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The History of Computing Education 

Research 
 

M. Guzdial, B. du Boulay, 

1 The Scope of Computing Education Research 
 
Teachers have been educating students about computing for many years.  For almost as 
many years, computing education researchers have been studying, in particular, how 
students learn programming and how to improve that process. Programming languages 
such as Fortran (1957) and COBOL (1959) were originally invented to be easier than 
assembler and other early notations so that programming could be made available to a 
wider range of programmers. Programming languages such as BASIC (1964) and Pascal 
(1970) were invented explicitly to ease learning how to program. In the late 1960’s, 
researchers started gathering data, studying how learners were learning programming, when 
they did not, and how they experienced programming.   
 
We are limiting the scope of this chapter in three ways. The content focus of this chapter on 
the history of computing education research is very specifically on research on how students 
come to understand programming rather than on other aspects of computing such as 
databases, networks, theory of computation, and so on. The time focus of this chapter is 
from the first efforts to observe students learning programming (1967) up to the first offering 
of the International Computing Education Research (ICER) Conference in 2005. After 2005 
we consider to be the “modern era” of computing education research. 
 
Finally, we have filtered the historical events to focus on those that inform today’s current 
work in computing education research. Computing education researchers have explored 
many paths over the last 50 years, and not all have been fruitful. We focus on the historical 
events that have the clearest connection to today’s computing education research. As we 
review these events, we use three lenses: 
 



• Tools: Educators in science, engineering, and mathematics may use computing 
technology, but computing education is necessarily tied to technology. Just as chemists 
cannot directly touch individual atoms and physicists cannot touch velocity, the bits and 
processes of programs cannot be directly sensed and manipulated by learners. Instead, 
we create tools that provide views on the program and its execution at different levels of 
granularity and from different viewpoints so making computing more malleable. What 
tools do we use, what have we used, and how do we design tools to serve our 
educational needs? 

• Objectives: Why are we teaching students about computing? The answer has varied 
over the previous five decades, from preparing future programmers, to influencing how 
learners view their world, to a necessary part of general education like mathematics or 
history. 

• Research Methods: How do we evaluate the effectiveness of computing education 
research, or answer our questions about how students learn? The earliest researchers 
applied the empirical methods they knew, but as our tools, objectives, and strategies 
have changed, we have also changed our research methods. We have even invented 
methods unique to computing education research.  

 
The 1970’s saw the emergence of many of the tools, objectives and research methods that 
underpinned work in later decades. Section 2 of this chapter looks at the computing 
education research conducted in the 1970s. It was an era when the programming 
technology available was fairly primitive, notably in terms of limited input and output devices.  
Section 3 explores the rapid developments in computing technology in the 1980’s, 
particularly in interface capabilities, and how these affected computing education research.   
 
Various claims had been made for the benefits of learning programming as a vehicle for 
developing various thinking skills, notably by Papert.  While there had been some 
experimental work in the 1970’s to test these claims, it was in the 1980’s when educational 
researchers brought longitudinal research methods to bear on these issues.  This was also 
the time when Cognitive Science research started to burgeon and this had an effect on the 
way that programming was conceptualised via cognitive models of the processes of 
programming, such as debugging. Section 4 explores the impact of these two disciplines on 
computing education research. 
 
We then shift our focus in Section 5 to the organisation of computing education research 
activity over these decades, and in Section 6 we draw the threads together in anticipation of 
the next chapter in this book, looking at present and future of computing education research.   
 
Given the given the breadth of coverage in this Handbook, there is a certain amount of 
overlap between this chapter and others. In addition to the next chapter on computing 
education today and tomorrow, we draw the reader’s attention particularly to Chapter 3.4 on 
introductory programming and Chapter 3.6 on programming paradigms.  This latter chapter 
extends the discussion in this chapter on notional machines, on the problems faced by 
novices and on programming paradigms that go beyond the procedural that is presented 
below.  This chapter says a certain amount about teaching methods, but Chapters 2.2 and 
3.2 extend the discussion much further. For a review of research on teaching methods for 
introductory programming, see Pears et al. (2007). 

