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Abstract. We have developed a system that aims to help trainees learn
a systematic method of describing MR brain images by means of a struc-
tured image description language (IDL). The training system makes use
of an archive of cases previously described by an expert neuroradiolo-
gist. The system utilises a visualisation method — an Overview Plot —
which allows the trainee to access individual cases in the database as
well as view the overall distribution of cases within a disease and the
relative distribution of different diseases. This paper describes the evolu-
tion of the image description training system towards a decision support
training system, based on the diagnostic notion of a “small world”. The
decision support training system will employ components from the im-
age description training system, so as to provide a uniform interface for
training and support.

1 Introduction

We have developed an image description training system [19,20] that aims to
help radiology trainees learn how to describe MR brain images in a systematic
way by means of a structured image description language (IDL). This language
allows clinically meaningful features of MR brain images to be recorded, such as
the location, shape, margin and interior structure of lesions. The training system
makes use of images from an archive of about 1200 cases, previously described
in detail using the terms of the IDL by an expert neuroradiologist.

The image description training system employs a visualisation method — an
Overview Plot — which allows the trainee to view and access (i) the images them-
selves, (ii) the written descriptions of the individual lesions in the image, and
(iii) a two dimensional representation of the multi-dimensional distribution of all
cases of a disease chosen from the archive. The two dimensional representation
relates to, and is calculated from, the descriptions of the lesions. Thus one can
view the overall distribution of appearance of cases within a disease and the rel-
ative distribution of different diseases, one against another. To this extent it is



a kind of case-based training system that provides a visual indexing mechanism
to cases similar to the case in hand.

This paper describes the development of the image description training sys-
tem to include a second stage, namely a decision support training system, which
we see as its immediate role with future potential as a decision support tool.

Two principles have guided the development of the system so far. First, the
system is deliberately aimed to support and train the radiologist’s inferences
from what can be observed in the images. In particular, the two dimensional
representation is currently based on lesion appearance and confirmed diagnosis,
but not on clinical signs and symptoms. The reconciliation of those inferences
with other sources of data, such as the clinical history, is a matter for the user.
Second, the design exploits as far as possible radiologists’ visual-spatial reason-
ing rather than simply offering numerical or quasi-numerical information about
diagnostic probabilities.

In the next section we briefly outline the nature of radiological expertise
as it informs the design. A comparison is then made with other knowledge-
based learning and teaching environments for radiology that offer substantial
adaptivity to the individual or are based on a careful analysis of the training
task. The body of the paper briefly describes the image description language
and the overview plot, and then outlines the decision support methodology. It
concludes with a discussion of our initial evaluation of the component tools and
future work.

2 Background

2.1 Medical and Radiological Expertise

Medical experts possess highly structured knowledge that informs the small set
of hypotheses that need to be considered in order to make accurate diagnoses.
Their reasoning is generally data driven [16] and does not appear to work di-
rectly from scientific first principles so much as from an “illness script” that
encapsulates various levels of knowledge (including, at base, the scientific) in a
schema associated with a particular pathology [18]. When presented with a new
case experts rapidly home in on a number of “critical cues” that guide them
to consider that small set of possible hypotheses which best explains the data
(a “small world”) [11,12]. Experts are also strongly guided by “enabling condi-
tions”, i.e. crucial factors in the patient data or clinical history. Experts have
schemata that are augmented with vivid, individual cases that they have seen
and use these in dealing with new cases [8]. Experts have an excellent appreci-
ation for the range of normality but have a propensity to pay attention to and
recall abnormal cases better than normal ones [9].

Expert radiologists are able to identify much of the abnormality in an image
very quickly (an initial gestalt view) and this is followed by a more deliberative
perceptual analysis, though both stages incorporate data-driven and hypothesis-
driven activity [2]. More importantly they have undergone a combined percep-



tual/conceptual change, evolving from recognising salient image intensities to-
wards recognising diagnostically significant image features. They are better than
novices at identifying the 3D location and physical extent of the abnormality (i.e.
responding to “localisation cues”) [13].

Both experts and novices are sensitive to the skewing effect on diagnosis of
other information about the patient [15]. Consulting this prior to viewing the
images affects not only what they see but also what they diagnose and therefore
recommend. This raises the difficult issue of when in the analysis the radiologist
should look at the clinical data and case history.

