any size of HOUSE

e.g.
W: HOUSE 10 e
W: HOUSE 50

SUMMARY

A super-procedure which expects an input can tell any of its sub-

procedures about the value of that input.

[
—

66

18. POLYGONS

The following procedure can be used to draw pentagons

W: DEFINE "BASIC
D: 10 FORWARD 100
D: 20 LEFT 72
D: END

EXERCISE 1: Define BASIC and run it five times
e.g.
W: BASIC
W: BASIC
W: BASIC
W: BASIC
W: BASIC

or by running the control procedure REPEAT

W: REPEAT 5 BASIC

Running BASIC draws a pentagon because line 20 is a turn of 72 degrees.

If we used a different angle we would get a different polygon.

EXERCISE 2: Change line 20 of BASIC so that it can be used

to draw an octogon.

If we make the angle used in line 20 an input, BASIC would be used to
draw many different polygons.

EXERCISE 3: Change BASIC (using RETITLE) so that
W: SHOW "BASIC
types out

DEFINE "BASIC "TURN
10 FORWARD 100

20 LEFT VALUE "TURN
END

67

EXERCISE 4: Use BASIC to draw a lot of different polygons
e.g.
W: REPEAT 4 BASIC 90
W: REPEAT 24 BASIC 15

We can make a procedure to draw these polygons for us. It will need

two inputs, the angle and the number of sides.

EXERCISE 5: Define the following procedure which has a
very short name.
W: DEFINE "Z "ANGLE "NUMBER
D: 10 REPEAT VALUE "NUMBER BASIC VALUE "ANGLE
D: END

EXERCISE 6: Run Z to draw more polygons

e.g.
W: Z 4 90

W: Z 90 4

The following diagrams show snapshots from the movie of the worker Z

supervising the worker BASIC

We run Z
W: Z 90 4
Z gets its two inputs, Its first input

10 REPEAT VALUE "NUMBER BASIC VALUE "ANGLE named "ANGLE has the value 90, Its
! second input named "NUMBER has the value 4

SNAPSHOT 1

-— — — . e e e

Z starts to execute line 10 and calls

REPEAT which needs two inputs. So Z

calls more workers.

(We have not written out Z's line 10

to save space.)

SNAPSHOT 2

e —— —— —— e e o e — ————

— e e e ——— - e o S i e I

VALUE 1is called. VALUE finds out from Z
that the value of "NUMBER is 4. This 1s

given to the control procedure REPEAT as its

first input. REPEAT knows that he will be

repeating four times, but he needs to know

what to repeat.

[conTROL
__ SNAPSHOT 3____ ______ SN
e, | BaseN
: . z r-)BHS’C The procedure to be repeated is BASIC but
TRNG LE) | <T[ora :
90 | BASIC needs one input. So Z calls another
" NUPHER, —
worker,
1 . 17_5\ g f’lo FORWARD 100
F i
S Y
,,j : e M VALUE “TURN
o -

i s s BNAPSHOT. 4

[e e S e i S S S . 5 i S e S S e e o . e . . S

VALUE finds out from Z that
the value of "ANGLE is 90.
This is given to BASIC.

BASIC takes the input value
90. As far as he is
concerned his input is named
"TURN. |

BASIC can now start work. -
BASIC calls FORWARD who
gets his input 100 from
line 10 in BASIC. FORWARD

draws a line.

BASIC now executes line 20.
He calls up two workers

LEFT and VALUE. VALUE finds
out from BASIC that the value
of "TURN is

LEFT can now rotate the

turtle.

_—

BASIC has been executed

once.

SNAPSHOT 8

The contrel procedure REPEAT repeats the process shown in SNAPSHOTS 6, 7, and 8

three more rimes.

SUMMARY

A procedure can pass the value of its input to a sub-procedure.

- O - S N .

70

19. PROCEDURES WITH RESULTS

Try using a procedure which has an EFFECT as if it produced a RESULT, e.g.
the procedure FORWARD.

EXERCISE 1: Try typing
W: PRINT FORWARD 100

So far all your own procedures have been defined for their EFFECTS, e.g.

on the drawing devices or the teletype.

EXERCISE 2: Try typing
W: PRINT ADD 7 3

The procedure ADD passes its result to PRINT.

If we want to specify exactly what the RESULT of one of our own procedures
1s we use the LOGO procedure named

RESULT

This procedure has one input, When RESULT is executed in one of your

procedures, the value of its input becomes the RESULT of the whole
procedure.

EXERCISE 3: Define the following procedure
W: DEFINE "NEXT “CARROT

D: 10 RESULT ADD 1 VALUE "CARROT
D: END

EXERCISE 4: Run NEXT e.g-
W: PRINT NEXT 7
W: PRINT NEXT NEXT 7

71

This diagram shows how the workers NEXT talk to PRINT.

W: PRINT NEXT NEXT 7

We have not shown the workers RESULT,

ADD and VALUE who were also called.

EXERCISE 5: Define a procedure which doubles its input.

It should work as follows:
W: PRINT DOUBLE 50
100

EXERCISE 6: Define and run the following procedure:

W: DEFINE “SUMANDIFF "X Y
D: 10 RESULT ADD VALUE "X VALUE "y
D: 20 RESULT SUBTRACT VALUE "X VALUE "y
D: 30 PRINT "FINISHED
D: END

Your procedures, like LOGO s
executing

» can only have one result. So LOGO stops
a procedure after executing the first RESULT it finds,

RESULT is a CONTROL PROCEDURE.
executed,

That is why lines 20 and 30 did not get

72

EXERCISE 7: Define a procedure called SQUNUM which has one
input. Its result should be the square of its
input, e.g.
W: PRINT SQUNUM 9
81

EXERCISE 8: Try typing
W: PRINT SQUNUM SQUNUM SQUNUM SQUNUM 2

SUMMARY
Your own procedure can have a RESULT. The new procedure is
NAME OF PROCEDURE INPUT RESULT EFFECT
RESULT word, number the same a control-procedure
or list as its which stops your
input procedure and makes

it give a result

y
:
)
1
1
.
1
1

73

20. RECURSION

A procedure can have a copy of itself as a sub-procedure.

W: DEFINE "LAUGH
D: 10 PRINT "HAHA
D: 20 PRINT "HOHO
D: 30 LAUGH
D: 40 PRINT "HEHE
D: 50 PRINT [PLEASE STOP TICKLING MEJ
D: END

EXERCISE 1: Run this procedure.

To INTERRUPT LOGO executing a procedure, press the RED EMERGENCY STOP
BUTTON. LOGO will type

INT:

Then to put LOGO back in the waiting state type Q@ followed by two

presses on the green command button. LOGO will return to the waiting
state

EXERCISE 2: Interrupt LAUGH and return LOGO to the
waiting state.

Lines 40 and 50 of LAUGH never get executed, Eﬁch procedure LAUGH,

when it reaches line 30 calls for the execution of a sub-procedure

LAUGH. The following snapshots of the execution of LAUGH illustrate
this:—

"Je run LAUGH

W: LAUGH

SNAPSHOT 1.

74

Lgl.ﬁ@r‘“ (PROT "HARA LAUGH calls PRINT
3 &y
:) #
» 1.

10

30 J

W a
CD 5¢ ah

) SNAPSHOT 2

LAUGH calls another PRINT

SNAPSHOT" 3

LAUGH calls another LAUGH

SNAPSHOT 4

The new LAUGH calls PRINT

SNAPSHOT 5

The new LAUGH calls another
PRINT

SNAPSHOT 6

HAHA

HAHA
HOHO

HAHA
HOHO

HAHA
HOHO
HAHA

HAHA
HOHO
HAHA
HOHO

75

The new LAUGH calls yet another
LAUGH

SNAPSHOT 7

*HAHA

SNAPSHOT 8

SNAPSHOT 21

HAHA
HOHO
HAHA
HOHO

HAHA
HOHO
HAHA
HOHO
HAHA

HAHA
HOHO
HAHA
HOHO
HAHA
HOHO

HAHA
HOHO
HAHA
HOHO
HAHA
HOHO

76

Here is another recursive procedure

W: DEFINE "HEXAGON
D:10 FORWARD 100
D:20 LEFT 60
D:30 HEXAGON

‘ D:END
EXERCISE 3: Try out procedure HEXAGON.
EXERCISE 4: Change the turn in line 20 to LEFT 177
and run the procedure again.
|
< We can write recursive procedures with inputs:=

1 W: DEFINE "BORING "ADJECTIVé
D:10 PRINT VALUE "ADJECTIVE -
D:20 PRINT "WEATHER

D:30 PRINT "TODAY _
D:40 BORING VALUE "ADJECTIVE
D:END

|
k

EXERCISE 5: Try this procedure out
e.g.
W: BORING "LOVELY
W: BORING "COLD

The input for BORING is the word "LOVELY or the word "COLD. This is

given as the value of the input to each succeeding BORING sub-procedure.

The sub-procedure in the recursion does not have to have the same value

input as the super-procedure.

EXERCISE 6: Try defining the follquing procedure
W: DEFINE "INSOMNIA "YAWN
D:10 REPEAT VALUE "YAWN PRINT “SHEEP
D:20 PRINT [JUMPED OVER THE FENCE]
D:30 INSOMNIA ADD 1 VALUE “YAWN
D:END #

Run this procedure with a number input

W: INSOMNIA 5

Each INSOMNIA procedure has an input named "YAWN. The first INSOMNIA

has 5 as the value of "YAWN. The sub-procedure INSOMNIA it calls has
6 as the value of its "YAWN.

EXERCISE 7: Define the following procedure which
takes two inputs
W: DEFINE "SWOP "A "B
D:10 PRINT VALUE "A
0:20 SWOP VALUE "B VALUE "A
D:END

Run this procedure with any two inputs.

The following procedure, which needs two numbers as input, prints a whole
series of numbers.

W: DEFINE "SPAGHETTI "NUMA "NUMB
D:10 PRINT VALUE "NUMA

D:20 SPAGHETTI (VALUE "NUMB) (ADD VALUE "NUMA VALUE “NUMB)
D:END

EXERCISE 8: Define SPAGHETTI and try it out with various
numbers. Try to guess what series of numbers
will be printed.