2  Early Studies in Computing Education Research 
 
The late 1960’s and early 1970’s was already a period of dynamic activity in computing 
education research.  There were two partially interacting streams of activity based on 
different objectives. The objective of the first stream was to understand the psychology 
around the activity of programming. The first stream was centred on the theoretical and 



empirical study of programming as a human skill, including issues of learning, as exemplified 
by the work of Green and his colleagues (see for example, Sime, Arblaster, & Green, 1977b, 
Page 52) and the publication of the first book on the psychology of computer programming 
(Weinberg, 1971). One driver for this stream was industry’s need for programmers and their 
use of aptitude tests to identify them (see Chapter 3.4, Section 2.1 of this book). The second 
stream was centred more specifically on the learning of programming in educational settings 
as exemplified by the work of Papert and his colleagues (Papert, 1980a) and the publication 
of the first paper on the Logo programming language (Feurzeig, Papert, Bloom, Grant, & 
Solomon, 1969).  The objective of this second stream was to understand the cognitive 
benefits of programming to the student programmer. 
 
2.1  Learning Programming in General 
 
Weinberg’s book on the psychology of computer programming was quite short on the 
empirical results of both learning of programming and exercising the skill of programming but 
heralded an energetic decade of such work.  Many of the research methods that survive into 
today’s research emerged then, such as comparing novices and experts across different 
aspects of programming skill and analysing the ease of use and ease of learning of different 
representations of code.  A review of the early work on empirical studies of programming 
can be found in du Boulay and O'Shea (1981).  This section of the chapter draws heavily 
from that review, characterising the kinds of empirical work that were undertaken at that 
time.  Note that the research predated personal computers, mice and much of the screen-
based interaction we take for granted today.  We return to this issue in Section 3 and show 
how the changes in hardware and software changed the focus of computing education 
research. 
 
Two related areas of work were of special interest in this period: novices’ difficulties with 
programming and language design for novices.  Learning to program was already known to 
be difficult, so attempts were made to understand the specific nature of those difficulties as 
well as to explore how the design of programming languages and programming 
environments might mitigate those difficulties. 
 
Novices’ difficulties with programming were reported using observational research 
methods and small-scale laboratory-based studies of the skills and understanding of 
planning, coding and debugging.  Two kinds of planning difficulty emerged: one concerned 
with the translation of a problem expressed in everyday terms into a formulation suitable for 
coding.  The second concerned the degree of generality with which a problem was tackled, 
i.e. the requirement that a program would normally have to work with a range of possible 
data values, rather than a specific set.  For example, concerning the issue of translation, 
Miller (1974) studied how novices approached the problem of developing algorithms for 
simple sorting tasks and found that disjunctions of properties caused more problems than 
conjunctions. He also reported that novices found it hard to turn everyday qualification 
statements (such as “PUT RED THINGS IN BOX 1”) into the kind of conditional format (such 
as “IF THING IS RED PUT IN BOX 1”) required by many programming languages (Miller, 
1975).  Concerning generality, Hoc (1977) studied programmers developing an algorithm for 
a change-giving machine and found that beginners tended to deal with specific instances of 
the problem rather than the general case.  

 
In terms of coding, several researchers analysed the errors in novices’ programs in various 
languages.  For example, Youngs (1974) observed both novices and experts programming 
in a variety of languages (ALGOL, BASIC, COBOL, FORTRAN, PL/1).  He categorised their 
errors into “syntactic,” “semantic,” “logical,” or “clerical” and found that, for novices, semantic 
errors predominated and that they found them the hardest to debug.  By contrast, experts’ 
errors were more evenly distributed across the categories.  Gannon (1978) found that 



novices’ errors were clustered around specific language constructs.  When the overall 
relative frequency of use of different constructs was taken into account, Youngs (1974) and 
Friend (1975), working on AID, a language similar to BASIC, found that conditional 
constructs were a common cause of errors.  Friend also found that many syntax errors arose 
from novices overgeneralising the syntactic rules of the language. 

 
There were several studies of debugging, mostly among experts but some among novices 
(Gould & Drongowski, 1974; Miller, 1974; Youngs, 1974).  One conclusion that has stood the 
test of time is that there was great variability even amongst experts in terms of their 
debugging skill and speed (Gould, 1975). Eason (1976) found that novices’ attitude to 
learning programming affected the degree to which they were willing to engage in the hard 
graft of learning debugging as well as the mastery of the tools needed (e.g. an interactive 
development environment) and their command languages. 

