
Digital technology enables us to capture a variety of 
data in empirical studies. Besides video and audio, it is 
now possible to record, for a single experimental session, 
both visual attention and a detailed account of other user–
computer interaction events.

Throughout this article, we refer to this mixture of data 
of different types that originate from the same empirical 
episode as hybrid data. These are rich data that can com-
prise qualitative and quantitative elements. The analysis 
of such data requires us to coordinate their components in 
such a way that they integrate to provide a single, coher-
ent story of the episode observed. The analysis of hybrid 
data has been a method used to overcome the weaknesses 
or biases of approaches based on single data types (Den-
zin, 1997). Computerized tasks offer a good opportunity 
to capture hybrid data, because the user–computer inter-
action can be logged, verbalizations can be digitally re-
corded, and performance data can also be registered.

We are particularly interested in computerized tasks 
in which the user has to interpret and coordinate mul-
tiple representations presented on the computer screen. 
These include a wide variety of tasks because almost 
any computerized activity performed using a graphical 
user interface involves working with multiple windows. 
Specifically, our focus is on understanding the coordina-
tion of representations in reasoning and learning (Ains-
worth, 1999; de Jong et al., 1998), particularly during  
troubleshooting-based problem solving. Troubleshooting 
within a computerized environment is an activity partic-
ularly suitable for studying representation coordination 
because such environments normally provide multiple 
representations that are concurrently displayed, adjacent, 
dynamic, and linked. Computerized environments for 

troubleshooting normally simulate (and enable users to 
monitor) the system under inspection by offering a set of 
visualizations that change over time and that give a de-
tailed account of the behavior of the system at the level 
of its internal structure. In this way, the user can execute 
simulations for specific cases (stopping at predefined 
moments of this execution if necessary), observe how the 
state of the system changes through time, and detect the 
elements responsible for faulty behavior.

Performing troubleshooting activities within a comput-
erized environment is a task particularly suited to cap-
turing process data. Such data can include (among other 
information) records of (1) the interaction events the user 
performed in order to control the execution of the simula-
tion, (2) the windows and visualizations employed, and 
(3) the user’s verbalizations. Computerized troubleshoot-
ing environments can be complemented with the appropri-
ate functionality to capture these sorts of data.

In this article, we describe a methodology for the cap-
ture, analysis, and synthesis of hybrid data focusing on the 
coordination of multiple representations when working 
in computerized environments. We present an example 
demonstrating the application of this methodology in the 
area of software troubleshooting (program debugging) by 
novice programmers.

The capture and analysis of digital hybrid data are par-
ticularly relevant to the study of program debugging be-
cause programmers normally work within a computerized 
environment to perform this task. The study of debugging 
is of particular importance in the case of novice program-
mers, given that they often spend a large amount of their 
time dealing with errors in their code. To detect these er-
rors, novices normally try to coordinate and make sense of 
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the program code, the output, and a set of dynamic visual-
izations that illustrate the state of the program at different 
moments of its execution. Studying novices’ debugging 
behaviors can offer useful information about the develop-
ment of programming skill, common programming mis-
conceptions, and efficient debugging strategies.

The article comprises six major sections. The first of 
these presents a description and analysis of the trouble-
shooting activity and the role of external representations 
within it. Next, we present a brief review of related meth-
odologies for the capture and analysis of hybrid data for 
reasoning and learning, and specifically for the case of 
computer programming. In the subsequent three sections, 
we describe our methodology for data capture and analy-
sis. Finally, the Data Capture and Further Analyses sec-
tion presents a discussion and critique of the approach and 
suggests possible lines of further research.

Representation Coordination in 
Troubleshooting Tasks

In this article, we describe an approach to hybrid-
data capture and analysis that we believe is applicable to 
studying a wide range of fault-finding activities. When 
troubleshooting is performed with the help of a software 
tool, the user is frequently presented with a simulation 
of the faulty system. This simulation normally presents 
several aspects of the system under inspection using a 
set of dynamic representations. An important task for the 
user is therefore the interpretation and coordination of a 
multirepresentational system. Examples of this situation 
are found in applications as diverse as finding faults in 
industrial machine tools (Kranzlmüller, Grabner, & Volk-
ert, 1997), in parallel and distributed computer software 
(Gabbay & Mendelson, 1999; Marzi & John, 2002), in 
large marine engines (Hountalas & Kouremenos, 1999), 
in integrated-circuit hardware designs (Friedrich, Stumpt-
ner, & Wotawa, 1999), and in aircraft fuel systems (Papa-
dopoulos, 2003), among others.