W: SPAGHETTI 0 0
W: SPAGHETTI 0 1
W: SPAGHETTI 1 0
W: SPAGHETTI 1 1
W: SPAGHETTI 100 0
W: SPAGHETTI 0 100

SUMMARY

A procedure can have a copy of itself as a sub-procedure. This is
called RECURSION. We shall use it again. There is a limit to the

number of unfinished sub-procedures which LOGO can keep in its
working memory.

P

_']8-.

21. SPIRALS

We drew polygons in note 18, by repeatedly going forward and turning,
We can use recursion to draw shapes like SPIRALS which are like polygons

except that they progressively change as they draw.

EXERCISE 1: Define the following procedure:

W: DEFINE "SPIRAL "ANGLE “SIDE “STEP
D: 10 FORWARD VALUE "SIDE
D: 20 RIGHT VALUE "ANGLE

D: 30 SPIRAL (VALUE "ANGLE) (ADD VALUE "STEP VALUE 'SIDE) VALUE “STEP
D: END

Run the SPIRAL with different inputs e.g.

W: SPIRAL 90 0 10

W: SPIRAL 90 10 0

W: SPIRAL 60 50 10
W: SPIRAL 60 200 -10

EXERCISE 2: Define a version of SPIRAL in which the side stays the

same but the angle changes each time a new worker SPIRAL
is called.

SUMMARY

Recursion can be used to draw spirals, because each sub-procedure

SPIRAL passes on a changed value of one of the inputs to the next
SPIRAL sub-procedure.

?9

22: TRUE OR FALSE

There are QUESTION PROCEDURES whose names end in Q. These procedures give
either the word "TRUE or the word "FALSE as their result depending on the

value of their input,

EXERCISE 1: Try typing
W: PRINT NUMBERQ 3
W: PRINT NUMBERQ "THREE
W: PRINT LISTQ [THE CAT SAT ON THE MATI
W: PRINT WORDQ "THE
W: PRINT EQUALQ 48 48
W: PRINT EQUALQ "THE [THE]
W: PRINT EQUALQ 3 4

There is a question procedure named
NOT

This takes a word as its input. The word must be "TRUE or "FALSE

EXERCISE 2: Try typing

W: PRINT NOT "TRUE
W: PRINT NOT “FALSE
W: PRINT NOT EQUALG 3 4
W: PRINT NOT WORDQ "THE

EXERCISE 3: Find out what the following QUESTION PROCEDURES do:

LESSQ GREATERQ ZEROQ

It is possible to have an empty list (a pallet without any boxes on it!).

-

EXERCISE 4: Try typing

W: PRINT [1
W: PRINT EMPTYQ []
W: PRINT EMPTYQ [THE CAT SAT ON THE MAT]

i

'l‘
|

- B0 -

It is also possible to have an empty word
EXERCISE 5: Try typing

W: PRINT " .
W: PRINT EMPTYQ ™
W: PRINT EMPTYQ "THE

SUMMARY

The new procedures are:-

Name of procedure

NUMBERQ
LISTQ
WORDQ
EQUALQ
LESSQ

GREATERQG

EMPTYQ
ZEROQ
NOT

s

input

1 number word or 1list

1 L " " LL]
1 n n " "

2 " " " "

2 numbers
2 numbers

1 number word or 1list

1 " n " n

1 word "TRUE or "FALSE

e e e

"TRUE
"TRUE

"TRUE

"TRUE
"TRUE

"TRUE

"TRUE
"TRUE

result

1if
if
if
if
if

if

if
1f

input a number
input a list
input a word
inputs the same

first input less
than second

first input greater
than second

input empty
input @

1 word "FALSE or "TRUE

Y

23. CONTROL PROCEDURES

There are some special LOGO procedures which can control how a
command is executed. REPEAT and RESULT are both CONTROL PROCEDURES.
There is another CONTROL PROCEDURE named

IF

This procedure needs one input which must be either the word "TRUE
or the word "FALSE. This input will usually be the result of
running a QUESTION PROCEDURE. If the input is "TRUE then the
command following a MARKER the English word THEN is executed.

EXERCISE 1: Try
W:IF NUMBERQ 9 THEN PRINT [ITS A NUMBER]

EXERCISE 2: Try
W:IF EQUALQ 3 4 THEN PRINT "“SNAP

There may be another command we want to execute if the input to IF
is the word "FALSE. The MARKER ELSE is used to mark the beginning
of such a command.

When we use IF we may want to type a command that is too long to fit

on one line. In cases like this we must tell LOGO that the command
is not finished when we get to the end of the line. We do this by

pressing the + button, before we press the green command button.
When a command is being continued onto another line, LOGO types the

prompt C: for continue.

EXERCUSE 3: Try typing
W:IF NUMBERQ "CAT THEN PRINT [ITS A NUMBER] +
C:ELSE PRINT [ITS NOT A NUMBER]

EXERCISE 4: Try typing
W:DEFINE "LIAR "A "B
D:10 IF EQUALQ VALUE “A VALUE "B THEN +
C:PRINT [THEY ARE DIFFERENT] ELSE +
C:PRINT [THEY ARE THE SAME]
D:END

82

Try out LIAR with various inputs,

EXERCISE 5: Iry typing
—_nn D
W: DEFINE "DOUBLEQ A "B

D: 10 IF EQUALQ VALUE “A (MULTIPLY VALUE ‘B 2) +
C: THEN RESULT "TRUE ELSE RESULT “FALSE
D: END

Try out thig question procedure

elg' ‘b
W: PRINT DOUBLEQ 10 5 '
W: PRINT DOUBLEQ 19 37 .
W: PRINT DOUBLEQ 5 10 :
EXERCISE 6: Try typing
EXERCISE 6

W: DEFINE "PONTOON "SCORE
D: 10 IF GREATERQ VALUE "SCORE 21 THEN PRINT “BUST

D: 20 IF EQUAL@ VALUE "ScoRE 21 THEN PRINT "“PONTOON !

D: 30 IF GREATERQ VALUE “scoRE 17 THEN PRINT "STIck :

D: 40 PRINT "TWIST |

D: END ,'J
Try this procedure out rl
il 2
W: PONTOON 25 v

W: PONTOON 21
W: PONTOON 18 b

v :
The difficulty with PONTOON is that it does not stop after Printing out
its first word, The control Procedure RESULT ig designed for exactly \ l
this sort of problem, As well as returning its input as rhe result
of the procedure it is in, it also stops any further execution inside |
that procedure.
. : b
EXERCISE 7: Using RESULT define a Procedure NEWPONT
which returns ag its result one of "BUST, f
"PONTOON, "STICK or "TWIST. !
Try it out |
e.g. l :
W: PRINT NEWPONT 18

83

SUMMARY

We have introduced the new CONTROL PROCEDURE

THEN and ELSE.

LF

and 1ts markers

WE have introduced the + button for continuing long commands on

to extra lines.

<THEN
“rRue g

or J
“FLSE

LSE

CoMwm AND

T

4

You can use LOGO to write Quiz procedures. These can ask your friends

questions and respond to their amswers. There is a LOGO procedure named
REPLY

When this procedure is executed a prompt
REPLY:

is typed. then waits until the green command button is typed.
Whatever was typed after the prompt and before the green command button
is made into a list. This list is the result of executing the
procedure REPLY

EXERCISE 1: Try typing
W: DEFINE "ECHO
D210 PRINT [I WILL ECHO WHATEVER YOU TYPE]
D:20 PRINT REPLY
D230 PRINT [DID YOU HEAR THE ECHO]
D:END

Run this procedure and type in something to
be echoed when you get the prompt.

EXERCISE 2: Try typing

Wz DEFINE ~“FOOTBALL
D:10 PRINT [WAT IS THE GREATEST +
FOOTBALL TEAM IN THE WORLD]
D:20 IF EQUALQ REPLY [PENICUIK WANDERERS] +
THEN PRINT [RIGHT ON] ELSE PRINT [WRONG AGAIN]
D:END

L]
s

[y]
»e

Try out this procedure.

EJRERCIBE 3: Type in a quiz procedure of your own.

EXERCISE 4:

85

Define a superprocedure which has two quiz

procedures as its subprocedures.

The following procedure TEACHER is very useful as a subprocedure in quiz

procedures. It can be used for any question and answer.

EXERCISE 5:

W: DEFINE "TEACHER "QUESTION "ANSWER '
D:10 PRINT VALUE "QUESTION
D:20 IF EQUALQ REPLY VALUE "ANSWER +

C:THEN PRINT "RIGHT ELSE PRINT "WRONG

D:END

Define TEACHER and then use it in a superprocedure
like the following
D: DEFINE "LESSON ;
+ W:10 . TEACHER [WHAT 1S.3 TIMES 43] [12]
W:20 TEACHER [WHAT IS THE CAPITAL OF SCOTLAND] [CARDIFF]
. W:30 TEACHER [WHY DID THE CHICKEN CROSS THE ROADI [TO +
C:GET TO THE OTHER SIDE]

The new procedure is

NAME OF PROCEDURE
+.

REPLY

W:END

SUMMARY
INUT EFFECT RESULT
None Types a prompt A list of what was

typed in.

I
’
:
:
1
]
:
]
]
i
1
1
.
:
.
:
j
1
:
.

25, STOPPING PROCEDURES

In note 20 we defined a recursive procedure INSOMNIA which looked like '
this
W: DEFINE "INSOMNIA "YAWN
D:10 REPEAT VALUE "YAWN PRINT “SHEEP
D:20 PRINT [JUMPED OVER THE FENCE]
D:30 INSOMNIA ADD 1 VALUE “YAWN
D:END

EXERCISE 1: RECALL or DEFINE procedure INSOMNIA.

The only way you can stop INSOMNIA is by interrupting it by pressing the
red emergency stop button. There is a way of defining INSOMNIA such

that it stops when you want it to. There 1s a CONTROL PROCEDURE called

STOP

which needs no input and produces no result. Its effect is to stop the

execution of the procedure it is in,

EXERCISE 2: Type in the following change to INSOMNIA.