 
The work cited above mostly used observational methods to characterise different aspects 
of novice and expert programming behaviour.  A newer research methodology also started 
to emerge in terms of building models of programmer cognition.  For example, Brooks 
(1977) developed a model of the cognitive processes in computer programming based on 
the (Newell & Simon, 1972) theory of problem-solving and the role of short-term memory.   
Brooks used think aloud methods and protocol analysis to uncover some of the implicit 
planning rules that programmers used to develop code.  These issues are explored later in 
this chapter in Sections 4 and  6. 

 
Language Design for Novices. In terms of high-level language design considerations,  
Weinberg (1971) argued for uniformity, compactness, and locality, while Barron (1977) for 
economy of concepts, uniformity, and orthogonality – each of them anticipating later work on 
Cognitive Dimensions (Green & Petre, 1996).  One important line of experimental work 
concentrated on comparing, in laboratory settings, different ways of representing the code 
for flow of control and specifically conditionals.  For example, Sime, Green and others 
conducted several studies on both the coding and comprehensibility of different ways of 
specifying conditional flow of control in tiny programs consisting only of conditionals (Sime, 
Arblaster, & Green, 1977a; Sime, Arblaster, et al., 1977b; Sime, Green, & Guest, 1977).  
They introduced the important distinction between “sequence information”, which describes 
what a program will do under a given set of conditions, and “taxon information”, which 
describes what set of conditions would cause a program to reach a given point.  The 
experiments showed that a certain amount of redundancy in the notation reduced novices’ 
errors and improved debugging success.  In one notable study, the introduction of an else 
clause led to an enormous decrease in novice ability to solve taxon information problems.  

 
Again using laboratory-based research methodologies, both Love (1977) and  Shneiderman 
(1977)  conducted experiments on the ability of novices and experts to memorise short 
programs, either in different forms (Love), or scrambled (not working) vs working 
(Shneiderman).  Both sets of experiments showed that novices attended to the surface form 
of the code whereas more expert programmers paid attention to its deeper level structure, 
just as cognitive scientists had noted among novices and experts solving physics problems 
(Larkin et al., 1980). 

 
2.2 Learning Programming in Educational Settings 

 
One of the issues emerging in the 1970s centred on the design of the tools to be used by 
novices.  A central issue was the choice of the novice’s programming language and the 
programming environment in terms of their capability to make the workings of the underlying 
notional machine (the user-understandable semantics of the language) implied by the 
language both more explicit and more visible (du Boulay, O'Shea, & Monk, 1981).  For 



example, Logo and its use of a Turtle to trace out a drawing were a good way of reifying the 
flow of control as a program executed and of relating procedures to sub-procedures.  Similar 
notions were also applied in BASIC where, for pedagogical purposes, Mayer (1979) 
characterised the behaviour of a BASIC program in terms of a sequence of “transactions”, 
and Barr, Beard, and Atkinson (1976) built the BIP system for teaching BASIC that 
highlighted each BASIC statement on the display as it was executed.  Similar execution 
tracing systems were built for other languages such as Pascal (Nievergelt et al., 1978) and 
FORTRAN (Shapiro & Witmer, 1974).  Note the further discussion of notional machines in 
Chapter 3.6 on programming paradigms.  
 
The next two subsections explore work undertaken in two areas.  The first is on learning 
topics through learning programming, such as thinking skills and cognitive science.  The 
second concentrates on learning programming for its own sake.   
 
Learning through Programming. Logo (Feurzeig et al., 1969) was a language derived 
from LISP (1958) and championed by Papert with the objective to teach mathematics and 
problem-solving through programming rather than to teach programming per se. (Papert, 
1972, 1980a).  On the back of attempts to see whether Papert’s goals could be achieved 
(see Section 4 of this chapter) there were several detailed investigations of novices (both 
children and adults) learning Logo.  For example, Cannara (1976) documented the 
difficulties that children had in learning Logo. These difficulties turned out to be both in terms 
of the language itself, such as the recursion/iteration distinction and the binding of argument 
values, but also in terms of more general aspects of programming such as the need for 
complete precision in coding (rather than assuming that the computer would figure out what 
they had meant to say) and the ability to break down complex problems into simpler parts. 
Similar difficulties were observed by Statz (1973) in her work with children, by Austin (1976) 
in work teaching student teachers, and by du Boulay (1978) also working with student 
teachers.  So irrespective of the bigger issue of teaching mathematics through Logo 
programming, Logo as a first programming language produced its own share of difficulties 
for the learner.  These arose for three reasons.  First, the focus was much more on what 
programs could do rather than on the form of the programming language itself.  Second, the 
language was developed by experts without input from learners.  Third, the language was 
designed at the end of the 1960s when the psychology of programming was in its infancy. 

