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Abstract. With the rise of VR, the internet, and mobile technologies
and the shifts in educational focus from teaching to learning and from
solitary to collaborative work, it’s easy (but mistaken) to regard Artificial
Intelligence in Education, in general, and Intelligent Tutoring Systems, in
particular, as a technology that has had its day — an old solution looking
for a new problem. The issues of modeling the student, the domain or
the interaction are still very much to the fore, and we can learn much
from the development of ITSs.

Despite the changes in technology and in educational focus there is still
an ongoing desire for educational and training systems to tailor their in-
teractions to suit the individual learner or group of learners: for example,
by being able to deal appropriately with a wider range of background
knowledge and abilities; by helpfully limiting the scope for the learner
to tailor the system; by being better able to help learners reflect produc-
tively on the experience they have had or are about to have; by being
able to select and operate effectively over a wider range of problems
within the domain of interest; by being able to monitor collaborative
interchanges and intervene where necessary; or, most tellingly, by being
able to react sensibly to learners when the task they are engaged on
is inherently complex and involves many coordinated steps or stages at
different levels of granularity. Individualising instruction in an effective
manner is the Holy Grail of ITS work and it is taken as an article of
faith that this is a sensible educational goal.

This paper explores the question of how much educational difference the
“AI” in an ITS system makes compared either to conventional classroom
teaching or to conventional CAI methods. One criterion of educational
effectiveness might be the amount of time it takes students to reach a
particular level of achievement. Another might be an improvement in
achievement levels, given the same time on task. So the paper surveys
the recent past for ITS systems that have been evaluated against unintel-
ligent versions or against traditional classroom practice and finds cause
for optimism in that some of the techniques and solutions found can be
applied in the present and the future.1

1 This paper is an edited version of [6].



1 Introduction

In many ways Artificial Intelligence in Education is in a state of flux. People
sometimes talk of one of its subfields, Intelligent Tutoring Systems, as an out-
moded technology that has, in some sense, “failed” [5]. The emphasis today has
shifted to exploring the possibilities of newer technologies such as virtual reality
and the Internet, and is particularly concerned with learning environments and
collaboration. However most of the traditional hard problems still remain — ad-
justing the environment to meet the needs of the learner(s), determining what
to say to learners and when to say it, and so on.

One aspect of the issue of teaching vs learning crystalised into the issue of
whether the educational system should attempt to model the student [10]. Mod-
elling the student allows, at least in principle, the system to adjust its behaviour
or to react to that student as an individual, or at least as a representative of a
class of individuals (see [17]). The argument for not modelling the student arises
because it is hard — indeed some regard it as inherently impossible — or because
it is thought unnecessary. The argument goes that if a learning environment is
well-designed and operated by the students within a supportive educational en-
vironment, we can rely on the students themselves to manage their own learning
without having the system individualise its reactions in any way.

In some ways the heat has gone out of the debate between the modellers
and the non-modellers. Although both camps have coexisted throughout the
history of Artificial Intelligence in Education, there is a stronger realisation that
both approaches have something useful to offer. Indeed both approaches are now
sometimes to be found inside a single system, where an ITS of a traditional archi-
tecture may be but a single component of a more general, possibly distributed,
system offering the learner a variety of learning experiences from which they can
choose [14].

This paper examines what has been shown to be of value in ITS work by
briefly exploring the question of how much educational difference ITSs make
compared either to conventional classroom teaching or to conventional CAI
methods (for more detailed reviews see, e.g. [15, 16]). One criterion of educa-
tional effectiveness might be the amount of time it takes students to reach a
particular level of achievement. Another might be an improvement in achieve-
ment levels, given the same time on task.

A problem for computers and education in general is that it gets hijacked
from time to time by particular technologies claiming to produce wonderful
educational results simply by virtue of that technology — examples include
LOGO, hypertext, and now we have the World Wide Web, hypermedia and
virtual reality. It is important to separate reasonable from unreasonable claims
and expectations.