The fault-finding process can be illustrated in more 
detail with a concrete example from the area of com-
mercial call-center systems. In this example, when errors 
are reported, a number of log files must be inspected and 
coordinated in order to ascertain the nature of the prob-
lem and the subsystem in which it occurred. In commer-
cial call-center systems, log files in different formats are 
sometimes produced by three different subsystems: the 
telephony subsystem, the user interface, and the software 
connecting these two.

The telephony subsystem produces a log file with 
time-stamped entries indicating changes in state of the 
telephones—for example, when a telephone was in use, 
was free to take a call, or was blocking calls. The user 
interface subsystem produces another log file that indi-
cates which keypresses took place in the telephony win-
dow that was used to control the telephone system. These 
two representations allow the programmer to ascertain 
whether the computer system was “in sync” with the tele-
phone. If this were not the case, some remedial action 
would be required. The third representation is the trace 
from the software code. This shows in detail which sub-

routines were called and allows the programmer to build a  
process-driven mental model of the program’s execution. 
Coordinating and interpreting these representations en-
ables programmers to build a multifaceted understanding 
of the problem, which in turn supports the fault-finding 
task.

The interpretation and coordination of dynamic, multi-
representational systems are central tasks in troubleshoot-
ing; however, empirical studies focusing on these fault-
finding activities are rare. The following section presents 
an overview of troubleshooting studies.

Capturing and Analyzing Hybrid Data
This section presents a brief review of the literature on 

the most popular types of process data and the methodolo-
gies employed for their capture and analysis, particularly 
in the area of software troubleshooting.

Studies of software comprehension and troubleshoot-
ing have tended to capture and analyze performance rather 
than process data (Davies, 1994; Gilmore, 1991; Gilmore 
& Green, 1988; Patel, du Boulay, & Taylor, 1997; Vessey, 
1989). Such studies have usually captured information 
about percentages of correct responses and solution times 
for given debugging tasks. However, when process data 
have been considered, the most popular types have been 
verbalizations (Mulholland, 1997; Pennington, 1987; Pen-
nington, Lee, & Rehder, 1995; Vessey, 1985). Experimen-
tal participants have been asked to “think aloud,” and their 
verbal protocols have been analyzed in order to explore 
strategy and investigate how it relates to programming 
experience and proficiency (Vessey, 1985); to explore 
the relationships between notational properties of the lan-
guage, the computerized debugging environment, and the 
information types programmers consider important (Ber-
gantz & Hassell, 1991; Mulholland, 1997); and to study 
program comprehension strategy in terms of the mappings 
programmers establish between the program and problem 
domains (Pennington, 1987).

Another type of process data is related to the focus of 
visual attention, although studies considering this vari-
able have been less frequent. There has been interest in 
the patterns of visual inspection employed when perform-
ing program comprehension tasks. This topic has been in-
vestigated either by restricting the environment in such a 
way that the user’s focus of visual attention can be tracked 
(Robertson, Davis, Okabe, & Fitz-Randolf, 1990) or by 
employing eyetrackers (Crosby & Stelovsky, 1989). Such 
studies have analyzed code-reading patterns to investigate 
whether they are more similar to prose reading or to tasks 
related to problem solving (Robertson et al., 1990), and 
also to investigate the relationship between focusing on 
critical areas of the code and the participant’s characteris-
tics, programming experience, and cognitive style (Crosby 
& Stelovsky, 1989).

An approach that has been even less frequently used is 
to record user–computer interaction data. Cox (1997), for 
example, employed this approach to capture and analyze 
data about representation coordination when construct-
ing and interpreting external representations in analytical 
reasoning tasks.
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Studies that have combined and integrated process data 
of different types have been scarce in software compre-
hension and debugging, but the approach has proved very 
useful for such purposes as evaluating virtual museum ap-
plications (Cox, O’Donnell, & Oberlander, 1999), investi-
gating individual differences in the development of logical 
proofs (Stenning, Cox, & Oberlander, 1995), and studying 
skill acquisition among health science students learning 
diagnostic reasoning (Cox & Lum, 2004). Because of the 
characteristics mentioned above, we believe that the cap-
ture and analysis of hybrid data is a suitable methodology 
for a deep study of troubleshooting activities performed 
in a computerized environment. The following section de-
scribes the computerized environment that, in combina-
tion with the appropriate functionality, has been employed 
for hybrid-data capture in troubleshooting tasks.