W: CHANGE "INSOMNIA
D:5 IF GREATERQ VALUE "YAWN 5 THEN STOP
D:END

EXERCISE 3: Run INSOMNIA with different inputs
e.g.
W: INSOMNIA &4
W: INSOMNIA 14
W: INSOMNIA 5

EXERCISE 4: Change INSOMNIA by adding the following
lines:
W: CHANGE "INSOMNIA
D:40 PRINT VALUE "YAWN
D:50 PRINT “ACROSS
D:END

Run INSOMNIA with various inputs as before.

A procedure stopped by STOP produces no special result. Here are some

snapshots of what happens when you type

W: INSOMNIA 4 ¢

We have not drawn in all the workers who take part in this process.

' IFGREATER’ VALUE "YAWN 5 THEN STOP ilN3OMNIA is called with 4 as

[JUMPED OVER THE FENCE] the Value 'of 1ee tepue

VALUE "YAWN Line 5 checks whether the value
T "ACROSS of "YAWN is greater than 5.
SYAPSHOT 1

Lines 10 and 20 have the effect

of printing

SHEEP
- SHEEP
SHEEP
SHEEP
[JUMPED OVER THE FENCE]
SNAPSHOT 2
=M 4 5
hY :
INSOMNIA calls a new INSOMNIA
5 ; - with 5 as the value of its input.
10
%o
ko
So

REERROE 3

88

Line 5 checks whether the value

of "YAWN is greater than 5. It

is not so

SNAZSHOT 4

Lines 10 and 20 print

SHEEP
SHEEP
SHEEP
SHEEP
SHEEP
[JUMPED OVER THE FENCE]

SNAPSHOT 5

INSOMNIA calls yet another INSOMNIA

with 6 as the value of its input.

ENAPSHOT 6

Line 5 finds that the value of "YAWN
is bigger than 5; so this INSOMNIA
stops, and tells the procedure which
called it that it has finished.

SNAPSHOT 7

Now the second INSOMNIA can continue
on its line 40 printing

5

ACROSS

Now it has finished

SNAPSIIOT 8

89

So the first INSOMNIA can

continue on its line 40 to

print

4
ACROSS

SNAPSHOT 9 Now 1t has finished as well.

SUMMARY
The new control procedure is
NAME OF PROCEDURE INPUT EFFECT
STOP none stops procedure

it is in.

50

26. TRACING PROCEDURES
—

There is a procedure named
TRACE

which can be used to help you debug and understand your procedures.
It needs one input which should be the quoted name of a procedure to

be traced, or a list of names of procedures to be traced.

EXERCISE 1: Recall and show the INSOMNIA procedure
from note 25.
Run TRACE as follows
W: TRACE "INSOMNIA

The message means that INSOMNIA has been MARKED so that, in the future,
every time it is executed a message will be typed by LOGO. This
message will tell you that

(a) the procedure has been called

(b) what the values of its inputs are

When a MARKED procedure finishes another message is typed. This tells

you

(a) what the result of the procedure is, if any
(b) that the procedure has finished.

EXERCISE 2: Run INSOMNIA with various inputs.

You can TRACE LOGO's procedures as well as your own.

EXERCISE 3: MARK LOGO's procedure ADD for
tracing

W: TRACE "ADD

Now run INSOMNIA again.

Also try

W: PRINT ADD ADD ADD 1 2 4 8

91

In chapter 25 a series of snapshots of INSOMNIA 4 being executed was

drawn. Here we show the messages produced by TRACING INSOMNIA 4.

Comments LOGO Messages

INSOMNIA called

I
:
I
| Wi INSOMNIA 4
|
|

— — —>INSOMNIA
name and value of input YAWN = 4,
| SHEEP
effects of PRINT — — — —— — . — %I SHEEP
SHEEP
| SHEEP
[JUMPED OVER THE FENCE]
]
1
TR INSOMNIA called | — — — _>INSOMNIA
name and value of inputl YAWN = 5,
10 | SHEEP
SHEEP
effects of PRINT—- —~ - 3»d SHEEP
| SHEEP
SHEEP ‘
20 | [JUMPED OVER THE FENCE]
30 _ _ | ‘INSOMNIA called =~
name and value I }INSOMHIA
P YAWN = 6,
of input l
5 |no result | NO RESULT
| TNSoMNTA eRde ™ — — — = <INSOMNTIA
40 | 5
50 effects of PRINT - - — -7 ACROSS
no result produced | NO RESULT
INSOMNIA ended = = — — ~<INSOMNIA
erfects of PRINT = oo o i o oo o - ﬁ}I b
| ACROSS
| NO RESULT
1
no result produced — . <INSOMNIA

INSOMNIA ended

W:

i

= B N E N E E E . B B A N a e B B N

92

Each call to a sub-procedure is shown by the > moving two spaces to the

right.

EXERCISE 4: Turn the diagram on the previous page on its
side. The sub-procedures look like NESTED
tables:

super procedure
sub procedure
sub subpr0cedureLJ
L—ui m— '"J o

LOGO can also be commanded to remove the MARK from a procedure by

running the procedure

UNTRACE

which needs a single input, either a quoted name or a list of names.

EXERCISE 5: Try

W: UNTRACE [ADD INSOMNIAJ
and run INSOMNIA

SUMMARY
The new procedures are:
NAME OF PROCEDURE INPUT
TRACE list of procedure names

or single quoted

procedure name

UNTRACE list of procedure names
or single quoted

procedure name

EFFECT

marks named procedures so
that message given when

they are executed

removes mark from named

procedures.

E
1
1
|
1
1
1
1
1
1
1
1
1
1
1
i
1
1
s

93

27 HOW LISTS WORK

A list is like a stack of boxes on a pallet

| e = am e

There is a LOGO procedure named
FIRST

which gives as its RESULT the top box, or first element of the list which

is its input.

EXERCISE 1: Try typing
W: PRINT FIRST [THE CAT SAT ON THE MAT)
W: PRINT FIRST [SAT CAT ON THE MATI
W: PRINT FIRST [CAT]

You can PUT a box onto the top of the stack by running the LOGO procedure
PUT
which gives the whole of the new stack or list as its result. PUT needs

two inputs, the first input is the new box, the second input is the stack

it is to be put on.

94

EXERCISE 2: Try typing
W: PRINT PUT "CAT [DOG RABBITI
W: PRINT PUT 10 [9 87 654 32 1]
W: PRINTPUT [9 87 654321110
W: PRINT PUT FIRST [PEA BEAN] [POTATO CARROT)

You can also knock off and throw away the top box by rumning the procedure
REST
which gives as its RESULT the rest of the stack.

EXERCISE 3: Try typing
W: PRINT REST [THE CAT SAT ON THE MATI
W: PRINT REST [10 98 76 5 4 3 2 1]
W: PRINT FIRST REST [THE CAT SAT ON THE MATI

EXERCISE 4: Make a procedure named SECOND which takes as its
input a list. The result of SECOND should be
the second element of the list.

EXERCISE 5: Make a procedure named THIRD whose result
is the third element of a list.

EXERCISE 6: Try typing
W: PRINT THIRD [CAT DOG]

95

FIRST, REST and PUT all work with numbers and words too

EXERCISE 7: Try typing
W: PRINT FIRST 783
W2 PRINT REST "ELEPHANT
W: PRINT PUT 5 94321

SUMMARY
The new procedures are:-
NAME OF PROCEDURE INPUT EFFECT
FIRST List The first element of the list
Word The first letter of the word
Number The first digit in the number
REST List, word or The rest of the list word or
number number
PUT Two inputs Puts first input in front of
numbers, words second. Except lists cannot
or lists be put in front of words or

numbers . (Can't put pallets

on boxes.)

96

28, FINDING THINGS IN LISTS

We use lists for storing several names or numbers. For example this 1is
a list of names

[DONALD MARY HAMISH FERGUS FIONA ANDREW]

People can easily tell that the name FERGUS is somewhere in this list by

looking at it. But in LOGO a list is like a stack of boxes on a pallet.

L H

Imagine there was a name on a piece of paper in each box and we wanted

to find out whether one of the names was FERGUS.

There would be three jobs to do:-

Job 1. : 1If there are no boxes left on the pallet then say FERGUS

cannot be found and stop searching.

Job 2., : 1f the name FERGUS is in the top box then say FERGUS has

been found and stop searching.

Job 3. : Throw away the top box and search the rest of the boxes on

the pallet.

This is another example of RECURSION.

EXERCISE 1: Define this procedure which carries out the three jobs
vl kit 3L U

W: DEFINE "SEARCH BOXES

97

s D: 10 IF EMPTYQ VALUE "BOXES THEN PRINT [NOT FOUND]
: D: 20 1F EMPTYQ VALUE "BOXES THEN sTOP
D: 30 IF EQUALQ | FERGUS (FIRST VALUE "BOXES) THEN PRINT [FOUND]
<ei 2 D: 40 IF EQUALQ 'FERGUS (FIRST VALUE BOXES) THEN SToP
Job 3 D: 50 SEARCH REST VALUE "BOXES
D: END
EXERCISE 2: Try SEARCH with different inputs
e.g.
W: SEARCH [DONALD MARY HAMISH FERGUS FIONA ANDREW]
W: SEARCH [DONALD MARY HAMISH FIONA ANDREW]
W: SEARCH [1 2 3 FERGUS 4 57
W: SEARCH [1 2 FERGIS 3 4 5]
EXERCISE 3: Mark SEARCH for tracing and run it again
SEARCH 1s a recursive procedure. Each SEARCH worker looks in the top box

of the stack he is given and then calls on another SEARCH worker to 1look

in the rest of the boxes

EXERCISE 4: Define a procedure 1like SEARCH which has an

extra loput. The value of thig input will

be the element to be looked for in the list.

This procedure could look for anything, not

just

" FERGUS .

Lf this procedure were called FIND it would

be run like thig:-
W: FIND HAMISH [DONALD MARY HAMISH FERGUS]
[FOUND]

W:

FIRST and REST also work with worde and numbers as well as lists. So we

could find a digit in a number or a letter in a word,

98

EXERCISE 5: Try
W: FIND "B "ABCDEFGH
W: FIND & 12345

EXERCISE 6: Mark FIND for tracing and run it again.

FIND and SEARCH give no result. They only have the effect of printing
[FOUND] or [NOT FOUNDI].