To the sceptical eye the evidence for the value of ITSs is not yet overwhelm-
ing, though the positive trends are clearly visible. The extra individualisation
enabled by an intelligent system does indeed produce educational benefits either
through faster learning or through better learning.



This paper starts by exploring the issue of the difference between an intelli-
gently designed system and an intelligent system. It goes on to review criteria
by which the educational success of an intelligent educational system could be
measured. The paper then examines a number of evaluations of actual systems.
Finally it briefly surveys some of the educational issues with which ITS research
is grappling.

2 Educational value

It is important to acknowledge that non-intelligent but well-designed systems
can be educationally excellent. For example, Dugdale [7] offers a telling account
of how quite simple programs can generate authentic mathematical activity, dis-
cussion and insight, in particular getting students to reflect on strategy and
plans rather than simply following procedures. Her examples have simple in-
terfaces and are not internally complex. They essentially invite users to engage
in a problem-solving process that involves only a single step at a time and the
systems are able to react to the success or failure of that step immediately. For
example, Green Globs, displays coordinate axes and a number of points where
the task for the student is to provide a function which intersects and then “ex-
plodes” as many of the points as possible. In each case the programs provide
visual feedback of success or failure and can adjust, within limited parameters,
the difficulty of the tasks that they present, e.g. the Green Globs program can
choose locations for the points that can be intersected by simple formulae. How-
ever the degree of possible individualisation is slight and one would not regard
the programs as “intelligent” no matter how educationally successful they are.
It is worth stressing that quite small changes in the way problems are presented
and represented can make a big difference in the students’ success rates, see e.g.
[1]. Such findings suggest that intelligent design on its own is inlikely to get it
right for all the students in a target population, and that ideally the system itself
needs to have some way of adjusting to the background knowledge and learning
preferences of the particular student under instruction.

2.1 Criteria for success

Bloom and his colleagues investigated how various factors, such as cues and
explanations, reinforcement and feedback, affect student learning taking con-
ventional classroom teaching as the baseline [2]. They found that highly individ-
ualised expert teaching, shifts the distribution of achievement scores of students
by about two standard deviations compared to the more usual situation where
one teacher deals with a classroom of students. They also found that the range
of individual differences reduced.

This two standard deviation improvement, or Two Sigma shift, has become
a goal at which designers of ITSs aim. A standard method of evaluation of such
a system is to compare it with conventional non-computer-based teaching on the
same topic, though there have been some comparisons of “smart” and “dumb”
versions of the same software.



2.2 Reducing time on task

Smithtown is a discovery environment with which students can explore problem-
solving and inductive learning in the domain of microeconomics [20]. The goals
of the system are to help students grasp specific economics concepts, such as the
notion of “market equilibrium”, as well as more general problem-solving skills
such as adjusting only one variable at a time when undertaking an experiment.

Shute and Glaser [20] undertook two kinds of evaluation of the system. One
was a comparison with a non-computer-based exploration of the same material;
the other was an examination of the particular cognitive and learning-style fac-
tors that lead to success with this kind of discovery environment. The comparison
study was quite small (N = 30) but found that the group using Smithtown im-
proved their pre/post-test scores as much as the classroom based group despite
spending about half the time on the material (5 hours vs. 11 hours).

Over a number of years Anderson and his colleagues have produced a variety
of tutoring systems for programming and for mathematics in the heart of the ITS
tradition (for an overview, see [4]). Their systems attempt to model the student
in detail as s/he undertakes complex problem solving so as to be in a position
to offer assistance focussed on the point of difficulty and at the most helpful
level of generality (“model tracing”), as well as being able to select problems
for the student to solve that move him or her optimally through the curriculum
(“knowledge tracing”).