 
Towards the end of the decade, Eisenstadt (1979) developed the declarative language Solo 
at the Open University (UK), designed with the objective to teach topics in cognitive science.  
This language was semantically similar to Prolog but was designed to have an easier syntax 
and a specialised editor which helped reduce syntax errors by including a predictive text 
facility.  For example, if the user typed the “if” part of a conditional the “then” and “else” 
branches were automatically provided to be filled in.  This kind of facility was crucial as 
students at the Open University often worked remotely without the benefit of a tutor nearby 
to help sort out programming difficulties.  Students learning Solo were studied by Kahney 
(1982) who explored their different, and often incorrect, understandings of the notion of 
recursion, and by Hasemer (1983) who looked at their debugging behaviour and built a tool 
to support debugging based on those observations. 
 
Learning programming in its own right.  While the developers of Logo and Solo had 
objectives beyond simply teaching programming, other languages were studied whose aims 
were more to teach computing. We have already referred to the work of Friend (1975) on 
AID (similar to BASIC).  Like Youngs (1974), she catalogued the errors that students made 
and also found that the required number of conditions, loops and subroutines was a good 
measure of how difficult beginners would find a problem. 

 
Pascal (1970) was designed for novices and widely used in computer science departments 
as a vehicle for undergraduates to learn programming. Pascal was the language of the first 



Advanced Placement CS exam in 1984. There were various critiques of its problems, which 
had little impact on its popularity (Habermann, 1973; Lecarme & Desjardins, 1975; Welsh, 
Sneeringer, & Hoare, 1977).  Ripley and Druseikis (1978) studied computer science 
students’ errors and found that about 60% of the errors concerned punctuation, mostly the 
use of the semi-colon, and that variable declarations were also another problematic area.  A 
similar study by Pugh and Simpson (1979) came to similar conclusions about the use of the 
semi-colon.  We see similar results today in analyses of Java error messages, and with the 
worldwide scale of current data collection efforts (Altadmri & Brown, 2015), we know that 
these problems are common and not just local to a particular study. 
 
A pervading problem for learners of Pascal as well as other languages was 
misunderstanding the capability of the computer.  A study by Sleeman, Putnam, Baxter, and 
Kuspa (1986) of Pascal learners noted that students attributed “to the computer the 
reasoning power of an average person,” which Pea named the “superbug” problem (Pea, 
1986).  This was an issue already identified by Cannara (1976) in relation to Logo. 

 
2.3 Research on teaching methods 
 
Chapters 2.2 and 3.2 in this Handbook focus on pedagogic methods in the broad.  Here we 
concentrate on issues specifically associated with early computing education research. One 
of the questions emerging in this period was “what is the best programming language for 
novices” (Tagg, 1974), though we might now disagree that such a question is useful in its 
most general form.  An interesting variation on this question was whether one should start 
with a low-level language (e.g. assembler) or a high-level language (e.g. BASIC).  Weyer 
and Cannara (1975) compared teaching Logo and then SIMPER (a low-level language), 
SIMPER and then Logo, with teaching Logo and SIMPER at the same time.  They found that 
the joint approach worked best in that the differences and similarities between the languages 
helped understanding despite some novices exhibiting a certain amount of muddling up of 
commands between the languages. 

 
Various experiments were conducted on characterising the notional machine, as we have 
indicated above.  For example, Mayer (1975, 1976) showed that providing a simplified model 
of the FORTRAN notional machine was helpful in both coding and comprehension, and this 
was most pronounced where the programming problems were more difficult. Mayer (1975) 
found only a limited positive effect in learning FORTRAN. Shneiderman, Mayer, McKay, and 
Heller (1977) found no effect in learning FORTRAN. Researchers also examined the utility of 
using flowcharts as a learning aid. Brooks (1978) found that a variable dictionary (an 
annotated listing of variables in a program) provided more effective assistance than a 
flowchart for students were working in FORTRAN. 