SUMMARY

Recursive procedures can be used to find out what elements there are in

a list,

m S B B BN N B OGN BN BN B O BN O ow o AN G o

\

Eﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂlgﬂﬂﬂ-m

»

99

29. COMING BACK OUT OF RECURSION
——

In note 28 procedures FIND and SEARCH were defined which gave no result.
They only had the effect of printing [FOUND] or [NOT FOUND]. A more
useful version of FIND would give the result "TRUE or "FALSE. It would

then be a question procedure and could be used with the control procedure
IF.

EXERCISE 1: Define this new version of FIND named
MEMBERQ which does the same three jobs
as FIND.
W: DEFINE "MEMBERAQ "THING "BOXES
D: 10 IF EMPTYQ VALUE "BOXES THEN RESULT "FALSE
D: 20 IF EQUALQ (VALUE "T4ING) (FIRST VALUE "BOXES) THEN RESULT “TRUE

D: 30 RESULT MEMBERQ VALUE "THING REST VALUE “BOXES
D: END

Try out MEMBERQ e.g.
W: PRINT MEMBERQ “CAT [DOG CAT RABBIT]
W: PRINT MEMBERQ “CAT [DOG RABBIT ZEBRA LION]

MEMBERQ can combine lines 10 and 20 of FIND because RESULT gives a result

and stops the procedure. Lines 30 and 40 of FIND can be combined for the

same reason.

In line 30, MEMBERQ is called as a sub-procedure. The RESULT on this line

ensures that the result of the MEMBERQ sub-procedure becomes the result of
the MEMBERQ super-procedure.

EXERCISE 2: Trace MEMBERQ and run it again
Try MEMBERQ on a word or number e.g.
W: PRINT MEMBERQ “T "ROOM

Compare the trace of

W: PRINT MEMBERQ "CAT [DOG PIG CAT]

with the next diagram.

100

"CAT [DOG PIG CATI line 10: [DOGPIGCAT] is not empty

*,fff line 20: "CAT is not equal to DOG
line 30: the input to RESULT 1is
needed so call a

MEMBERQ sub-procedure

and give it "CAT and

RES JLT MEM3ERQ VALUE “THING REST VALUE "BOXES [(PIG CAT] as inputs.

SNAPSHOT 1

line 10: [PIG CAT] is not empty
line 20: "CAT is not equal to 'PIG

. . line 30: the input to RESULT 1is
CAT [FIG CAT]

'##H,ff”, needed so call a
MEMBERQ sub- srocedure

and give it "CAT and

[CAT] as inputs

SNAPSHOT 2

"CAT [CAT] line 10: [CAT] is not empty
line 20: "CAT is equal to "CAT

so give result "TRUE

which stops the procedure.

L@ (VALUE "THING) (FIRST VALUE '20XES)
5ULT "TRUE

SNAPSHOT 3

101

line 30: RESULT now has its

input and can stop
the procedure with
the result "TRUE.

LT «<— "TRUE

SNAPSHOT 4
line 30: RESULT now has its
input and can stop
the procedures with
the result "TRUE.
ULT <— "TRUE
SNAPSHOT 5

EXERCISE 3: Using MEMBERQ as a sub-procedure define a procedure
which expects a single letter as the value of its
input. The procedure should print either "VOWEL
or '"CONSONANT deﬁending on the input letter value.

You can compare the way MEMBERO comes out of recursion with the following

procedure named CHOP.

W: DEFINE "CHOP "BOXES
D: 10 PRINT VALUE "BOXES
D: 20 IF EMPTYQ VALUE "BOXES THEN STOP
D: 30 CHOP REST VALUE "BOXES
D: END
EXERCISE 4: Define CHOP and run it with different inputs
e.g.
W: CHOP [COMING OUT OF RECURSIONI]
W: CHOP "ABCDEFG

102

EXERCISE 5: Change CHOP by inserting a line 40
D: 40 PRINT VALUE "BOXES

Try to predict how this version of CHOP
will work.
Try out CHOP.

CHOP works in much the same way as INSOMNIA which is described in note 26

and note 25.

SUMMARY

MEMBERQ is an example of a procedure which is recursive and gives a
result. MEMBERQ can search down a list and send a result back depending

on what it finds.

103

30. WORKING ON LISTS

You can write a procedure which counts how many elements there are in a
liar; This procedure is similar to MEMBERQ but has an overall result

which is the number of elements in the list.

The stages in counting elements in a list, or boxes on a pallet, are

as follows:=

Job 1: If the pallet is empty the total is @.
Job 2: Throw away the top box and add 1 to the total from

counting the rest of the boxes.

EXERCISE 1: Define the following counting procedure
/: DEFINE "TALLY "BOXES

Job 1: D: 10 IF EMPTYQ VALUE “BOXES THEN RESULT @
Job 2: D: 20 RESULT ADD 1 (TALLY REST VALUE "BOXES)
D: END '

Try out TALLY with some lists. Also try it

with a word and a number.

EXERCISE 2: Trace TALLY and see how it runs.

The snapshots on the next page show the command

W: PRINT TALLY [47 331
2

being executed. Many of the procedures are not shown in the snapshots

which concentrate on TALLY.

104

!/,ffa? 337 line 10: [47 33] is not empty =
< line 20: In order to give the
result of adding 1 to

the total the rest of
|

BSLLT ADD 1 (TALLY REST VALUE "BOXES) the boxes must be
tallied. Call a

SNAPSHOT 1 TALLY sub-procedure

(Y]
(WX
i

line 10: [33] is not empty

line 20: In order to give the

result of adding 1 to
the toral the rest of
SULT ADD 1 (TALLY REST VALUE "BOXES) the boxes must be
tallied. Call a

TALLY sub-sub-procedure.

[] 1s empty so give

the result @

Now line 20 can be completed
ADD 1 @ comes to 1.

S0 give the result 1.

SNAPSHOT 4
Now line 20 can be completed
ADD 1 1 comes to 2.
8o give the resulc 2.
R ;
@_ SPLT ADD 1 1
SNAPSHOT 5

- e
=

105

You can write a very similar procedure to TALLY which adds up a list of

numbers (like on a shopping bill). This procedure cculd be named TOTAL.

Instead of adding 1 each time as TALLY does, it would add the first

number in the list to the toral.

EXERCISE 3: Define a procedure TOTAL which adds up

a list of numbers. Try it out.

EXERCISE 4: Define a super-procedure AVERAGE which
uses TALLY and TOTAL as sub-procedures
to calculate the average of a list of

numbers.

EXERCISE 5: Define a procedure named MANY which works
like TOTAL but which multiplies together
all the numbers in a list.

For example: How many seconds in a day ?
W: PRINT MANY [60 60 241
The procedure would work out 60x60%24,

SUMMARY

As well as finding out what elements are in a list, you can also work

with the elements of a list using recursionm.

—
~

31.

106

CONSTRUCTING LISTS
S

You can define a procedure which constructs a list and gives this list

as its result. This note uses this kind of procedure to show you how

to make secret codes

[SVOOL UIRVMW]

The input to CODE 1is a list of words.

[HELLO FRIEND]

CODE will construct a new

list of coded words using procedure PUT to make the list.

One of the sub-jobs is to code each separate letter.

of a procedure for coding letters.

W: DEFINE "FLIP "LETTER
D: 10 IF EQUALQ VALUE
D: 20 IF EQUALQ VALUE
D: 30 IF EQUALQ VALUE

D: 260 IF EQUALQ VALUE
D: END

"LETTER
"LETTER
"LETTER

“LETTER

(We have left out some lines)

“A THEN RESULT *
"B THEN RESULT "Y
"C THEN RESULT "

“Z THEN RESULT "

Here is an example

EXERCISE 1: Define this procedure or your own procedure

which encodes individual letters.

Try this procedure out

e.g.

W: PRINT FLIP "J

W: PRINT FLIP 7

107

Complete words can be coded by procedure SCRAMBLE. It will use FLIP

as a sub-procedure. There are two jobs to do.

Job 1: 1If there are no more letters in the word to be coded then

the result 1s the empty word

Job 2: Otherwise PUT the flipped first letter of the word at the
beginning of the scrambled rest of the word.

W: DEFINE "SCRAMBLE "WORD
D: 10 IF EMPTYQ VALUE "WORD THEN RESULT °
D: 20 RESULT PUT (FLIP FIRST VALUE "WORD) (SCRAMBLE REST VALUE "WORD)
D: END

EXERCISE 2: Define SCRAMBLE and rum it with various words

e.g.
W: PRINT SCRAMBLE "LOGO

The following snapshots show some of the procedures called in executing

W: PRINT SCRAMBLE "IT

EXERCISE 3: Type
W: TRACE [SCRAMBLE FLIP PUT]

Compare the trace with the diagrams.

108

line 10: 'IT is not empty

line 20: My result will be a |
new word made with
PUT. Call FLIP to
change "I to "R.
Call SCRAMBLE as a
sub=procedure to deal

SULT PUT "R (SCRAMEBLE "TO with the rest of the
word

SNAPSHOT 1

ngii-g "y line 10: "T is not empty
_'“FM£DJ‘25;’/ line 20: My result will be a
new word made with
PUT. Call FLIP to
change "T to "G.
Call SCRAMBLE as a
sub-sub-procedure

ULT PUT "G (SCRAMELE™) to deal with the
' rest of the word.

SNAPSHOT 2

“ line 10: " is empty so
give the result

O A N O

Now PUT can make a new word
out of "G and " . This
word is "G. I can now give
"G as my result.

SNAPSHOT 4

Now PUT can make a new word
out of "R and "G. This
word 1s "RG. I can now
give "RG as my result .

RESULT PUT "R "G

SNAPSHOT 5

109

'The Story of the three SCRAMBLES'

In the example, three procedures named SCRAMBLE we

re called, Let us call
them super—-SCRAMBLE, sub=SCRAMBLE

and sub=gsub-SCRAMBLE

S
I can deal with my top box but

: I have no where to put it until
k'-~-~i:“::'}i‘“SI.JI:!-SL‘J‘MMBLE finishes,

i .

I can deal with my top box but
1 have no where to put in until

my SUb-spb_SCRAMBLE'iiiiiijj;__d,x/

- ¢can deal with my stack because
it is empty. Here's an empty
stack for you sub-SCRAMBLE,

Thank you sub-sub=SCRAMBLE. “—:hh\\

Can now put my new box on that
empty stack. Here's a new stack

for you super-SCRAMBLE.