2.2 Computer-based Training

While there are many computer-based training aids for radiology (including
neuroradiology), most are essentially electronic books or collections of images
together with some kind of indexing mechanism, normally based primarily on
disease. There have been relatively few systems that attempt to either model
the domain or the evolution of knowledge and skill of the student in a detailed
way. Of these, Azevedo and Lajoie [2] describe an analysis of the problem solv-
ing operators used in mammography as applied by radiologists of various levels
of skill. They also analyse the nature of teaching as it occurs in radiology case
conferences and particularly the way that experts articulate their diagnostic rea-
soning. Both these analyses are used as part of the design process for RadTutor
[1]. A similar careful analysis in the domain of chest X-rays has been carried
out by Rogers [17] as part of the design process of VIA-RAD tutor. Macura
and Macura and their colleagues [14] have taken a case-based approach that is
similar to our own in a tutor for CT and MR brain images. Their system offers
a case-retrieval and decision-support mechanism based on descriptors but does
not employ a detailed image description language nor offer an overview plot.
However their system does employ an atlas and contains tutorial material and
images of normal brains as well as those displaying lesions. It can act as a deci-
sion support system by offering a range of possible diagnoses and access to the
images of related cases, given the textual information that has been entered.

3 Visual Decision Support Training

3.1 Image Description Language

The basic domain representation underpinning the system is an archive of cases
with confirmed diagnoses, all described by the same expert (G. du Boulay) using
the IDL. These include separate descriptions for each image sequence/echo as
well as detailed descriptions (e.g. the region, major position, exact location, mar-
gin, structure, shape, area, conformity to anatomical feature, interior pattern (if
any) and its intensity) of the lesion (or the largest of each type of lesion visible,
where there are multiple lesions), as well as correspondence between described
parts of lesions seen under different sequences and descriptions of atrophy, other
signs and other abnormal signals for the case as a whole [4].



The image description language for MR, was derived using an iterative pro-
totyping approach, utilizing experience gained in a similar enterprise for CT
brain images and a menu-based computer advisor (BRAINS) to aid in image
interpretation and cerebral disease diagnosis [21, 22].

Subsequent to the process of validation and refinement, G. du Boulay em-
ployed an interactive description tool (MRID, running under X-Windows for
Unix workstations) to describe an archive of some 1200 cases using the termi-
nology of the IDL. These represent a sample of the abnormal cases captured at
two different imaging centres dealing with very varied disease.

The IDL describes the appearance of the images rather than the underlying
disease, though the ontology of the language is influenced by a knowledge of di-
agnostically important disease processes. The IDL has been constructed to be as
complete and detailed as possible, taking account of the wide range of diagnostic
problems that occur in neuroradiology and the variation of image appearance
according to sequence type. It should be noted that one of the difficulties found
in earlier work is still of major importance. The process of exhaustive description
is long and painstaking, and the more recent gains in selecting terms by menu
on a computer screen are offset by the more extensive and detailed descriptors
made possible by MRI.

For the purposes of the prototype description training system a simplified
version of the description language has been used. It provides an initial set of
terms to support discussion and sharing of knowledge amongst trainee neuro-
radiologists and their supervisors. It also serves as a structured representation
of knowledge for the MR Tutor, enabling it to generate remedial responses to
student errors.

3.2 Display of Small Worlds

We can consider a case as occupying a point in a many-dimensioned space of de-
scription features. For the simplified language this space has some 30 dimensions,
where each point is a vector of binary values, each representing the presence or
absence of a particular feature!. Multiple Correspondence Analysis (MCA) is
a statistical technique for data reduction and visualisation [7]. It is used here
to reduce the dimensionality down to two so as to provide a ready means of
overviewing the data. It does this by finding that plane which best spreads out
the subset of cases under consideration. MCA is similar to principal components
analysis but is applied to categorical /binary data as opposed to scalar data and
assesses all possible pairwise associations in the data. Whilst the technique treats
ordinal values such as as “tiny”, “small”, “medium” or “large” as separate di-
mensions, it has the advantage of not depending on the allocation of arbitrary
scale values to these categories.

Effectively, a set of X-Y weightings for each feature value is derived that can
be used to position any case in the 2-D space. The first dimension selects those

1 A potential disadvantage of this is that zero means that a feature is not present, so
partial descriptions are problematic.



high weighted features that account for the highest proportion of the variability
and the second dimension selects less strongly weighted features.