The Restricted Focus Viewer (RFV) Technology
The RFV is a program that takes visual stimuli, blurs 

them, and displays them on a computer screen, allowing 
the participant to see only a small region of the stimulus 
in focus at any time (Blackwell, Jansen, & Marriott, 2000; 
Jansen, Blackwell, & Marriott, 2003). The region in focus 
can be moved using the computer mouse. In this way, the 
program restricts how much of any stimulus can be seen 
clearly. It also records where the unblurred region of the 
screen is, and so (it is presumed) what the participant is 
focusing on at any point in time; in this way, the software 
enables the capture of the moment-by-moment focus of 
visual attention. Since several RFV stimuli can be present 
on the computer screen at the same time, the technique 
enables a user’s representation switching between concur-
rently displayed adjacent representations to be captured 
for later analysis.

The user interaction data captured via the RFV can be 
read with Replayer, a companion program that can replay 
the way an RFV participant moved the focus window over 
the stimuli. Among its other functions, this companion 
program can be used as an analysis tool to replay experi-
mental sessions, allowing the researcher to pause, restart, 
or play back the locus of movement of the unblurred re-
gion in real time, or faster or slower.

The RFV records changes in the location of the un-
blurred region with millisecond precision. The data cap-
tured using this program indicate, for each interaction 
event, the stimulus involved, the elapsed time, the type of 
event (mouse move or mouse click, for example), and its 
coordinates on the screen.

An obvious concern is whether blurring most of the screen 
makes a significant difference in the nature of the task or 
of the solution process. The RFV has been validated in the 
context of reasoning about simple mechanical systems via 
the inspection of static diagrams (Blackwell et al., 2000). 
That validation study found no significant differences in 
the inspection strategies of participants who worked with 
this technology or with eyetracking equipment. One dif-
ference, however, was that participants working with the 
restricted focus technology tended to take more time to 
perform the task. We return to the issue of validation in the 
Data Capture and Further Analyses section.

Data Capture: From Single-Type to Hybrid
Recording and analyzing data about the focus of visual 

attention can offer interesting information about the pro-
cess of coordinating multiple external representations. 
However, troubleshooting environments, besides present-
ing visualizations of the system under inspection, allow 
users to view the execution of simulations for specific 
cases. The Software Debugging Environment (SDE) is 
a modified version of the RFV that incorporates func-
tionality to enable users to view snapshots of the precom-
puted execution of particular programs. Figure 1 presents 
a screen shot of the SDE. In this case, the window on 
the left shows the code of the program. The line of code 
with the dark background represents the next command 
to be executed. The other three (blurred) windows show 
the state of the data structures of the program (top right), 
the program’s output (bottom right), and a subroutine call 
stack (bottom center); all of them show the same moment 
in the program’s execution.

The SDE also allows the capture of hybrid data. In ad-
dition to recording the focus of visual attention, the SDE 
captures interaction data about the control of the simula-
tion, as well as participants’ verbalizations.1

Presenting the execution of simulations. We have 
employed the SDE to investigate representation coordi-
nation in the area of software troubleshooting (Romero, 
Cox, du Boulay, & Lutz, 2002; Romero, du Boulay, Lutz, 
& Cox, 2003; Romero, Lutz, Cox, & du Boulay, 2002). 
However, the fact that the display of simulations in the 
SDE is achieved through preconstructed examples enables 
experimenters to employ it for different domains. The SDE 
does not perform an actual simulation of the target domain; 
instead, the experimenter has to prepare a sequence of vi-
sualizations depicting states of the system under study at 
different moments of the simulation for a specific example. 
The SDE can then present this sequence in steps. The user 
can move along the sequence by pressing the arrow keys, 
or see the visualizations associated with the beginning of 
the execution by pressing the home key, or see those as-
sociated with the end by using the end key.