Thank you sub~SCRAMBLE. I can
ROW put my new box on that stack.

Here's a new stack for you PRINT.

i

110
EXERCISE 3: Define a procedure CODE which uses SCRAMBLE
as a sub-procedure. CODE should encode a

whole list of words

e.g.
W: PRINT CODE L[THE CAT SAT ON THE MAT]

This procedure will do two jobs very much like CODE.

Job 1: If there are no more words in the list then the result
is the emply list.

Job 2: Otherwise PUT the scrambled first word of tie list at the
beginning of the CODED rest of the list.

SUMMARY

A procedure can construct a list using PUT and recursion. Each CODE

called can only put its new list together when it has the new element

and the new list to put it in.

L
1
¥
1
1
1
1
1
1
1
1
1
1
i
]
5
'

111

32. VARIABLES

_
R

EXERCISE 1: Define the following procedure
W: DEFINE "TRIPLE "NUM
D: 10 PRINT MULTIPLY VALUE “NUM 3
D: END

Run the procedure
W: TRIPLE 7

EXERCISE 2: Try typing the following
W: PRINT VALUE "NUM

When you ran the procedure TRIPLE it had an input called "NUM which had
the value 7. This value is PRIVATE to that worker TRIPLE. The
procedure VALUE can only get the 7 out of "NUMwhen VALUE is ealled
inside the worker TRIPLE.

EXERCISE 3: Define the following procedure
W: DEFINE "QUAD "NUM
D: 10 PRINT MULTIPLY VALUE "DIGIT &4
D: END
Run the procedure
e.g.
W: QUAD 12

QUAD did not work because when LOGO tried to execute VALUE "DIGIT no

input of that name could be found.
An input is a type of VARIABLE. A VARIABLE has a name and a value.

A variable is like a box with a name on it. Inside the box can be a

word, number or list.

There is a way in LOGO of making PUBLIC boxes or variables that any

worker can look into.

There is a LOGO procedure named
MAKE
which creates LOGO boxes, It needs two inputs. The first input is

a LOGO word to be the name of the new box. The second input is to be

the value or contents of the new box

113
EXERCISE 4: Create some new boxes
W: MAKE "NUMBER 10101
W: MAKE "SEASONS [SUMMER WINTER SPRING AUTUMN]
W: MAKE "JAM "STRAWBERRY
W: MAKE "DIGIT 11
"NUMBER "SEASONS
10101 [SUMMER WINTER SPRING AUTUMN]
“JAM "DIGIT |
"STRAWBERRY 14

We use the procedure VALUE to find out what is in a box.

EXERCISE 5: Look inside your new boxes

e.g.

W: PRINT VALUE "NUMBER

EXERCISE 6: Run your procedure QUAD again

e.g.

W: QUAD 10000

When inside the procedure QUAD, LOGO tried to execute VALUE “DIGIT,
it first looked for an input (a PRIVATE box) named “DIGIT. When it
could not find one it then looked for a PUBLIC variable named “DIGIT.

It found the one you made in Exercise 4.

As well as making new boxes, the procedure MAKE can also be used for

changing the contents of a box which already exists.

114

EXERCISE 7: Try the following changes to the value
of "DIGIT.

W: MAKE "DIGIT 2
W: MAKE "DIGIT ADD 5 6
W: PRINT VALUE "DIGIT

SUMMARY

There are two sorts of variables PRIVATE (inputs) and PUBLIC ones.

PRIVATE variables only have values when the worker they belong to is
being executed.

PUBLIC variables are stored in the working memory separately from
procedures, Once a PUBLIC variable has been made the box stays in

working memory until you type GOODBYE.

The new LOGO procedure is

NAME OF PROCEDURE INPUT EFFECT
MAKE A word and one of Creates a box in working memory
a word whose name is the value of the
a number first input and whose content
a list is the value of the second input.

115

33. USING PUBLIC BOXES

Here is a procedure for a guessing game you can try on your friends.

EXERCISE 1: Define this procedure

W: DEFINE "GAME

D: 10 PRINT [TRY TO GUESS THE NUMBER]

D: 20 IF EQUALQ (FIRST REPLY) (VALUE "SECRET) THEN +
C: PRINT [WELL DONE] ELSE GAME

D: END

EXERCISE 2: Put a value in "SECRET and then ask a friend
to run GAME.

You chose the number to go in "SECRET. But LOGO can choose numbers for

itself. There is a procedure named
RANDOM
which needs one number as input. RANDOM gives a result which is a

randomly chosen number between the input and zero.

EXERCISE 3: Try out RANDOM a few times
B
W: PRINT RANDOM 10
W: PRINT RANDOM 10
W: PRINT RANDOM 10
W: PRINT RANDOM 237

Now you can play GAME yourself by letting LOGO choose the number to g0
in "SECRET.

116

EXERCISE 4: Put a random number in "SECRET
W: MAKE "SECRET RANDOM 10

Now run GAME and find out yourself what

number LOGO chose.
You can move the turtle in a random way as well,

EXERCISE 5: Try defining and running this procedure
W: DEFINE DRUNK
D: 10 FORWARD RANDOM 50
D: 20 LEFT RANDOM 360
D: 3D DRUNK
D: END

Here is a guessing game which gives hints as it runms.

W: DEFINE "GUESSER
D: 10 PRINT [CAN YOU GUESS THE NUMBER]
D: 20 MAKE "ANSWER FIRST REPLY
D: 30 IF GREATER@ VALUE "ANSWER VALUE "“SECRET +
C: THEN PRINT [TOO 2IG]
D: 40 IF LESSQ VALUE "ANSWER VALUE "SECRET +
THEN PRINT [TQO SMALL]
D: 50 IF EQUALQ VALUE "ANSWER VALUE "SECRET
C: THEN PRINT [WELL DONE] ELSE GUESSER
D: END

(]
an

EXERCISE 6: Define and run a procedure like GUESSER.
Don't forget to put a value in the public
box "SECRET which each GUESSER will need

to look 1in.

In line 20 we stored the guess in a public box named "ANSWER.
This was because we needed to use this guess in both lines 30 and 40.
If we had used REPLY twice, LOGO would have waited for two different

guesses, one on line 30 and one on linme 40.

117

SUMMARY

MAKE can be used for storing values which can only be worked out once,

but which we need to be used several times, or looked at by several

procedures.
The new procedure is:-

NAME OF PROCEDURE INPUT RESULT

RANDOM number a randomly chosen number

between @ and the input.

* i . ..
= = B B

118

APPENDIX A. PRINTING

The procedure PRINT types its input at the teletype and then moves the

teletype carriage ready for a new line.

If you want to type several things on the same line you can run a

procedure named

TYPESET

This procedure needs one input which can be a number, word, or list,
This input is used to build the line to be typed.
For example if you type

W: TYPESET [THIS IS PAGE]
W: TYPESET 118
W: TYPESET [OF THE PRIMER]

Thus a line consisting of [THIS IS PAGE] 118 [OF THE PRIMER] will be
built, This line will not be typed at the teletype until you build a

carriage movement into the line.

There is a new procedure named
CARRIAGE

which needs no input. Once this procedure is run any line which has been

built is typed at the teletype, and the carriage moved to the next line.

There is also a procedure named
SPACE

which will build a single space character into a line. It needs no input,

There is a procedure named

TAB
which will build a tab of six spaces into a line. It needs no input,
There is a procedure named

SAY
which works in a way very similar to PRINT. It needs one input which
can be a number, word or list. The input is typed at the teletype and

119

the carriage moved. However if the input is a list the list brackets
[1 are not typed

E.g. i
W: SAY [GOODBYE FREDI
GOODBYE FRED

B H

There is also a new procedure named

TYPE

which works in just the same way as TYPESET except that a space is also
inserted before the thing to be typed
E.g.

W: TYPE "FRED

W: TYPE "SMITH

W: CARRIAGE

will have the effect of typing

FRED SMITH
SUMMARY
The new procedures are
NAME OF PROCEDURE INPUT EFFECTS
TYPESET number, word or list builds input into line
CARRIAGE no input causes line to be typed
SPACE no input builds space into line
TAB no input builds six spaces into line
SAY number, word or list as for PRINT but lists typed
without brackets
TYPE number, word or list as for TYPESET but a space

also typed in front of

input.

120

AFPENDIX B, MORE ABOUT DRAWING CIRCLES

The procedure ARC draws part of a circle curving to the left. There is

a procedure which draws circles curving to the right. It is named

ARCRIGHT

Like ARC it has two inputs. The first input is the radius of the circle.

The second input is the amount the turtle turns in moving round the arc
(so 360 degrees gives a whole circle).

SUMMARY
The new procedure is
NAME OF PROCEDURE INPUT EFFECT

ARCRIGHT 2 numbers an arc is drawn.

1
i
1
1
E
1
1
1
X
1
1
L
L
n

APPENDIX C.

121

THE TURTLE STATE

sh0

2ot

el

)/-m,s

A floc e G0 Downl)

-‘S;M ";uu -glca - ‘zm..

t
=l

ot 4
=2ul L
=3au L

~4ao ¢

=5an L

oo WG 300 Y.dxis seo

The turtle state is a list of four elements:

[the x coordinate,

There is a procedure named

the y coordinate,

STATE

the heading, the penstatel

whose result is the state of the turtle. It needs no inputs.

already know how to change the turtle state

E.g.

W: PRINT STATE

L7100 200 90 DOWN]

W: LIFT

W: PRINT STATE
(100 200 90 UP]
W: FORWARD 30

W: PRINT STATE
(100 230 90 uPl
W: LEFT 15

W: PRINT STATE
(100 230 105 uP]

You

LiZ

We can JUMP the turtle to change its state.

There 1s a procedure named

POSITION
which needs one input. This is a list of the new desired turtle state.
The turtle will jump to the new position without leaving a line

W: POSITION [400 200 180 DOWNJ
It is also possible to just jump the turtle along the x axis or the y axis.
There is a procedure named
SETX
which needs one number input. The turtle will jump along the x axis

so that this input becomes its new x coordinate.