 
The issue of learning in pairs or groups was also explored.  Lemos (1978, 1979) found that 
students who debugged COBOL programs in small groups were more favourably disposed 
towards programming and came to understand the language better.  Likewise Cheney 
(1977) found that students who worked on their programming assignments in pairs learned 
more effectively – an interesting foretaste of much later research on pair-programming 
(Bryant, Romero, & du Boulay, 2008).  Bork (1971) explored the best order for introducing 
programming concepts, contrasting top-down (“whole program”) with bottom-up 
(“grammatical”).   Lemos (1975) found no difference between the two approaches for 
FORTRAN but Shneiderman (1977) argued for a “spiral approach” that amalgamated both 
methods.  
 
The main outcomes arising from the work in the 1970’s was greater clarity about the 
difficulties that novices faced in learning to program.  These difficulties included (i) learners 
understanding what programming was for, (ii) how they should reconceptualise a problem in 



terms of the kinds of structures and mechanisms available in the programming language 
being used, and (iii) how those structures and mechanisms functioned when a program was 
executed.  There were also advances in the tools, notably in language design and in 
programming environment design that helped to mitigate these issues.  

 

3 Re-designing the Learner’s Interface for Computing Education 
 
As mentioned earlier, the nature of computing education research was strongly influenced 
by the hardware and systems software available at the time.  Papert’s Logo and the rest of 
the programming languages discussed above from the 1960’s and 1970’s were designed to 
be a predominantly text-based experience. Logo was originally programmed using a 
teletype. The first uses of Logo by children were to manipulate text language, like a program 
to make poems or play games (Papert, 1971; Papert & Solomon, 1971). The turtle came 
shortly thereafter, but was still controlled from a text-based interface. Starting in the 1970’s, 
researchers explored how the interface might be changed so that the tool might better fit the 
objectives. 
 
3.1 Smalltalk 
 
Alan Kay visited Seymour Papert during the early Logo experiments and saw the potential 
learning benefits of computers (Kay, 1972). He reconceived the challenge of building a 
programming language for students as the challenge of building computational media for 
students, where programming was part of an authorial or creative process. Where Papert 
had an objective of providing the computer as an object to think with (Papert, 1980b), Kay 
saw the computer as a tool for expression and communication, as well as reflection and 
problem-solving (Kay, 1993). 
 
Kay designed Smalltalk, the first language explicitly called “object-oriented.” The earliest 
version of Smalltalk, Smalltalk-72, had a syntax similar to Logo (Goldberg & Kay, 1976). The 
later versions of Smalltalk (through the middle of the 1970’s) were often used by children 
(Kay & Goldberg, 1977), but the focus of Smalltalk development shifted to support 
professional developers. By the time Smalltalk was released in 1981, it had evolved into a 
tool that was much more challenging for children to use (Goldberg & Robson, 1983). 
 
When Kay and his group were designing Smalltalk, they wanted learners to be able to use 
the environment as a creative medium. They wanted students to be able to draw and use 
their drawings as part of animations that were programmed by computer. They wanted 
students to be able to play music and write programs that would make music. They 
developed the desktop user interface, with overlapping windows containing multiple fonts 
and styles, pop-up menus, icons, and a mouse pointer (Kay & Goldberg, 1977). Computer 
icons were first invented in Smalltalk-72 (Smith, 1975). The user interface that we use daily 
today was designed in order to achieve Kay’s vision of the computer as a creative medium, 
where programming was one of the ways in which learners would express and communicate 
in this medium. 
 
The research that Kay and his group did with Smalltalk was observation-based. Students 
would visit their lab at the Xerox PARC to test the feasibility of students working with the 
medium they were inventing. Smalltalk was used in a Palo Alto school for a while as a 
classroom-based experiment (Kay, 1993).  In those studies, the team documented some of 
the challenges that students had with object-oriented programming, such as class-instance 
differences and finding functionality in a large class hierarchy. 
 