This independence from the target domain increases the 
generality of the approach. Employing the SDE for other 
troubleshooting domains would require the modification 
of the layout and the number of windows displayed; how-
ever, the main process, preparing a sequence of visualiza-
tions depicting states of the system at different moments 
of the simulation, would remain unchanged. The layout 
and number of windows displayed are parameters set in 
an initialization file, and therefore their modification does 
not require any change to the SDE. This software system 
can also be employed in other frequently researched do-
mains, such as e-learning or human–computer interac-
tion. The main limitation of the approach is that, because 
moving the unblurred spot is done with the mouse, any 
manipulation of the displayed stimuli has to be performed 
with a different input device. This would make it diffi-
cult, for example, to employ this tool to explore Web site 
navigation, given that the main form of interaction in this 
context is clicking on hyperlinks situated inside the dis-
played windows.
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Presenting visualizations of the state of a system as pre-
computed image stimuli creates additional requirements 
for the SDE. First, these visualizations are sometimes 
larger than the window in which they appear, and there-
fore have to be presented within a tab or scrollable pane. 
A tab pane is particularly useful when presenting text that 
is organized in a number of files (for example, software 
modules distributed among several files). A scrollable 
pane can be used when the images presented are wider or 
longer than their associated window. Second, presenting 
a set of concurrent, linked, and adjacent representations 
encourages participants to switch their focus of visual at-
tention between these representations. This feature thus 
elicits two different forms of mouse use: The first is the 
original form, moving the mouse to change the unblurred 
spot while inspecting a specific window. The second is 
moving the mouse to switch between windows. To differ-
entiate between these forms of mouse use in the SDE, par-
ticipants switch between windows by moving the mouse 
and focus on a specific stimulus region (within a window) 
by clicking it. On returning to a previously visited window, 
the region in focus is the one that was set by the previous 
mouse click performed in that window image.

This last feature makes switching between windows 
easier, because participants do not have to reestablish the 
place they were looking at every time they switch atten-
tion from one window image to an earlier one (Romero, 
Cox, et al., 2002). Also, this change enables us to record 

(and analyze) window switching and stimulus inspection 
as two different behaviors.

Capturing data of different types. Besides capturing 
data about the focus of visual attention (via mouse move-
ments and clicks), the SDE also records information about 
both the control of the view of the simulated execution 
and the participants’ verbalizations. The keyboard actions 
that participants perform to control the presentation of 
the simulation execution (pressing the arrow, home, and 
end keys) are recorded in the log file generated by this 
application. In this way, the Replayer program is able to 
replay, besides a visual focus trace, the execution of the 
simulation for any particular experimental session. Addi-
tional data captured in this log file are related to the extra 
functionality associated with scrolling and with control-
ling the presentation of the simulated execution. For the 
case of scrolling, the additional data are the coordinates 
(of the stimulus image) located at the top left corner of 
the scrollable window. For the case of the control of the 
simulation, the additional data are the ASCII code related 
to the keyboard actions enabled.

If participants are required to “think aloud,” the audio 
data can be recorded by the SDE. The participants’ ver-
balizations are digitally recorded onto the computer’s 
hard disk in UNIX audio file format (.au, compatible 
with most PC and Macintosh audio applications) with an  
8-KHz frequency rate. In this way, the participants’ work-
ing sessions with this environment can be replayed “in the 

Figure 1. The SDE employed for rich data capturing. The unblurred region is located toward the bottom of the 
leftmost window.
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round” for later analysis, and the hybrid data recorded can 
be analyzed in a synchronous way. This method of hybrid-
data capture has been employed in the studies reported in 
Romero, Cox, et al. (2002); Romero, Lutz, et al. (2002); 
and Romero et al. (2003).2

Hybrid-Data Analysis
Capturing hybrid data is a technical achievement, but 

this effort can only pay off if there is a sensible framework 
for the analysis of such data. The framework we employ al-
lows us to analyze these data both quantitatively and with 
a methodology that combines quantitative and qualitative 
approaches. The quantitative analysis relates participants’ 
performance to their use of the SDE, and the combined 
approach explores participants’ behavior and strategies 
by taking into account three types of data synchronically: 
focus-of-attention trace, control of the presentation of the 
simulation’s execution, and verbalization data.

Quantitative analysis. The quantitative analysis re-
quires participants’ performance to be extracted from the 
verbalization data and the log file (of keyboard and mouse 
actions) to be transformed into a description of simulation 
execution, window fixations, and switches. Extracting 
this information from the log file data can be automated 
(using a computer program that performs this transforma-
tion), but the analysis of the verbalization data needs to be 
performed by human raters.

