
Pair Programming and the Re-appropriation of Individual
Tools for Collaborative Programming

Sallyann Bryant
IDEAS laboratory

Dept of Informatics
University of Sussex

s.Bryant@sussex.ac.uk

Pablo Romero
IDEAS laboratory

Dept of Informatics
University of Sussex

pablor@sussex.ac.uk

Benedict du Boulay
IDEAS laboratory

Dept of Informatics
University of Sussex

b.du-boulay@sussex.ac.uk

ABSTRACT
Although pair programming is becoming more prevalent in software
development, and a number of reports have been written about it [4]
[6], few have addressed the manner in which pairing actually takes
place [5]. Even fewer consider the methods employed to manage
issues such as role change or the communication of complex issues.
Here we contribute by highlighting the way resources designed for
individuals are re-appropriated and augmented to facilitate pair
collaboration

Categories and Subject Descriptors
Programming techniques, computing methodologies.

General Terms: Human Factors.

Keywords:Extreme programming, pair programming,
collaborative software development, ethnography.

1. INTRODUCTION
Collaborative programming is not uncommon in the

commercial world and has been formalised as ‘pair programming’
where “all production code is written with two people working at
one machine” [1]. Two roles have been identified, the “driver”, who
is currently controlling the computer, and the “navigator”, who
contributes verbally (and subtly in other ways, as shown).

A number of studies have considered the costs and benefits of
pair programming (e.g. [3] [8] [10] [11) however, none have closely
considered how the roles of driver and navigator are dynamically
realised and facilitated by the artifacts, environment and language
used by the programming pair.

This paper draws on a detailed ethnographic account to
highlight how pair programming is practically accomplished. It
focuses on how tools are re-purposed and used alongside dialogue
to facilitate role management and communication.

2. TEAMS OBSERVED
The data were collected from four, one-week studies of experienced
pair programmers (with at least six month’s continual commercial
experience) in four companies. The studies took place in the
workplace, with the programmers working on typical tasks in their
usual environment. 36 one-hour sessions were observed,
transcribed and analysed.

3. THE RE-APPROPRIATION AND
AUGMENTATION OF SOLO ARTIFACTS

3.1 Keyboard
The keyboard consistently became a programming pair’s

primary token for ‘floor control’. Possession of the keyboard
avoided complications from having both programmers
simultaneously editing the code. The keyboard was also often used
to indicate intention of role change: the driver might slide the
keyboard over to the navigator to suggest an exchange of roles.
Although relinquishing control of the keyboard in this way was
considered acceptable, initiating control of the keyboard was rarely
seen.

3.2 Mouse
Although the driver would usually control the mouse it was not

uncommon for the navigator to lean over and use it to ‘point’ at
something on the screen. Presumably this was to avoid both the
physical inconvenience of finger-pointing and the time and
cognitive overhead associated with verbalisation.

3.3 Surrogate mouse
In one pairing session paperclips were used as an informal role
control mechanism. When A was driving, B would take up the
paperclips and make movements mirroring those A was making.
When B wished to assume the role of driver he would let go of the
paperclips and A would relinquish control of the mouse (and
keyboard). Once finished as the driver, B then let go of the mouse
and once more picked up the paperclips, at which point A almost
immediately took up the driver role (and the mouse) once more.

Figure 1. The surrogate mouse

3.4 Interactive Development Environment
The code itself played an important role in communication and did
not seem to be merely the drivers ‘translation’ of the collaborative
effort or the ‘product’ under development. Sometimes talk would
trail off and the interaction would be continued by typing at the
keyboard. This was clearly the case where the navigator interjected

Copyright is held by the author/owner(s).
GROUP’05, November 6–9, 2005, Sanibel Island, Florida, USA.
ACM 1-59593-223-2/05/0011.

332

using agreement protocols normally reserved for conversations (e.g.
“mmmn’ or ‘uh huh’). An example is:

A: And so this is going to be…..(long pause while typing)….is
this looking right so far?
B: I think so.

The distributed cognition afforded by this representation often led to
underspecified statements, as reported elsewhere [5]. An example is:

A: Err…get this version of that….so that’s got that….so it’s
come through there now.
B: So if you try and run that through there now.
A: Is this a problem?