3.2 Boxer and Programmable Toys 
 
Of those first programming languages designed for learners (e.g., Logo, SOLO, Pascal), 
Smalltalk has arguably had the largest impact on computing today, because of the user 
interface inventions it advanced. Other early computer education research groups 
recognized the importance of using the advancing user interface technologies in order to go 
beyond simple text to provide a rich computational environment for learning. There are two 
threads of this work that has had impact on today’s work. One is Boxer, which has given us 
theory for how students come to understand computing. The second are the interactions 
between toys and programming that have had an influence on today’s blocks-based 
programming languages. 
 
diSessa and Abelson developed Boxer as a successor to Logo (diSessa 1985; diSessa  & 
Abelson, 1986). Like Kay, their goal was to use more advanced user interface techniques to 
improve the learning experience. Unlike any previous effort, Boxer gave semantic meaning 
to these user interface elements. Everything in Boxer was in a graphical box on the screen, 
both data and procedures. References to variables and binding to arguments (mentioned 
earlier as a challenge in Logo) become references to concrete named boxes with visible 
values on the screen. Boxer was developed with a similar objective to Smalltalk, which was 
to serve as a medium for computational literacy (diSessa, 2001). The idea of using graphical 
elements as semantically meaningful parts of a beginner’s programming language started in 
Boxer and has led us to the blocks-based languages that are developed and studied today. 
 
The earliest Logo turtle was a physical robotic device, which made the user’s experience of 
programming as more than just text from the beginning. In the 1970’s, physical programming 
of the turtle was made possible through Radia Perlman’s buttons and slots, which moved 
away from text or graphics for the learner’s programming interface (McNerney, 2004). In 
McNerney’s (2004) review of physical programming environments, he draws a direct line 
from Perlman’s buttons and slots, to the development of a variety of connections between 
Logo and Lego building sets (Resnick, Martin, Sargent, & Silverman, 1996), including 
MultiLogo (Resnick, 1990). Allison Druin built physical programming environments where 
students built physical, interactive spaces for story-telling, a different objective than previous 
programming activities (Druin et al., 2011; Sherman et al., 2001). Resnick’s work on 
developing programming languages that were more accessible for children programming 
intelligent Lego bricks led some of the early blocks-based languages, including Scratch, the 
most well-known blocks-based programming language today (Maloney et al., 2004; 
Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).  
 
The main outcome of the work described in this section was the emergence of the 
components of computer interfaces that we now take for granted including windows, icons, 
pointers and mice.  This outcome has certainly influenced the design of development 
environments.  Specifically for computing education research, a second but important theme 
is consideration of non-textual elements (including physical devices) in supporting student 
learning and programming. 

4  Enter the Education Researchers 
 
Two related disciplines started to impact on computing education research.  One was 
Education research, bringing with it an emphasis on research using large cohorts over 
extended periods of time.  The other was cognitive science which emerged in the 
1970/1980s and its research methodology based on modelling human cognition. The 
involvement of these researchers broadened computer education research. Cognitive 
researchers modelled the user, not just the language or the interface. Both in general and in 



educational settings, the cognitively-informed researchers who then started exploring 
computing considered cognitive outcomes and transfer as well as the learning process.   
 
4.1 The Impact of Education Researchers 
 
Earlier work had already shown that Logo as a programming language had its own share of 
difficulties for novices (see for example, Cannara, 1976).  It was a series of studies by Pea, 
Kurland and their colleagues that now examined whether learning Logo had the benefits 
claimed for it in terms of increased problem-solving ability and other thinking skills (Papert, 
1980a). Taking a developmental and cognitive perspective, Pea and Kurland (1984) 
undertook a theoretical analysis and review of how learning to program might, in principle, 
impact on children’s ability “to plan effectively, to think procedurally, or to view their flawed 
problem solutions as ‘fixable’ rather than ‘wrong’”.  Now the research methodology shifted 
away from small-scale laboratory-based methods to longer-term evaluative studies in 
authentic educational settings.  In an empirical study of 8-10 year old children learning Logo 
over a year,  Pea, Kurland and their colleagues found that these children were no better at a 
planning task at the end of the year than children who had not learned Logo (Pea, Kurland, 
& Hawkins, 1985).  In a much larger study involving 15-17 year old students learning a range 
of languages over a year, including Logo over 9 weeks within that year, they found similar 
results as well as misunderstandings of the Logo language and how it worked (Kurland, Pea, 
Clement, & Mawby, 1986).  Likewise, Kurland and Pea (1985) found in a small study with 
children that they developed various incorrect mental models of how recursion worked, 
similar to those reported in other studies of the understanding of recursion. 
 