W: SETX -100
W: PRINT STATE
(=100 200 180 DOWN]
There is a similar procedure named
SETY ,

You can also set the turtle heading to a particular value y running a

procedure named
SETHEADING

This procedure needs one number input. In LOGO the turtle always starts

at zero degrees which is along the x axis.

n40°

-

270°

Rotating to the left increases the heading

123

There are procedures named

out what the turtle state is.

The new procedures are

The turtle state can be changed without leaving a line.

You can find out individual elements in the turtle state,

XCOR
YCOR
HEADING
PEN
which need no input.
E.g.
W: PRINT HEADING
105
W: PRINT PEN
up
SUMMARY

NAME OF PROCEDURE INPUTS RESULT
POSITION list of new turtle state none
SETX number - new x coordinate none
SETY number - new y coordinate none
SETHEADING number - new heading none
STATE none list of turtle state
XCOR none current x coordinate
YCOR : none current y coordinate
HEADING none current heading
PEN none current pen state

You can also find

EFFECT
jumps to new state
jumps along x axis
jumps along y axis
jumps to new heading
none
none
none
none

none

124

APPENDIX D. THE LOGO CLOCK

LOGO has a clock which ticks in seconds. The clock starcts at zero at the

beginning of the session.

There is a procedure named
TIME

which needs no inputs, Its result is the time since the start of the

session.

You can reset the clock to zero at any moment by running a procedure named
RESET

which needs no input.

One of the ways you can use the clock is to time how long it takes somecne

to reply in one of your quiz procedures.
For example

W: DEFINE "TIMER
D: 10 PRINT [HOW MANY PEOPLE LIVE IN EDINBURGH]
D: 20 RESET
D: 30 IF EQUALQ REPLY .[493281] THEN
PRINT [EXCELLENT] ELSE PRINT [WRONG AGAINI
D: 40 PRINT [YOU TOOK]
D: 50 PRINT TIME
D: 60 PRINT “SECONDS

D: END
SUMMARY
The new procediures are
NAME OF PROCEDURE INPUT EFFECT
TIME none gives time in seconds since

start of session

RESET none resets LOGO's clocck to zerc

125

APPENDIX E. PAPER TAPE

There is another device you can use. It is a paper tape punch. To

connect yourself to the paper tape punch run the procedure named
TAPE
This procedure needs no inputs,

You can have blank tape run cut of the punch by running the procedure
named

RUNOUT

This procedure needs no input.

You can punch holes in the paper tape by running the procedure named
PUNCH

This procedure has one input which must be a number between O and 255.

88%, ° R

00 o

38 6 G \
LR T I =0 sa Ejﬂétnl'.é'lllhnlbﬂl!ulﬂ ------------- SH B SN A S s E (l

0 o

0 0 00)

\-——-"""W "-‘\--‘-‘-‘JT‘)
r Ff[r sprocket holes ..
RUNOUT#;T

W: PUNCH 255
W: PUNCH 0

W: PUNCH 255 ——m
W: PUNCH 1 ————
W: PUNCH 2 *_J
W: PUNCH & %_j
W: PUNCH 8)
W: PUNCH 16 J
W: PUNCH 32 g
W: PUNCH 64 i
W: PUNCH 128 /
W: PUNCH 129 J

126

There are eight places across the tape where holes may be punched
This is like a binary number of eight digits. A hole corresponds to

the digit 1. A blank corresponds to the digit Q.

Thus 255 (decimal) corresponds to 11111111 (binary) which correspcnds to

on the tape.

To punch a particular pattern of holes you must first translate the
pattern in to a binary number. Then you must translate the binary

number into a decimal number as input for procedure PUNCH

- , 8 i
=] F ,.,._‘.f'
z 2 5 B =
F 3£
D - ig
2]
< il
+ -3 i
+___20 = Z

The letter R can be produced by running procedure PUNCH four times.

g — binary decimal LOGO

1M111111 » 128 +64 +32 +16 +8 +4 +2 +1 -+ 255 W: PUNCH 255
19011000 - 128 + 0 + 0 +16 +8 +0 +0 +0 + 152 W: PUNCH 152

0%% :0°° 10010100 - 128 + 0 + 0 +16 +0 +4 +0 +0 - 148 1J: PUNCH 148

8 00.
0000.000

Ty

01100011 -+ 0 +64 +32 + 0 +0 +0 +2 +1 >~ 99 W: PUNCH 99

SUMMARY
The new procedures are
NAME OF PROCEDURE INPUTS EFFECT
TAPE none connects to tape punch
RUNOUT none produces some blank tape
PUNCH number between punches pattern of‘hules.
7 and 255

inclusive

127

APPENDIX F. AN ABBREVIATION FOR VALUE

To save space in lines of LOGO you can abbreviate as follows:-

(a) /2 PRINT VALUE "FRED
can be abbreviated to

W: PRINT :FRED
(b) or the SPIRAL procedure from Chapter 21.

Wi DEFINEC "CPIRAL "ANGLE "SIDE "STEP
D: 10 FORWARD VALUE "SIDE
D: 20 RIGHT VALUE "ANGLE
D: 30 SPIRAL (VALUE "ANGLE) CADD VALUE "STEP +
C: VALUE "SIDE) VALUE "STEP
D: END

could be written as

W: DEFINE SPIRAL "ANGLE "SIDE "STEP
D: 10 FORWARD :S1DE
D: 20 RIGHT :ANGLE
D: 30 SPIRAL :ANGLE (ADD :STEP :SIDE) :STEP
D: END

Note that there is no space typed between the : and the name.

SUMMARY

VALUE " may be abbreviated to

APPENDIX G. MORE ABOUT DEFINING PROCEDURES

If you use a particular procedure often you may wish to give it a

shorter name. To do this you run the procedure named
ABBREVIATE
This needs two inputs. The first is the name of the procedure to be

abbreviated. The second is the new abbreviated name e.g.
W: ABBREVIATE "ELEPHANT "LUMP

Now the procedure ELEPHANT can be run either by using the name ELEPHANT
or the name LUMP. If you want to use this abbreviated name at another

session you will have to REMEMBER the abbreviated procedure, e.g.
W: REMEMBER "LUMP

If you want to make more space between the lines of a procedure you

would like to change you can use the procedure named
RENUMBER
This needs one input, the name of the procedure to be renumbered, e.g.
W: RENUMBER "LUMP

This would have the effect of renumbering the lines of LUMP in tens
(i.e. 10, 20, 30, 40, ...) but keeping the order the same.

SUMMARY
The new procedures are
NAME OF PROCEDURE INPUTS EFFECT
ABBREVIATE two quoted words the second word beccmes an
alternative name for the
procedure named with the
first vord,
RENUMBER one quoted word the lines of the procedure

named are renumbered in tens,

129

APPENDIX H. GLUEING THINGS TOGETHER

Two words or numbers can be glued together to make larger words or

numbers . The procedure that does this is named
WORD
and needs two inputs, e.g.

W: PRINT WORD "CAT "DOG
CATDOG
W: PRINT WORD "123 "345
123345
W: PRINT WORD "CAT "123
CAT123

Two lists can be made into one list by using the procedure named |
JOIN
This works as follows

W: PRINT JOIN [HOW AREILYOU TODAY] |
[HOW ARE YOU TODAY]

A list can be made by using the procedure named
LIST
This takes two inputs, either of which may be a word list or number, e.g.

W: PRINT LIST "CAT "DOG
[CAT DOGI

W: PRINT LIST [THE CAT SAT ON THE MATI 7
[[THE CAT SAT ON THE MAT] 7]

Note that lists can have lists as elements.

The new procedures are

NAME OF PROCEDURE

WORD

JOIN

LIST

130

SUMMARY

INPUTS

two words or numbers

two lists

two words, numbers

or lists.

RESULT

inputs are glued together
into a larger word or
number

the lists are joined

to make a single list

a new list is made
using the inputs as

elements.

APPENDIX 1. BOTH and EITHER

The results of two question procedures can be combined. This is
useful if you want the control procedure IF to work on the results

of two question procedures, e€.g. in English:

if both a sunny day and school holiday <then| go swimming.

if either hungry or thirsty hen look in fridge.

The inputs for BOTH and EITHER must be the words 'TRUE or 'FALSE.

Try typing

W: PRINT BOTH "TRUE TRUE

W: PRINT BOTH 'TRUE 'FALSE

W: PRINT BOTH "FALSE "TRUE

W: PRINT BOTH "FALSE ' FALSE
W: PRINT EITHER "TRUE TRUE
W: PRINT EITHER "TRUE FALSE
W: PRINT EITHER "FALSE "TRUE
W: PRINT EITHER "FALSE FALSE

result inputs
‘TRUE = BOTH «—— "TRUE "TRUE
It e

"FALSE «————f BOTH |+——"TRUE "FALSE

"FALSE - BOTH |« ~— "FALSE "TRUE
"FALSE «——— BOTH |«——FALSE "FALSE
“TRUE < EITHER |« TRUE "JRUE
"TRUE « LEITHEE_Ii_m_;:TRUE 'FALSE
“TRUE = [EITHER |+——FALSE ' TRUE

FALSE +-———fEITHER |t FALSE "FALSE

-

132

The words "TRUE and "FALSE would normally be the result of running the

question procedures.

The new procedures are:

NAME OF PROCEDURE

BOTH

EITHER

SUMMARY

INPUTS

two words
"TRUE or "FALSE

two words
"TRUE or "FALSE

RESULT

the word
"TRUE or "FALSE

the word
"TRUE or "FALSE

133

APPENDIX J. THE END OF THE LIST

There are a number of procedures for working on the last element of a

list (or bottom box of a stack). One of these is like FIRST and is
named

LAST
E.g.

W: PRINT LAST [THE CAT SAT ON THE MATI
MAT

Another is like REST and is named
BUTLAST
The result of this procedure is all-but—the-last.

E.g.

W: PRINT BUTLAST [THE CAT SAT ON THE MAT]
[THE CAT SAT ON THE]

Another is like PUT and is named
LASTPUT

E.g.

W: PRINT LASTPUT "DOG [THE CAT SAT ON THE]
[THE CAT SAT ON THE DOGI]

LAST, BUTLAST and LASTPUT all work on words and numbers as well

same way that FIRST, REST and PUT do.