The description of the simulation execution is an ac-
count of how the participants navigate through the dif-
ferent simulation steps. They could view this execution 
in steps, by moving between predefined points (break-
points) in the simulation. Since this execution is sequen-
tial, participants can move forward to the next breakpoint, 
backward to the previous one, forward to the end of the 
execution, or backward to the beginning. One question 
regarding how this execution is viewed is whether there is 
a relationship between the usage pattern and troubleshoot-
ing performance.

Window fixation refers to the total time participants 
spent focusing on each window of the SDE, and window 
switches refers to the number of changes of focus between 
the available representations. Relating these two measure-
ments to troubleshooting performance enables us to inves-
tigate whether patterns of representation use are associ-
ated with different degrees of accuracy.

The content and format of the visualizations presented 
by the environment can be manipulated. For example, the 
version of the SDE employed for the studies of representa-
tion coordination in debugging reported in Romero, Cox, 
et al. (2002); Romero, Lutz, et al. (2002); and Romero 
et al. (2003) presents either graphical or textual visualiza-
tions that highlight either data structure or control-flow 
information. These experimental conditions, together with 
the variables mentioned earlier (patterns of program ex-
ecution, representation use, and debugging accuracy) can 
be analyzed looking for significant main and interaction 
effects.

Finding out about these relationships offers important 
information about patterns of environment use and pro-
gramming expertise. This information can be comple-

mented by investigating the debugging strategies that 
shaped environment use.

Combining quantitative and qualitative methods. 
This section describes a methodology to perform an anal-
ysis of hybrid data combining quantitative and qualita-
tive approaches. This methodology was inspired by the 
triangulation approach presented in Denzin (1997) and 
by the qualitative analysis of verbal data in Chi (1997). 
To explain this methodology, this section will refer to an 
example in the area of software troubleshooting.

Our analysis methodology can be employed to explore 
and explain at a detailed level a specific set of hypoth-
eses. This set of hypotheses could be derived, for example, 
from the results of a quantitative analysis (e.g., the one 
described in the previous section). The main idea behind 
our proposed analysis methodology is to build an interpre-
tation of the participant’s behavior by taking into account 
all of the available types of data. This interpretation clas-
sifies the participant’s behavior into predefined categories 
associated with the set of hypotheses to be explored. The 
occurrence frequency of these behaviors can be tested 
quantitatively in order to provide evidence for (or against) 
the proposed hypotheses.

The qualitative analysis described here takes into ac-
count three types of synchronous data: the trace of the 
focus of visual attention, the patterns of movement be-
tween breakpoints, and the participants’ verbalizations. 
Because the SDE supports the replay of programmers’ 
debugging sessions, a rater can execute these replays to 
extract the desired information. Table 1 presents part of a 
sample coding sheet. In this section of coding sheet, there 
are six columns: The first one contains the event number, 
the second the programmer’s utterances, and the third, 
fourth, fifth, and sixth the unblurred information displayed 
by the different windows of the SDE (the Code, Objects, 
Call sequence, and Output windows shown in Figure 1). 
Only the contents of the currently unblurred window are 
shown in the chart. Each row of this table presents one de-
bugging event. In general, debugging events are bounded 
by pauses or changes of topic in a programmer’s verbal-
izations (utterances), by interwindow switches of visual 
attention focus, or by breakpoint switches. The unit of ver-
balization that we considered an utterance was a verbaliza-
tion limited by a considerable pause (e.g., one greater than 
2 min) and/or by a change of topic. Interwindow switches 
occurred when the user moved the unblurred area from one 
window to another, and breakpoint switches took place 
when the programmer moved the state of the program ex-
ecution from one breakpoint to another. In the example in 
Table 1, Event 8 is bounded by a pause or change of topic 
in the programmer’s utterances, Event 11 is terminated by 
a window switch, and the rest of the events are bounded 
by a combination of these two (pauses or changes of topic 
and window switches).

A basic hypothesis that can be considered to explain 
and exemplify the classification of behaviors into differ-
ent categories relates to the possible relationships between 
debugging performance and behavior. Such a hypothesis 
suggests that certain program comprehension and debug-
ging strategies are more effective than others. In order to 
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test this hypothesis, a set of coding categories defining 
different comprehension and debugging strategies has to 
be defined, and the participant behaviors recorded in the 
coding sheets have to be classified according to these cod-
ing categories.