One such tutor (LISPITS) taught LISP and has been extensively evaluated
in terms of its specific educational interaction methodology (e.g. immediate or
delayed feedback) as well as in terms of its overall effect on learning gains.
For example, novice programmers using LISPITS were compared to a group
working on their own with a textbook and to a group working with a teacher in
a conventional classroom manner. While all three groups did equivalently well on
the post-test, the group who worked with the human teacher finished in about
12 hours, the group who worked with LISPITS finished in 15 hours and the
group who worked with the textbook took 28 hours. The authors argue that
the intelligent computer-based system was able to produce similar results to a
human teacher and achieved this with in only slightly greater time. In another
study with slightly more experienced students, there were two groups both of
whom took a conventional LISP course. The control group did the exercises with
a textbook and a LISP system whereas the experimental group used LISPITS
to do the exercises. As before the LISPITS group finished faster, and this time
did better on the post-test compared to the non LISPITS group.

2.3 Improving achievement scores

One of Anderson’s more recent evaluations concerns a system designed to be
used in Pittsburgh High Schools [8]. The Practical Algebra Tutor (PAT) is de-
signed to teach a novel applications-orientated mathematics curriculum (PUMP
— Pittsburgh Urban Mathematics Project) through a series of realistic problems.



The system provides support for problem-solving and for the use of a number of
tools such as a spreadsheet, grapher and symbolic calculator.

The intelligence of the system is deployed in several ways. Model Tracing,
based on representing knowledge of how to do the task in terms of production-
rules, is used to keep close track of all the student’s actions as the problem is
solved and flag errors as they occur, such as misplotting a point or entering a
value in an incorrect cell in the spreadsheet. It also adjusts the help feedback
according to the specific problem-solving context in which it is requested. Knowl-
edge Tracing is used to choose the next appropriate problem so as to move the
students in a timely but effective manner through the curriculum.

Of special note is the way that attention was paid to the use of the Tutor
within the classroom. The system was used not on a one-to-one basis but by
teams of students who were also expected to carry out activities related to the
use of PAT, but not involving PAT, such as making presentations to their peers.

An evaluation was carried out in three Pittsburgh Public High Schools (N >
100). We should note that the evaluation was of the tutor plus the new curricu-
lum against a more traditional curriculum delivered in the traditional manner.
Two standardised and two specially prepared tests were used.

The experimental group performed significantly better than the control group
on all four tests but did not achieve Bloom’s [2] criterion of improving outcomes
by two sigma above normal classroom instruction. However they did perform 1.2
standard deviations better than the control on the specially written Representa-
tions Test which was designed “to assess students’ abilities to translate between
representations of algebraic content including verbal descriptions, graphs and
symbolic equations”.

Table 1. Comparison of PUMP curriculum plus PAT tutor with traditional curriculum
and no tutor. Each cell in the first and second columns contains proportion of the post-
test correct (standard deviation) and N. The F values in the third column are derived
from a between-subjects ANOVA.

Control Experimental F value sigma
Group Group and significance

Iowa .46 (.17) .52 (.19) F(2,398) = 17.0 0.3
Algebra Aptitude 80 287 p < .0001

Math SAT Subset .27 (.14) .32 (.16) F(2,205) = 5.1 0.3
44 127 p < .01

Problem Situation .22 (.22) .39 (.33) F(2,186) = 5.3 0.7
Test 42 127 p < .01

Representations .15 (.18) .37 (.32) F(2,183) = 13.4 1.2
Test 44 124 p < .0001

(adapted from [8], page 40).



Lesgold, Lajoie and their colleagues have taken a slightly different approach
to individualisation in their work on SHERLOCK 1, a tutor designed to teach
to airforce technicians the electronic debugging skills needed to operate a com-
plex piece of testgear. In their system all users worked through the same set
of problems but the help and other feedback was adjusted to the expertise of
user. Various evaluations of this system are cited by Lajoie [9]. For example,
the Air Force evaluation was that “technicians who spent 20–25 hours working
with Sherlock 1 were as proficient in troubleshooting the test station as techni-
cians who had 4 more years of job experience”. In another evaluation a pre/post
comparison was made between a group using the tutor and a control group who
carried out their normal troubleshooting duties using the real testgear over a
twelve day period. The experimental group solved significantly more problems
in the post-test than the control group and the quality of their problem-solving
methods was more like those of experts.