A property of the analysis is that disease contours can be superimposed on the
2-D plot indicating degrees of typicality for cases of each disease. A case near the
centre of the contours is highly typical of the disease whereas cases nearer to the
periphery are less typical. A further property of the plots is that the proximity
of two cases of a particular disease in the plot, i.e. their perceptual proximity,
indicates the similarity of the two descriptions in the original multi-dimensional
space, see Fig. 1 and also Section 4.2. The overview space has the property that
the same perceptual distance between cases represents an increasing degree of
similarity as one moves out from the centre of typicality, i.e. this matches the
psychological finding that people can make finer similarity discriminations for
more typically encountered cases.

In displaying cases for many diseases we adopt a largely hierarchical approach
exploiting the “small worlds” metaphor [3]. We divide the diseases up into “small
worlds” corresponding to small sets of confusable diseases, and compute separate
composite weightings for each small world.

At present, subdivision of diseases into small worlds is based on the opinion of
a single expert, but empirical work is in progress to verify these choices. Having
computed the MCA weightings for the diseases in a particular small world, we
can then use the MCA analysis to compute the separate likelihood contours
for each disease in the chosen small world, see Fig. 1. The small world shown
involves two broad categories of lesion. For more expert users the small world
would need to be at a finer level of diagnostic discrimination.

By repeating this analysis for several small worlds, we have a set of possibili-
ties against which a new case can be viewed. Just as a single small world can be
displayed as a single overview plot, so a set of small worlds can be displayed in a
composite form which presents the spatial relationship of one small world with
another. Some distortion of the overall space may be needed to allow zooming
in and out to visualize from the best viewpoint both the relationship between
small worlds as well as the relationship between diseases within a small world.

3.3 Decision Support Methodology

Experts rapidly home in on a small world of possible diagnoses that explain
most of the data; their visual and diagnostic reasoning are deeply intertwined
and they try to reconcile clinical and case history information with data in the
images after an initial detailed viewing of the images. In accordance with this
view of radiological expertise, the following decision support methodology can
be applied (with minor variations) whether the system is acting in the mode of
“tutor” and offering a trainee an analysed case from the archive to diagnose, or
whether the user (possibly more expert) is attempting to diagnose a case that is
unknown to the system, essentially by comparing it to the others in the archive.

View MR case images. The first stage is to view and window the set(s) of
image slices. The set is shown in the top left of Fig. 1. If case notes are available,
e.g. for a case in the archive, these will not be accessible in the training system at
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Fig. 1. The image description tutor. The small world of Glioma and Infarct is shown on
the bottom right. Infarct cases are shown as lighter coloured dots. A partially completed
image description is shown on the bottom left.

this point, so as to reinforce the primacy of the image over other data. Whether
they should remain inaccessible, if available, in a decision support system for use
by experts is a point of debate that careful user trials will help resolve.

Select and view small world from menu. In the current version of the system
the overview plot can display a single small world (see Fig. 1), such as Glioma
and Infarct, chosen from a set of small world possibilities. The rapid initial
selection of hypotheses is accommodated by the user selecting and clicking on
a single button to bring the chosen small world into the overview plot, see the
bottom right of Fig. 1. We may have to enable the possibility of the user choosing
more than a single small world at this stage, especially if it turns out that some
diseases occur in more than a single small world.

Compare related cases from database. The overview plot is populated by dots,
each dot representing a case from the archive. These dots are mouse sensitive
and can be clicked on to bring the set(s) of image slices up on the screen, (see
the top right of Fig. 1). The user can visually compare the images for cases
from the archive with the case under examination. Moreover the position of the
dot in the overview plot indicates, through its distance from the centroid for a



particular disease, how typical that case is in comparison to the population for
that disease. For example, Case No. 4161 in Fig. 1 indicates that, on the basis of
how the images for this case appear, this is a very typical Infarct and similarly
that case No. 4469 is a very typical Glioma.

Read clinical and presentation data. At this point it is important that the
radiologist takes all the available data/information into account, if s/he has not
already done so. Where a strict regime of delaying access to this data is in
operation, access is now permitted to the clinical history and other case data if
available.