Program comprehension and debugging behavior 
coding categories. In order to code the data, a coding 
protocol had to be developed and operationalized (Chi, 
1997). The development of this coding protocol required 
decisions regarding the number and types of categories to 
include and the “grain size” of programming event that 
the coding categories would represent. These decisions 
in turn depended on the hypothesis being tested, the task, 
and the content domain. The operationalization of the cod-
ing protocol required verification that there was a clear 
relationship between behaviors in the hybrid data and the 
coding categories developed. In this step of the process, 
the effort focused on clarifying definitions of coding cat-
egories and resolving possible ambiguities. The develop-
ment and operationalization phases can be considered top-
down and bottom-up processes that are normally applied 
in an iterative fashion while refining the coding protocol 
(Chi, 1997).

A partial list of our behavior coding categories is pre-
sented in Table 2. This table is divided into categories for 
program comprehension and program debugging. Ac-
cording to previous research in program comprehension 
and debugging (Davies, 1994; Détienne, 1997; Penning-
ton, 1987; Pennington et al., 1995; Vessey, 1985), some 
of these behaviors lead to more success than others. For 
example, coding category C8 is an instance of a success-
ful program comprehension coding category because it 
registers the occurrence of a strategy that tries to link the 
program and problem domains. Such cross-referencing 
behavior is associated with good debugging performance 
(Pennington, 1987). On the other hand, program debug-
ging coding category D13 registers the occurrence of a 
strategy in which the programmer tries to understand spe-
cific details of the program without, for example, having 
a clear idea of what the effects of the error are in terms of 
the output. Such early preoccupation with program details 
is associated with poor debugging performance.

Data encoding. To obtain a detailed characterization 
of programmers’ program comprehension and debugging 
strategies, their coding sheets are analyzed to look for oc-
currences of the behavior coding categories in Table 2. 

This is a procedure that has to be performed by a human 
rater and requires that he or she consider information 
about focus of attention, program execution, and program-
mers’ verbalizations synchronously. For example, coding 
category C7 requires verification of whether simple step-
ping (a program execution behavior) happened while the 
focus of visual attention was located in a specific window 
(the Objects view). Verbalizations referring to executing 
the program in steps and/or to the contents of the Objects 
window would strengthen the case for the occurrence of 
this behavior. Table 3 presents an example of data coding 
for a segment of a debugging session (the coding sheet in 
Table 1 depicts the same debugging session segment). In 
this table, Events 9–12 have been categorized as occur-
rences of the behavior described by coding category C7. 
Also notice that some events can be coded as instances 
of more than one coding category. This is the case for 
Event 12.

Table 3 also includes information about transitions that 
bounded debugging events. As mentioned in the Compar-
ing Qualitative and Quantitative Methods section above, 
Event 8 is bounded by a pause or change of topic in the 
programmer’s utterances, Event 11 is terminated by a win-
dow switch, and the rest of the events are bounded by a 
combination of these two (pauses or changes of topic and 
window switches).

These low-level behavior coding categories can be 
integrated into program comprehension and debugging 
episodes (Vessey, 1985). These episodes are groups of be-
haviors that have a specific goal in common and that can 
be used to identify programmers’ strategies.

A cluster analysis allows us to categorize groups of pro-
grammers according to their displayed strategies and to 
compare this categorization with their performance data. 
The categorization can also be complemented by the find-
ings of the quantitative analysis. In this way, a model of 
program comprehension and debugging expertise in terms 
of behaviors and strategies can be empirically derived.

This method for deriving a program comprehension and 
debugging model, by taking into account several types 
of data synchronously, has advantages over methods that 
consider only one type of information. First, the range of 
behaviors, and therefore of strategies, taken into account 
by our model can be wider. For example, behaviors C4, 
C11, and C19 would be difficult to take into account in 
a model that considers only verbal data. Also, including 

Table 1 
Section of Coding Sheet for a Specific Debugging Session

Focus of Attention

Event  Verbalization  Code   Objects  Call Sequence  Output

 8 “Enter type of drink. Fanta” DrinkMachine (line 41)
 9 “Let’s have a look at it 

again . . .”.
DrinkMachine (line 34)

10 “Ah! Interesting” piles[0] to 
piles[3]

11 “In the Object window, it’s 
interesting to see . . .”