, in the

NAME OF PROCEDURE

LAST

BUTLAST

LASTPUT

134

SUMMARY

INPUTS

a number
or word

or list

a number
or word

or list

two inputs:
numbers, words

or lists

RESULT

last digit
last characrter

last element

all but the last digit
all but the last character

all but the last element

Puts first input behind
second., Except lists
cannot be put behind

words or numbers.

135

APPENDIX K. WHILE

There is a control-procedure named
WHILE

which is a little like REPEAT. Instead of a number as first input
WHILE needs "TRUE or "FALSE. This "TRUE or "FALSE would normally

be the result of running a question procedure.
The second input to WHILE is a command, 2., im
W: WHILE "TRUE PRINT [AGAIN]

WHILE is also a little like IF. e.g.

W: IF "TRUE THEN PRINT [AGAIN]

WHILE is useful because it allows a command to be executed repeatedly
while a condition is true.

While has two jobs to do:

job 1: is the condition true ?

job 2: if the answer was true then execute the command
and do job 1 again.

if the answer was false then WHILE has finished.

' \ G
is ‘
condition "‘4? ' stop \
hCe 2
4
4;yes

_{_i EXECUTE
L_COMMAND _|

136

Here is an example using WHILE:-
W: WHILE GOODMOOD@ PRINT "SMILE

The procedure GOODMOODQ must give either 'TRUE or "FALSE as 1its

result

For example:

DEFINE "GOODMOODQ

10 IF GREATER® (RANDOM 10) 2 THEN RESULT "TRUE
ELSE RESULT "FALSE

END

SUMMARY
The new control procedure is
NAME OF PROCEDURE INPUTS EFFECT
WHILE true or false executes command again
and command and again while first

input stays true.

s

APPENDIX L. AND

There is a LOGO control procedure named

AND

You can use it to make & line of LOGO which contains more than cne

command - For example, you can type

W: FORWARD 100 AND PRINT MULTIPLY 7 9
or W: PRINT "ONE AND PRINT "TWO AND PRINT "THREE

after LOGO has executed the command FORWARD 100 the control procedure
AND makes LOGO loock for another command to execute. So LOGD then
executes the command PRINT MULTIPLY 7 9 and prints 63.

AND can be useful when you want to do more than one thing depending on
an IF. Suppose we want to write a procedure which can take any input
but which will move the turtle if the input is a number and print OK.

Without using AND we would write the procedure like this

W: DEFINE "CHOOSY "THING
D: 1 IF NUMBERQ VALUE "THING THEN PRINT " OK
D: 2 IF NUMBERQ VALUE "THING THEN FORWARD VALUE "THING
D: END

Tf we use AND the procedure would look like this

W: DEFINE "CHOOSY "THING
D: 1 IF NUMBERQ VALUE "THING THEN PRINT "OK *
C: AND FORWARD VALUE "THING
D: END

SUMMARY

The new control procedure AND can be placed between two commands .

APPENDIX M. WHICH LINE IS EXECUTED NEXT ?

ormally the commands in a Procedure are executed in the arder of the
ine numbers. This order can be changed by using the control
procedure named

GO

in your definition. G0 needs one input which must be i number .
When a GO is found in a procedure the next line to be executed in
that procedure is the one whose line number is the input to GO .

Here is an example of a procedure which uses GO

W: DEFINE HEXAGON
D: 10 FORWARD 100
D: 20 RIGHT GO
D: 30 GO 10
D: END

This procedure will draw a hexagon and keep on drawing over that
hexagon.

GO is often used in THEN or ELSE

For example

W: DEFINE QUESTION
D: 10 PRINT [WHAT IS THE LENGTH OF THE THAMES]

D: 20 IF EQUALQ REPLY [279] THEN PRINT [WELL DONE] ELSE GO 10
D: END

SUMMARY
The new procedure is
NAME OF PROCEDURE INPUT EFFECT
(O 4 number changes which line is

exetuted next.

138

AFPPENDIX N _RUNNING PROCEDURES

Normally a procedure is run by typing its ungquoted name. But we can

also run a procedure by using LOGO's procedure named
RUN

The first input for RUN must be the quoted name cof a procedure. Any

inputs for the procedure to be run must follow that quoted procedure

name
e.g.
W: RUN "FORWARD 100
or W: RUN "PRINT ' FRED
RUN can be used inside a procedure. Here 1s an example

W: DEFINE "MUTTER "PROC
D: 10 PRINT RUN VALUE "PROC [THE CAT SAT ON THE MATI
D: 20 PRINT [I HAVE JUST EXECUTED YOUR PROCEDURE NAMED J
D: 30 PRINT VALUE "PROC
D: END

W: MUTTER "FIRST
THE

(I HAVE JUST EXECUTED YOUR PROCEDURE NAMED]
FIRST

W: NUTTER "REST
[CAT SAT ON THE MAT]
(I HAVE JUST EXECUTED YOUR PROCEDURE NAMED]

REST
. SUMMARY
. The new procedure is
NAME OF PROCEDURE INPUTS RESULT or EFFECT
' RUN a quoted procedure the result or effect of
name and 1ts own running the procedure
. additional inputs. whose quoted name is RUN's
. first input.
e

APPENDLX O. MECCANO

LOGO may be used to control two electric motors which can drive machines
made with the Meccano set. To connect LOGO to the motors you should

run the procédure named
MECCANO

This procedure needs no input. You should also turn the knob on the
control box for the turtle and motors to the position marked MECCANO.
Otherwise your commands to the meccano motors will be directed to the

turtle's motors.

The procedure for rotating the shaft of a motor is named

ROTATE

This procedure needs a single, positive or negative, number as input.
If the input is positive the motor will rotate clockwise. Normally
the motor labelled "A" will be driven by procedure ROTATE. You can

drive the other motor, labelled "B'", by running a procedure named

MOTORB

This procedure needs no input. It acts like a switch. Having run it,
all further ROTATE commands will drive botor B unless you switch back

to motor A by running a procedure named

MOTORA

As well as driving one motor, it 1s also possible to drive the pair of
motors at once. This can be done at any time, whichever way the switch

is set, by running a procedure named
PAIR

This procedure, like ROTATE, needs a single positive or negative number

as input and causes both shafts to rotate together.

NAME OF PROCEDURE

MECCANO

ROTATE

PAIR

MOTORA

MOTORB

SUMMARY

INPUT

none

one number

one number

none

none

EFFECT

connects LOGO to the meccano motors

rotates one motor shaft

rotates both motor shafts

selects motor A for procedure ROTATE

selects motor B for procedure ROTATE

3 W EE N O N O W W

EN THE VALUES OF THEIR INPUTS

This note shows how LOGO matches values to input names. It is a
supplement to note 18. The matching depends on the order of the input
names in the procedure title. LOGO does not look inside a procedure

when it is matched to its inputs.

EXERCISE 1. Define the procedure
W: DEFINE "POLYBIT "LAMP "RHUBARB
D: 10 FORWARD VALUE “RHUBARB
D: 20 RIGHT VALUE "LAMP
D: 30 WHERE
D: END

Type in

W: POLYBIT

LOGO complained because there were no values to be matched to the names
“LAMP and “RHUBARB

TITLE LINE DEFINE "POLYBIT “LAMP "RHUBARB

PROCEDURE CALL POLYBIT

e b

EXERCISE 2. Type in

W: POLYBIT 400

This provided a value to match the first input "LAMP, but LOGO still
complained because there was no value to match "RHUBARB

T
TITLE LINE DEFINE "POLYBIT "LAMP "RHUBARB

PROCEDURE CALL POLYBIT 400

EXERCISE 3. Type in
W: POLYBIT 400 10

This provides values to match both input names. The value 400 is
matched with the first input “LAMP, and the value 10 is matched with
the second input "RHUBARB

TITLE LINE DEFINE "POLYBIT “LAMP "RHUBARB

PROCEDURE CALL POLYBIT 400 10

In line 10 of POLYBIT, FORWARD uses the value of "RHUBARB and in
line 20, RIGHT uses the value of "LAMP.

This matching of values to input names works in exactly the same way
when a procedure is called inside another procedure. For example,

consider the procedure

W: DEFINE "SHAPE "GORILLA "VIVA "HANDBAG
D: 10 REPEAT VALUE "VIVA POLYBIT VALUE "HANDBAG VALUE "GORILLA
D: END
Suppose we type in W: SHAPE 100 3 72

Then the first match that happens is:-—

TITLE LINE i DEFINE "SHAPE "GORILLA "VIVA "HANDBAG

PROCEDURE CALL’ SHAPE 100 3 72

Line 10 of SHAPE uses the values of the inputs as follows:

10 REPEAT | VALUE "VIVA | POLYBIT | VALUE "HANDBAG | VALUE "GORILLA

10 | REPEAT 3 POLYBIT 72 100

Then LOGO matches values forthe input names of POLYBIT

TITLE LINE DEFINE "POLYBIT "LAMP "RHUBARB
PROCEDURE CALL POLYBIT 72 100
EXERCISE 4. Find out what is drawn by

W: SHAPE 100 3 72

BT iy s

EXERCISE 5. In each of the six examples below FIRST fill in
the boxes to predict what you think will get
drawn by using the three values 12, 20 and 30

in different orders as inputs for SHAPE.

A. When you type W: SHAPE 20 30 12 the drawing will have

(ﬂ) Howmﬂy'ﬂidEB? 48 6 8 B 88 B BB S B SR B 8BS B S S S S 4 N EEEESEEAEEAEEEEE N0 D
(b) What turn between each BidE? sa s s s s B R B s R ssasssssasssaae s D
(c) What length for each side?c..: vesesemsims B e e . [:]

(d) The turtle finishing exactly where it started YES/NO

(e) A gap between where the ink starts and where it finishes ... YES/NO

NOW check your answers by running SHAPE.

B. When you type W: SHAPE 30 20 12 the drawing will have

(a) How many Bideﬂ? ||||..|.I'Illi.ll....I.'Il.l.ll.l“ll' IIIII LI D
(b) What turn between each side?vievuen VAT LRV ¥ W TR § R [:]
(c) What length for each side?c.viviiuinnnnnns veasess s [:]

(d) The turtle finishing exactly where it startedeovvses.s YES/NO

(e) A gap between where the ink starts and where it finishes YES/NO

NOW check your answers by running SHAPE.