3 Smart vs. Dumb

Several studies have compared the effectiveness of intelligent and non-intelligent
versions of the same program. For instance, Mark and Greer [13] compared the
effects of four versions of the same tutor designed to teach the operation of a
simulated Video Recorder. The least intelligent version gave simple prompting
and allowed the user only a single way of carrying out a task, such as setting
the simulated VCR to record for a particular period at a particular time on a
particular channel. The most intelligent, and the one providing the most “knowl-
edgeable” teaching offered conceptual as well as procedural feedback, undertook
model-tracing to allow flexible ways of carrying out tasks and could recognise and
tutor for certain misconceptions. In a comparative evaluation (N = 76), Mark
and Greer [13] found that increasing the knowledgeability of the tutor produced
a decreasing number of steps, decreasing number of errors and a decreasing time
needed for students to complete the post-test. They also found that these gains
were not the result of greater time on task in the case of the most knowledgeable
tutor.

Shute [17] evaluated a particular method of student modelling (SMART)
which forms the individualising component of a tutor named Stat Lady de-
signed to teach elementary statistics, such as data organisation and plotting.
Two versions of the tutor were produced. The non-intelligent version worked
through the same curriculum for all learners, with fixed thresholds for progress
through areas of increasing difficulty and a fixed regime of increasingly specific
feedback when repeated mistakes were made. The intelligent version had a more
detailed symbolic, procedural and conceptual knowledge representation which
enabled it to provide much more focussed remediation as well as to individualise
the sequence of problems for the learner to solve by a more careful analysis of
the students’ degree of mastery of individual elements of the curriculum.

As with Smithtown described above, Shute [17] was interested not just in
the comparative performance of the system but also in aptitude-treatment in-



teractions. The unintelligent version of Stat Lady improved students’ scores (N
= 103) by more than two standard deviations compared to their pre-test scores.
Other studies with the unintelligent version did not produce such high learning
gains, but did produce as good outcomes as an experienced lecturer [19] or a
workbook [18], though Stat Lady subjects showed a significant gain in declar-
ative knowledge compared to workbook subjects. In another study (N = 168)
Shute and her colleagues [19] compared the unintelligent version of Stat Lady
to a traditional lecture approach. Stat Lady improved pre-post test score differ-
ences by about the same margin as the traditional lecture approach (i.e. about
one standard deviation) and over the same time on task (about 3 hours). In a
similar study (N = 311) Stat Lady was compared with use of a workbook on the
same material [18]. Learning gains were generally similar though Stat Lady sub-
jects showed a significant gain in declarative knowledge compared to workbook
studies.

A further study [17] was conducted (N = 100) using the intelligent version of
Stat Lady. Pre-post test gains were significantly greater than for the unintelligent
version, which themselves were high. However there was a cost in that students
spent quite a lot more time working with the intelligent version of the system
(mean = 7.6 hours) compared the the unintelligent (mean = 4.4 hours). In
general high aptitude subjects gained more from Stat Lady than low aptitude
subjects.

In a somewhat similar but smaller (N = 26) study, Luckin compared learning
outcomes for versions of a tutor for simple ecology covering topics such as food
chains and webs [11, 12]. An unintelligent version (NIS) of her system ECOLAB
provided a range of activities, perspectives on the domain, traversal through the
curriculum and levels of help wholly under the control of the pupils themselves.
The intelligent version (VIS) made decisions in all four of these areas for the
pupils based on a student model. As with Stat Lady, the intelligent version
produced higher pre-post gains than the unintelligent version, with high ability
students gaining more than those of low ability. Time on task was the same for
both groups; the gains for both groups were maintained at a delayed (10 week)
post-test.

4 Conclusions

ITSs have been designed to individualise the educational experience of students
according to their level of knowledge and skill. This paper has described briefly
some of the evaluations that have been conducted into the educational benefits
of this investment in the capability to individualise. Although the evidence is
not definitive, there are indications that the extra individualisation enabled by
an intelligent system does indeed produce educational benefits either through
faster learning or through better learning. There are also indications that high
ability subjects are better suited to this kind of treatment. By contrast, it really
would be a surprising finding if attempting to match teaching to the learners
capability produced poorer results than not so matching. However what has not



been discussed is whether, in practical terms, the effort needed to produce these
intelligent systems is sufficiently paid back through their superior performance.