Enter type of drink. Coke  
Now enter the number of Fantas. 4

12           piles[0] to 
piles[3]
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several types of data enables raters to code particular be-
haviors with a higher level of certainty (as in the example 
above about the coding of category C7).

Considering a wide range of strategies in a program 
comprehension and debugging model could also increase 
the usefulness of the model. For example, if the model 
is going to be applied to the design of learning environ-
ments for programming (du Boulay, Romero, Cox, & 
Lutz, 2003), taking into account strategies relating to the 
focus of visual attention can enable the environment itself, 
in principle, to provide advice on these matters. The learn-
ing environment could, for example, embody a number of 
monitoring rules that keep dynamic track of both focus 
of attention and switching behavior, in order to guide stu-
dents to pay attention in more sensible places.

Data Capture and Further Analyses
This section discusses a number of issues in the prac-

tical application of the methodology that has been de-
scribed. This discussion starts with problems with data 
capture and moves on to problems with data analysis.

Issues related to data capture involve our assumptions 
about how the focus of visual attention relates to the tool’s 
unblurred spot, the level of event granularity associated 

with the restricted focus approach, and the possible way 
in which this technology modifies the representation fixa-
tion and switching tasks.

The capture of visual attention data assumes that par-
ticipants are indeed looking at and paying attention to the 
region in focus within the SDE (and the RFV). This seems 
to be a reasonable assumption, given that studies validat-
ing the restricted focus technology did not find signifi-
cant differences in the inspection strategies of participants 
working with this technology and with eyetracking equip-
ment (Blackwell et al., 2000; Jansen et al., 2003; Romero, 
Cox, et al., 2002). However, similar validation studies for 
the SDE (Bednarik & Tukiainen, 2004) employing both 

Table 2 
Sample Comprehension and Debugging Behavior Coding Categories

Comprehension Coding Categories

C1 Utterances reflect the stage of program execution
C2 Use of breakpoints
C3 Comments relating the information types
C4 Switching between information types a minimum of twice (A to B, then back to A)
C5 Utterances regarding hypothesis followed by switching from code to other type of representation
C6 Utterances regarding hypothesis followed by switching to code from other type of representation
C7 (Single-) Stepping through the code carefully while watching the Objects view
C8 While looking at code or object view, utterances reflect real-world objects in the problem domain
C9 Looking at the Output or Objects view while talking about the code

C10 Utterances relating to higher level entities (e.g., method, a subroutine, a section of code)
C11 Returning to the same line of code from another type of representation several times to understand all its implications
C12 Syntax verbalization
C13 Explaining the code to themselves
C14 Reading the code out loud from top to bottom
C15 Lack of switching between views (especially the code view)
C16 Relating only to real-world objects and only looking at the output
C17 Erratic jumping around within the code
C18 Erratic jumping across information types
C19 Repeatedly examining stereotypical lines of code
C20 Finding a piece of code to account for the output
C21 Searching for a line of code
C22 Paraphrasing as a re-representation

Debugging Coding Categories

D1 (Single-) Stepping through the code carefully while watching the Objects view
D2 Considering negative evidence in reasoning
D3 Focusing in on an area of code after an uttered hypothesis
D4 Rerunning the code with fix in place
D5 Temporarily considering regions of the program as free from errors
D6 Attempting an a priori classification of errors and acting accordingly
D7 Higher level code browsing to build up a complete picture before testing hypothesis
D8 Being clear that something is a hypothesis
D9 Comparison of actual with expected outcome; early comments suggesting potential causes

D10 Running the whole program again (including the previously commented-out parts) or browsing previously discounted code
D11 Talking in terms of breakpoints (dynamic view) but not stepping through
D12 Utterances of code cliches
D13 Early delving into the details

Table 3 
Section of Data Coding for a Specific 

Debugging Session

 Event  Behavior Category  Transition  

 8 C22 pause
 9 C7 switch/pause
10 C7 switch/pause
11 C7 switch

 12  C7, C4  switch/pause 
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the restricted focus technology and an eyetracker have 
found that participants also glance at blurred areas with a 
certain frequency. This behavior could be caused by sac-
cades or could be part of a strategy to minimize explicit 
interaction with the troubleshooting environment when 
extracting information that can be inferred, for example, 
from the generic shape of the (blurred) stimulus image. 
More experimentation is needed to know which of these 
explanations is the case.