If case is no longer problematic then exit. The images and the case data
may render the case in hand unambiguous and at this point the user can exit,
without further action other than to discriminate between the diseases in the
selected small world if s/he can. In a future implementation, where the user is a
trainee, and when the case under examination is known to the system, a reflective
follow-up dialogue that is sensitive to the trainee’s history of interaction with
the system, the accuracy of their final diagnostic choice(s) and the process they
went through as far as this is available to the system will be initiated e.g. which
small worlds they explored in the overview plot, which cases within those worlds
they called up in the comparison process and the manner in which they explored
the images for the case in hand.

Describe case to system. Where the case is more problematic, either because
of the trainee’s lack of experience or because of its inherent difficulty, the user
can engage in the additional task of describing the appearance of the lesion(s) on
different sequences using the menu-driven structured image description language,
see bottom left of Fig. 1.

See where the description lies in the small world. Using the same coeffi-
cients derived from the MCA analysis that produced the small world plot in the
overview plot, the position of the case described by the trainee can be shown in
the overview plot. Nearby and distant cases can then be examined by clicking
on them to examine points of similarity and difference.

Check whether any other small world offers competing possibilities. At present
there is only a single small world implemented, so the following steps represent
future work. It may be that the position of the dot representing the current case
lies in a region of difficulty such that it is either far outside the range of typicality
for any of the diseases in the small world, or in a region equidistant from two or
more disease centres.

In the former case, the user can investigate other small worlds to see if there
are any which are both plausible, given what is known about the case, and
display the dot for the current case nearer a disease centroid.

In the latter case, the ambiguous case, the system can offer advice as to
which parts of the description have led to diagnostic uncertainty and/or to which
further tests might be employed to reduce ambiguity.

Read off relative likelihoods from chosen small world. When the user agrees
the description for the case under consideration and the best fitting small world is
in view in the overview plot, then the relative likelihoods of the different diseases



can be inferred from the position of the case relative to the disease contours of
the different diseases in the small world. If required the system can compute
diagnostic probabilities and display these to the user.

4 Evaluation

4.1 Description Language

The analytical power of the IDL has been partly tested by its application to the
differentiation of multiple sclerosis (MS) from vascular disease [5] and the effects
of HIV infection on the brain [6] Further insights into the predictive power of
combinations of features will emerge as part of the continuing statistical analysis
of the data, including the application of Multiple Correspondence Analysis.

4.2 Overview Plot

We have conducted a limited evaluation of the overview plot, based on the display
of cases for a single disease. The evaluation [10] was carried out to investigate
whether the statistically derived measures of typicality and similarity presented
in the overview plot match the typicality and similarity judgements of radiolo-
gists.

A total of seventeen subjects took part in the experiment. These comprised
four novices (with no knowledge of radiology), nine intermediates (4th year
medics and radiographers with some knowledge of anatomy and imaging) and
four expert neuroradiologists. The subjects were presented with the overview
plot for a single disease, Glioma, on a computer screen with six cases removed.
They were asked to fully explore all the presented cases by clicking on the points
to bring up case images and associated descriptions. They were then shown the
images and descriptions of each of the six cases previously removed and asked to
place a marker representing each case at an appropriate position in the overview
plot. Scores were derived for the similarity of each of the six test cases to all the
other cases by computing their scaled Euclidean distances from the other points.

An ANOVA of the log distances showed significant differences between the
novice, intermediate and expert placement of the cases in the overview plot
(F2,60 = 3.150forP < .05). The average degree of agreement between human
and MCA placement was in the expected order of expert (0.97), intermediate
(0.95), novice (0.94).

Interviews with the subjects based on a structured questionnaire indicated
that they found the overview plot easy to use and acceptable as a means for re-
trieving cases from the image archive. The evaluation suggests that the overview
plot can provide a useful teaching device, to assist a trainee in forming a mental
representation of the distribution of cases of a disease comparable to that of an
expert.



5 Conclusion

We have described the main components of a largely visual decision support
training system derived from an existing system to teach MR image description.
This is based on implementing the notion of a small world as an interactive
overview plot, based on an MCA analysis of cases from an archive. At present
the components described are being re-implemented in Java to improve their
portability and their modularity?.

Much work is yet to be done. This includes choosing in a principled way the
small worlds and including within the system some knowledge of the cues that
evoke them; evaluating the decision-making leverage (if any) provided by the
system, and evaluating the training potential of the system.
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