$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/341877654$

Capturing and Characterising Notional Machines

Conference Paper · June 2020

DOI: 10.1145/3341525.3394988

Some of the authors of this publication are also working on these related projects:

Levumi. Eine Lernverlaufsdiagnostik Onlineplattform View project

Project Infrastructure for Computer Science Education View project

Capturing and Characterising Notional Machines

Sally Fincher (co-leader) School of Computing University of Kent Canterbury, Kent, UK S.A.Fincher@kent.ac.uk

Peter Donaldson Computing Science University of Glasgow Glasgow, Scotland, UK peter.donaldson.2@glasgow.ac.uk

Arto Hellas Department of Computer Science Aalto University Espoo, Finland arto.hellas@aalto.fi

Andreas Mühling Institute for Computer Science Kiel University Kiel, Germany andreas.muehling@infomatik.unikiel.de Johan Jeuring (co-leader) Department of ICS Utrecht University The Netherlands J.T.Jeuring@uu.nl

Benedict du Boulay Department of Informatics University of Sussex Brighton, Sussex, UK b.du-boulay@sussex.ac.uk

Felienne Hermans LIACS Leiden University The Netherlands f.f.j.hermans@liacs.leidenuniv.nl

Jan Pearce Computer Science Department Berea College Berea, KT,, USA pearcej@berea.edu Craig S. Miller (co-leader) School of Computing DePaul University Chicago, IL, USA cmiller@cs.depaul.com

Matthias Hauswirth Faculty of Informatics USI Università della Svizzera italiana Lugano, Switzerland matthias.hauswirth@gmail.com

Colleen Lewis Department of Computer Science Harvey Mudd College Claremont, CA, USA lewis@cs.hmc.edu

Andrew Petersen Department of ICS University of Toronto Toronto, Canada andrew.petersen@utoronto.ca

ABSTRACT

A *notional machine* is a pedagogic device to assist the understanding of some aspect of programs or programming. It is typically used to support explaining a programming construct, or the user-understandable semantics of a program. For example, *a variable is like a box with a label*, and assignment copies or moves a value into that box.

This working group will capture examples of notional machines from actual pedagogical practice, as expressed in textbooks (or other teaching materials) or used in the classroom. We will interview at least 30 teachers about their experience with, and perceptions of, the use of notional machines in teaching. Using the interviews, we will work on devising and refining a form to

© 2020 Copyright held by the owner/author(s). 978-1-4503-0000-

characterise essential features of notional machines. We will also attempt to relate them to each other to describe potential learning sequences or progressions. The working group report will contain descriptions of notional machines used at different levels in education, in different countries, by many teachers.

The resulting catalogue of notional machines will allow a teacher to select a machine for a particular use, permit comparison between them, and provide a starting point for further categorization and analysis of notional machines.

Additionally, we will make more theoretical explorations. We will explore a variety of *presentational formats*, examining what is necessary and what superfluous; we will look for *dimensions of comparison* and will examine how notional machines are instantiated across the discipline. We argue that the creation and use of notional machines is potentially a *signature pedagogy* for computing [1] and that creating and using notional machines represents a certain level of pedagogic sophistication that might be an indicator of pedagogic content knowledge (PCK).

Capturing and Characterising Notional Machines Sally Fincher, Johan Jeuring, Craig S Miller

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). *ITICSE 2020,,Trondheim, Norway*

CCS CONCEPTS

Applied Computing. Education

KEYWORDS

Notional machines, pedagogical practice, signature pedagogies, PCK

1 What is a Notional Machine?

First identified by du Boulay [2,3,4] a notional machine is a pedagogic device to assist the understanding of some aspect of programs or programming. It is normally associated with teaching novices, but can also be applied in other teaching or training situations with more expert participants. It is called "notional" in the sense that what is being described is a simplified, partially true, version of the truth. It is called a "machine" because it describes both entities and their actions. For example, *a variable is like a box with a label*, and assignment copies/moves a value into that box.

A notional machine is not a mental representation in itself, although learners will develop an understanding of the computer and programming, and that understanding may well be influenced by any notional machines that they have been exposed to.

A crucial aspect of a notional machine is that it should simplify an actual concept or skill as an aid to understanding. It should also encompass the associated epiphenomena of programs and programming, such as the names of program constructs, the causes and content of error messages, the names on buttons in the environment (e.g. "save", "file" etc), the locations of files containing programs, the difference between editing and running a program and so on.

For a beginner faced with learning how to design, code, test and debug programs, there are three areas in which a notional machine may play a role.

- The programming environment in which the programming is to be undertaken. This includes the file system and tools for coding, editing and debugging.
- The programming language itself. This includes the basic constructs of the language as well as any built-in language features for aggregating small chunks of code into larger units.
- The tasks of programming, where the human, in a way, *acts* as a "machine" undertaking actions such as coding, debugging, editing and testing.

3. Preliminary work

The proposal for this working group originates from Dagstuhl seminar 19281, Notional Machines and Programming Language Semantics in Education, 7th-12th July 2019. At this seminar, a subgroup was formed to gather and examine practical examples of notional machines. The small corpus collated there provides preliminary work for the working group, and includes the following:

- An interview protocol for eliciting notional machines.
- A collection of more than 10 interview recordings and transcriptions.
- A rough working set of attributes to describe (and potentially help classify) notional machines.

2 Objectives of this Working Group

This group has four objectives:

- (a) To conduct a literature review, to ground and inform the work;
- (b) To capture examples of notional machines in use;
- (c) To catalogue them in a common scheme; and,
- (d) To arrange them in clusters or sequences.

The outputs of the working group will form the first contextualized collection of notional machines from multiple sources. We anticipate that it will not only provide a useful collection for teachers, but also a foundational resource for other researchers interested in this area [5] [6].

ACKNOWLEDGMENTS

This work builds on initial activity undertaken at Dagstuhl seminar 19281, *Notional Machines and Programming Language Semantics in Education*, 7th-12th July 2019. The three organizers of this working group participated in the Dagstuhl seminar.

REFERENCES

- [1] Shulman, L. (2005) Signature Pedagogies in the Professions Daedalus, 134(3), 52-59
- [2] du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Research, 2(1), 57–73.
- [3] du Boulay, B., & O'Shea, T. (1981). Teaching novices programming. In M. J. Coombs & J. L. Alty (Eds.), *Computing Skills and the User Interface* (pp. 147– 200). Cambridge, MA: Academic Press.
- [4] du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting computing concepts to novices. *International Journal of Man– Machine Studies*, 14(3), 237–249.
- [5] Sorva. Juha (2013). Notional machines and introductory programming education. ACM Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. DOI:https://doi.org/10.1145/2483710.2483713
- [6] Berry, Michael (2015) The Design and Implementation of a Notional Machine for teaching Introductory Programming, PhD thesis, University of Kent