A related issue is the fact that the level of granularity 
of troubleshooting events associated with the restricted 
focus technology is coarser than the one related to, say, 
eyetracking technology. According to the SDE validation 
study by Jansen et al. (2003), participants using eyetrack-
ing do more representation switching than those employ-
ing the restricted focus technology. This difference was 
not relevant to our studies (Romero, Cox, et al., 2002; 
Romero et al., 2003; Romero, Lutz, et al., 2002), since 
the general pattern of interactions and the relative num-
ber of switches between representations did not seem to 
be significantly modified. However, this difference in the 
level of granularity of the troubleshooting events might be 
important in other contexts.

The restricted focus technology might also modify the 
nature of the representation fixation and switching tasks 
by allowing participants to “bookmark” inspection areas 
in the visualizations when performing representation 
switching. The fact that each window “remembers” its 
region in focus makes window switching easier for par-
ticipants. Indeed, in the SDE validation study reported 
in Romero, Cox, et al. (2002), there was a tendency for 
participants to perform better when working with the re-
stricted focus environment than when working with an 
environment without a restricted view. One of the possible 
causes for this tendency is a modification in the fixation 
and switching tasks.

Unfortunately, taking the bookmark feature away 
seemed to increase the difficulty of the task considerably, 
because repositioning the focus area each time there was a 
window switch required an explicit search episode. Given 
the fact that the difference in performance reported in 
Romero, Cox, et al. (2002) was not significant but only a 
tendency, it was assumed that the modification of the fixa-
tion and switching tasks did not influence representation 
coordination drastically.

Issues associated with the analysis phase include the 
question of what constitutes a coding event and the need 
for a predefined set of hypotheses.

Coding events such as interwindow switches of visual 
attention focus or breakpoint switches are relatively easy 
to define and identify. However, this is not the case for par-
ticipants’ verbalizations. The unit of verbalization that we 
have considered an utterance is a verbalization limited by 
a considerable pause and/or by a change of topic. The first 
part of this definition is not easy to operationalize, since it 
depends on the rater’s judgment. One way to address this 
issue would be to employ more than one rater for at least a 
subset of the participants to verify interrater reliability.

There is also a need for a predefined set of hypotheses. 
Defining these hypotheses is necessary for the specifica-
tion of the coding categories for behaviors. An alternative 
is to perform this specification in a bottom-up fashion, by 
inspecting the data and then identifying behavior patterns 
that could be used for hypothesis creation. However, this 
exploratory approach would increase the size of the analy-
sis task considerably, since the number of coding catego-
ries so derived would tend to be high and the identification 
of behavior patterns is normally a complex activity.

Conclusions
This article has described a methodology for the cap-

ture and analysis of hybrid data. The specific area of ap-
plication for this methodology is computerized tasks in 
which the user has to interpret and coordinate multiple 
representations presented on the computer screen. This 
methodology is explained by employing an example from 
software troubleshooting, but the methodology should 
also be applicable to other troubleshooting activities.

We achieved the capture of data through the SDE, a 
computerized environment that employs a restricted focus 
technology that enables researchers to track the user’s visual 
attention by blurring the stimuli presented on the screen 
and allowing the participant to see only a small region of 
the stimulus in focus at any one time. This environment re-
cords what the participant is focusing on at a point in time, 
thus enabling the capture of the moment-by-moment focus 
of visual attention. In addition, it records user–computer 
keyboard interaction and what participants say.

The analysis of hybrid data is performed by building an 
interpretation of the participant’s behaviors, taking into 
account all of the available types of data. This interpreta-
tion classifies the participant’s behaviors into predefined 
categories that are associated with the set of hypotheses 
to be explored. The occurrence frequency of these behav-
iors can be tested quantitatively to prove (or disprove) the 
proposed hypotheses.

Finally, this article discusses some limitations of the ap-
proach that have to do with both the capture and analysis 
of hybrid data.
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NOTES

1. The SDE source code can be downloaded from www.informatics 
.sussex.ac.uk/projects/crusade.

2. A Quicktime movie file containing a fraction of a debugging ses-
sion from these studies can be found at www.informatics.sussex.ac.uk/
projects/crusade/clips/subj26.mov.
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