Acknowledgements

I thank Rosemary Luckin for commenting on a draft of this paper.

References

1. S. Ainsworth, D. Wood, and P. Bibby. Co-ordinating multiple representations in
computer based learning environments. In Brna et al. [3], pages 336–342.

2. B. S. Bloom. The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. Educational Researcher, 13(6):4–16, 1984.

3. P. Brna, A. Paiva, and J. Self, editors. Euroaied: European Conference on Artificial
Intelligence in Education, Lisbon, 1996. Edicoes Colibri.

4. A. T. Corbett and J. R. Anderson. LISP intelligent tutoring system: Research in
skill acquisition. In J. H. Larkin and R. W. Chabay, editors, Computer-Assisted
Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary
Approaches, pages 73–109. Lawrence Erlbaum, 1992.

5. F. M. de Oliveira and R. M. Viccari. Are learning systems distributed or social
systems? In Brna et al. [3], pages 247–253.

6. B. du Boulay. What does the AI in AIED buy? In Colloquium on Artificial
Intelligence in Educational Software, pages 3/1–3/4. IEE Digest No: 98/313, 1998.

7. S. Dugdale. The design of computer-based mathematics education. In J. H. Larkin
and R. W. Chabay, editors, Computer-Assisted Instruction and Intelligent Tutoring
Systems: Shared Goals and Complementary Approaches, pages 11–45. Lawrence
Erlbaum, 1992.

8. K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark. Intelligent tu-
toring goes to school in the big city. International Journal of Artificial Intelligence
in Education, 8(1):30–43, 1997.

9. S. P. Lajoie. Computer environments as cognitive tools for enhancing learning. In
S. P. Lajoie and S. J. Derry, editors, Computers as Cognitive Tools, pages 261–288.
Lawrence Erlbaum, 1993.

10. S. P. Lajoie and S. J. Derry, editors. Computers as Cognitive Tools. Lawrence
Erlbaum, Hillsdale, New Jersey, 1993.

11. R. Luckin. ‘ECOLAB’: Explorations in the zone of proximal development. Tech-
nical Report CSRP 386, School of Cognitive and Computing Sciences Research
Paper, University of Sussex, 1998.

12. R. Luckin and B. du Boulay. Ecolab: The development and evaluation of a vygot-
skian design framework. International Journal of Artificial Intelligence in Educa-
tion, 10(2):198–220, 1999.

13. M. A. Mark and J. E. Greer. The VCR tutor: Effective instruction for device
operation. Journal of the Learning Sciences, 4(2):209–246, 1995.

14. J. Mitchell, J. Liddle, K. Brown, and R. Leitch. Integrating simulations into intel-
ligent tutoring systems. In Brna et al. [3], pages 80–86.

15. J. Self. Special issue on evaluation. Journal of Artificial Intelligence in Education,
4(2/3), 1993.



16. V. J. Shute. Rose garden promises of intelligent tutoring systems: Blossom or
thorn? In Space Operations, Applications and Research (SOAR) Symposium, Al-
buquerque, New Mexico, 1990.

17. V. J. Shute. SMART: Student modelling approach for responsive tutoring. User
Modelling and User-Adapted Interaction, 5(1):1–44, 1995.

18. V. J. Shute and L. A. Gawlick-Grendell. What does the computer contribute to
learning? Computers and Education, 23(3):177–186, 1994.

19. V. J. Shute, L. A. Gawlick-Grendell, R. K. Young, and C. A. Burnham. An
experiential system for learning probability: Stat Lady description and evaluation.
Instructional Science, 24(1):25–46, 1996.

20. V. J. Shute and R. Glaser. A large-scale evaluation of an intelligent discovery
world: Smithtown. Interactive Learning Environments, 1(1):51–77, 1990.