C. When you type W: SHAPE 12 30 20 the drawing will have

Ra) How Hany sides? .viiveiiiviivinins P P S S [:]
(b) What tumbewaeneach Bidﬂ? TR @0 8 e a s s s am sa s asasEeas b D
(C) Whﬂt 181131:1‘1 for each BidE? I T R T]]

(d) The turtle finishing exactly where it started YES/NO

(e) A gap between where the ink starts and where it finishes YES/NO

NOW check your answers by running SHAPE.

(a)
(b)
(e)
(d)
(e)

(a)
(b)
(e)
(d)
(e)

Now

F.

(a)
(b)
(e)
(d)
(e)

Now

When you type W: SHAPE 30 12 20 the drawing will have

How aarly 8idesT uuvvisciiii o Vs se ileaddisne eas vyt ess cidred D
What turn between each side?cveceeeesncrsanans B o < [‘1
What length for each 8ide? eeeiisnisnsssanusiansvsnoesanesh [ij
The turtle finishing exactly where it startedieuvc0c YES /NO

A gap between where the ink starts and where it finishes ... YES/NO

check your answers by running SHAPE.

When you type W: SHAPE 20 12 30 the drawing will have

Howmany sidea? % 58 5 8P SRR RS FE AT N "8 8 8 88w D
What turn between each side? AL DT e e R a E [:]
What length for éach 81de? o.vivsesinessmmes swn s asimsssoss I [:]
The turtle finishing exactly where it started ...vvvevuvunns YES/NO

A gap between where the ink starts and where it finishes ... YES/NO

check your answers by running SHAPE.

When you type W: 12 20 30 the drawing will have

Bow et Bldag? "0y iee i v ineea i b RS Eae bt S R [:]
What tum bemee’n each Bide? # & 4 8 @ & &R EE SRR ® s 8 8% 7oA U
What length for each side? ..vivvnvsvesnnss SRR LR [:]

The turtle finishing exactly where it started::::.:.. YES/NO

A gap between where the ink starts and where it finishes ... YES/NO

check your answers by running SHAPE.

PROBLEM: Are there three numbers which used in any order as inputs for

SHAPE will always leave the turtle where it started?

(There is a small prize for the first correct solution.)

SUMMARY

When a procedure is called the order of values is matched to the order of

input names in the title line.

INDEX OF PROCEDURE NAMES

NAME OF PROCEDURE TYPE CHAPTER PAGE INPUTS RESULT
ABBREVIATE defining G 128 2 no
ADD arithmetic 9 34 2 yes
AND control L 137 0 no
ARC drawing 9 34 2 no
ARCRIGHT drawing B 120 2 no
BACKWARD drawing 2 8 1 no
BORROW memory 16 59 1 no
BOTH question I 131 2 yes
BUTLAST lists g 133 1 yes
CARRIAGE printing A 118 0 no
CENTRE drawing 2 10 0 no
CHANGE defining 6 26 1 no
CLEAR drawing 2 11 0 no
DEFINE defining 4 18 wvariable no
DEFINED memory 16 58 0 yes
DELETE defining 6 27 1 no
DISPLAY drawing 2 8 0 no
DIVIDE arithmetic 9 35 2 yes
DROP drawing 2 10 0 no
EITHER question i 131 2 yes
EMPTYQ question 22 80 1 yes
END defining 4 18 0 no
EQUALQ question 22 79 2 yes
FIRST lists 27 93 1 yes
FORGET memory 7 31 1 no
FORWARD drawing 2 8 1 no
FREE drawing 2 11 0 no
GO control M 138 no
GOODBYE control 2 12 0 no
GREATERQ question 22 79 yes

141

NAME OF PROCEDURE TYPE CHAFPTER PAGE INPUTS RESULT
HEADING drawing C 123 yes
HOOT drawing 2 11 no
IF control 23 81 1 no
JOIN lists H 129 2 ves
LAST lists 133 1 yes
LASTRUT lists 133 2 yes
LEFT drawing 2 8 1 no
LESSQ question 22 79 2 ves
LIFT drawing 2 10 0 no
LIST lists H 129 2 yes
LISTQ question 22 79 1 yes
MAKE variables 32 112 2 no
MULTIPLY arithmetic 9 35 2 yes
NOT question 22 79 1 yes
__NUMBERQ question 22 79 1 ves
PEN drawing C 123 0 yes
PLOTTERA drawing 2 8 0 no
PLOTTERB drawing 2 8 0 no
POSITION drawing C 122 1 no
PRINT printing 3 14 1 no
PUNCH tape E 125 1 no
PUT lists 27 93 2 yes
RANDOM arithmetic 33 115 1 ves
RECALL memory 7 30 1 no
REMAINDER arithmetic 9 36 2 yes
REMEMBER memory 7 29 1 no
REMEMBERED memory 16 58 0 yes
RENUMBER defining G 128 1 no
REPEAT control 12 48 2 no
REPLY control 24 84 1 yes
RESET clock D 124 0 no
REST lists 27 94 1 ves
RESULT control 19 70 1 yes

142

NAME OF PROCEDURE TYPE CHAPTER PAGE INPUTS RESULT
RETITLE defining 15 57 wvariable no
RETURN memory 16 60 0 no
RIGHT drawing 8 1 no
RUN control N 139 variable variable
RUNOUT paper—tape E 125 0 no
SAY printing A 118 1 no
SETHEADING drawing ¢ 122 1 no
SETX drawing C 122 1 no
SETY drawing c 122 1 no
SHOW defining 4 22 1 no
SPACE printing A 118 0 no
STATE drawing c 121 0 yes
STOP control 25 86 0] no
SUBTRACT arithmetic 9 35 2 ves
TAB printing 118 0 no
TAPE paper—tape 125 0 no
TIME clock 124 0 yes
TRACE debugging 26 90 1 no
TURTLE drawing 2 8 0] no
TYPE printing A 119 1 no
TYPESET printing A 118 1 no
UNDEFINE defining 7 31 1 no
UNTRACE debugging 26 92 no
VALUE variables 13 54 1 yes
WHERE drawing 2 11 0 no
WHILE control K 135 2 no
WORD words H 129 2 yes
WORDQ question 22 79 1 yes
XCOR drawing C 123 0 yes
YCOR drawing C 123 0 ves
ZEROQ question 22 79 1 yes

143

DIFFERENT TYPES OF PROCEDURE
TYPE ' PROCEDURE NAME PAGE TYPE | PROCEDURE NAME PAGE
ARITHMETIC ADD 34 DRAWING SETX 122
DIVIDE 35 SETY 122
MULTIPLY 35 STATE 121
RANDOM 115 TURTLE 8
REMAINDER 36 WHERE 11
SUBTRACT a5 XCOR 123
B YCOR 123
CLOCK RESET 124 T &
TIME 124 - LISTS BUTLAST 133
o S FIRST 93
CONTROL AND 137 JOIN 129
GO 138 LAST 133
GOODBYE 12 LASTPUT 133
IF 81 LIST 129
REPEAT 48 . PUT 93
REPLY 84 REST 94
RESULT 70
RUN 139 MEMORY BORROW 59
STOP 86 DEFINED 58
WHILE 135 FORGET 31
o ' T RECALL 30
DEBUGGING TRACE 90 REMEMBER 29
UNTRACE 92 REMEMBERED 58
RETURN 60
DEFINING ABBREVIATE 128
CHANGE 26 PAPER-TAPE PUNCH 125
DEFINE 18 - RUNOUT 125
DELETE 27 TAPE 125
END 18 |k - -
RENUMBER 128 PRINTING CARRIAGE 118
RETITLE 57 PRINT 14
SHOW 22 SAY 118
. UNDEFINE 31 SPACE 118
= TAB 118
DRAWING ARC 34 TYPE 119
ARCRIGHT 120 - TYPESET 118
BACKWARD B, o
CENTRE 10 QUESTION BOTH 131
CLEAR 11 EITHER 131
DISPLAY 8 EMPTYQ 80
DROP 10 EQUALQ 79
FORWARD 8 GREATERQ 79
L FREE 1 LESSQ 79
HEADING i LISTQ 79
HOOT 11 NOT 79
LEFT 8 NUMBERQ 79
LIFT 10 WORDQ 79
PEN 133 . ZEROQ 79
PLOTTERA 8 e S
PLOTTERB 8 VARIABLES MAKE 112
POSITION 122 VALUE 54
RIGHT 8 ————es R -t
SETHEADING 122 WORDS 129

144

MARKERS AND PROMPTS

e
MARKERS " 14
E 3 16
() , 40
THEN ELSE 81
+ 81
s E27
T 14
+ 13
et - A
PROMPTS W: 7
D: 17
REPLY : 84
C: 81
INT: 73
CHARACTER SET A=Z
‘ @-9
(and also MARKERS)

145

ERRATA
Page 4 Exercise 7: replace 'store button' by 'define button'
Page 38 ' Snapshot 3: replace 'SUM' by 'ADD'

Page 42 Snapshot 2: replace 3 instances of "RIGHT 60' by "RIGHT 90

Page 85 Exercise 5: replace 'D:' by 'W:'

and replace 4 instances of 'W:' by 'D:'

Page 95 Summary: replace 'EFFECT' by 'RESULT'

Page 97 Exercise 1: replace 'BOXES' by '"BOXES'

Page 110 Exercise 3: should be Exercise 4
replace section 'This procedure
WELT cwwere rest of the list' by

'This procedure will do two jobs very
much like SCRAMBLE.

Job 1l: 1if there are no more words in
the list then the result 1s
the empty list.

Job 2: otherwise PUT the scrambled
first word of the list at the
beginning of the coded rest
of the list.'

Page 116 Exercise 5: line 50 of procedure
insert '+' after SECRET

|“I

*‘ R e s
‘e ";- - d';.y-r

pE
ol K15 o Ty
3 "|" 1 “ '\’\" Wl ,- ¥ ,‘lll."l-
Lo Ip“: r"*b[’;j‘
\‘.' l "

%:w e
"‘ﬁ.‘.. ﬂ‘ '1"

‘q‘n'r ¥ ‘1“” LR i