3.5 Toys
On three of the projects seen, soft toys were used as tokens. A
programming pair would collect the toy and place it on top of their
terminal to indicate that they were currently loading new code onto
the integration machine. Essentially these tokens were an informal
‘locking mechanism’. Their effectiveness relied entirely on members
of the project understanding and conforming to their rules of use.
This is particularly interesting as some other, more formal,
technology based locking mechanism might just as easily have been
put in place. It is also contrary to an example in Rogers and Ellis
[12], showing that software developers were inconsistent in their use
of a manual whiteboard for file locking as this was extraneous to the
work activities they were involved in. In keeping with a number of
studies in the field of CSCW (e.g. [7] [13]), the physical presence of
the toy and its manipulation may alert others to peripheral events
which might be of interest (here use of the integration machine).
This is consistent with studies of news rooms, police operations,
traffic control centres and operating theatres [7] in which
participants were seen to “design and produce actions to render
features of their conduct selectively available to others” . Robertson
[13] stresses the human ability of peripheral awareness as
particularly pertinent. In pair programming teams, each team
member is given the opportunity to notice the change in integration
machine control by the developer walking over and retrieving the
toy. Even if this is not attained, the toy’s placement on top of the
developer’s monitor makes it continually available to the rest of the
team.

4. CONCLUSION
The re-appropriation and augmentation of solo tools suggests
programming pairs have extra requirements from their workstations
and environments. While this ‘re-purposing’ shows ingenuity and
flexibility on the part of the programmers, it suggests that there is
scope for the design of more specialised tools for use when pair
programming in a collocated manner, providing specifically tailored
tools for collocated collaborative software development rather than
shoe-horning existing resources into collaborative use.

5. ACKNOWLEDGMENTS
This work was undertaken as part of DPhil research funded by the
EPSRC. The authors would also like to thank the BBC iDTV
project, BNP Paribas, EGG and LogicaCMG.

6. REFERENCES
[1] Beck, K. Extreme programming explained: Embrace change,

Addison Wesley (2000).
[2] Beck, K., M. Beedle, et al. The Agile Manifesto.

http://agilemanifesto.org (2001).
[3] Cockburn, A. and L. Williams, 'The costs and benefits of pair

programming'. Extreme programming examined. G. Succi and
M. Marchesi, Addison Wesley, 2001: 223-243.

[4] Dick, A. and B. Zarnett, 'Paired programming and personality
traits'. Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering
(XP 2002), Alghero, Sardinia, Italy.

[5] Flor, N. and E. Hutchins, 'Analyzing distributed cognition in
software teams'. Empirical studies of programmers: Fourth
workshop, J. Koenemann-Belliveau, T. Moher and S.
Robertson (eds). Ablex publishing corporation (1991): 36-64.

[6] Gallis, H., E. Arisholm and T. Dyba 'A transition from partner
programming to pair programming - an Industrial Case Study'.
Workshop: "Pair programming installed" at Object-oriented
programming, systems, languages and applications (OOPSLA
2002) (Seattle, USA).

[7] Heath, C., M. Sanchez Svensson, D. Hindmarsh, P, Luff, D.
von Lehn. 'Configuring awareness.' Computer Supported
Collaborative Work 11 (2002): 317-347.

[8] Heilberg, S., U. Puus, P. Salumaa and A. Seeb. 'Pair-
programming effect on developers productivity'. Fourth
International conference on extreme programming and agile
processes in software engineering (XP2003). Springer-Verlag,
2003: 215-224.

[9] Hutchins, E. Cognition in the wild. Cambridge, MA, The MIT
Press (1995).

[10] Jensen, R. 'A pair programming experience.' The Journal of
Defensive Software Engineering 16, 3 (2003): 22-24.

[11] Lui, K. and K. Chan. 'When does a pair outperform two
individuals?' Fourth international conference in Extreme
Programming and Agile Processes in Software Engineering
(XP2003). Springer-Verlag (2003): 225-233.

[12] Rogers, Y. and Ellis, J. 'Distributed cognition: an alternative
framework for analysing and explaining collaborative working'.
Journal of Information technology 9, 2 (1994): 119-128.

[13] Robertson, T. 'The public availability of actions and artefacts'.
Computer Supported Collaborative Work (CSCW 2002) 11 (3-
4), Kluwer Academic Publishers (2002): 299-316.

[14] Williams, L., R. Kessler, W. Cunningham, R. Jeffries.
'Strengthening the case for pair programming.' IEEE software
17, 4 (2000): 19-25.

333