Papert and Pea famously debated these studies in 1987. Papert argued that Pea was 
exhibiting “technocentric thinking,” by studying the technology as opposed to studying the 
educational culture that could be created with tools like Logo (Papert, 1987). Papert argued 
that we were too early in the development of new kinds of educational culture that 
computers might facilitate to evaluate it in a treatment model. Pea argued in response that 
we must study what we build, and that we can too easily fool ourselves into believing that 
our interventions work without careful studies (Pea, 1987). The Pea and Papert position 
papers highlight the sharp contrast between computing and educational research in terms of 
both their objectives and their research methods. Is the goal of teaching programming to 
improve the classroom or re-make it into something new which cannot be studied in the 
same way? Do we use the traditional methods of educational research, or do we need new 
methods? 
 
These rather negative findings for Logo’s influence on the development of thinking skills was 
underlined in a wide-ranging review of the literature covering Logo, BASIC and Pascal 
(Palumbo, 1990).  However, Palumbo criticised much of the research he reviewed for not 
paying proper attention to “five critical issues concerning this area of research: (a) sufficient 
attention to problem solving theory, (b) issues related to the programming treatment, (c) the 
programming language selected and the method of instruction, (d) system-related issues, 
and (e) the selection of an appropriate sample.” 
 
Following this, Palumbo and Reed (1991) attempted to deal with these critical issues and 
compared a group of students learning BASIC with a group learning computer literacy, which 
focused on basic skills involved in computer operations, and did find evidence of improved 
problem-solving in the group who had learned BASIC.  In a similar fashion, Carver found 
that the skill of debugging could be learned by the 8-11 year olds through experience with 
Logo programming (Carver, 1986). Carver’s critical insight was that transfer occurred only 
when that transferable skill was made an explicit part of the Logo curriculum, rather than 
hoping it might be learned simply in passing (Carver, 1986).   
 



4.2 The Impact of Cognitive Science 
 
Brooks’ work, mentioned earlier, continued into the 1980’s with a theory of the 
comprehension of programs that tried to explain the great variability in skill amongst both 
experts and novices (Brooks, 1983).  In a parallel vein, Soloway and Ehrlich (1984) 
empirically explored questions around programmers’ knowledge of “programming plans – 
stereotypic action sequences”, and of the “rules of programming discourse . . .  which govern 
the composition of plans into programs.”  They used both fill-in-the-blank methods and recall 
methods to demonstrate the effects of these two kinds of programming knowledge.  Likewise 
Wiedenbeck (1986) introduced the notion of beacons, "lines of code which serve as typical 
indicators of a particular structure or operation”, that assisted experts better than novices to 
recall programs that they had studied.  This work on plans and beacons reflected the interest 
in mental models and schemata in the cognitive science of the time (see for example, 
Johnson-Laird, 1983). 
 
With the emphasis on problem-solving emerging from cognitive science, it was not surprising 
that work on understanding the nature of debugging was undertaken.  Lukey (1980) built a 
system, PUDSY, to embody and model his theory of how programmers debug (Pascal) 
programs.  His system made use of rules to segment programs, a description of the flow of 
control, the recognition of debugging clues and simple data flow analysis, but as far as we 
know there was no empirical work based on the system.  In a series of empirical studies, 
Katz and Anderson (1987) observed and analysed students’ debugging strategies in detail 
as applied to LISP programs.  Among other results they identified a range of students’ bugs 
in LISP programs, in a similar fashion to Soloway and his colleagues’ analysis of bugs in 
student Pascal programs (Johnson, Soloway, Cutler, & Draper, 1983; Spohrer et al., 1985).  
These kinds of analysis provided evidence about which aspects of these languages required 
extra tutorial support as well as providing the basis for progress on automated tutors and 
debugging systems. 
 
There was also interest in novices learning Prolog (Taylor & du Boulay, 1987).  This is a 
declarative language with a complex internal reasoning mechanism that novices find difficult 
to comprehend, even when (and sometimes especially when) the “trace mechanism” is 
switched on showing the internal reasoning steps.  In effect, the work on trace mechanisms 
was an attempt to provide the programmer with a Prolog notional machine (Eisenstadt & 
Brayshaw, 1990), very different of course from the Logo notional machine mentioned earlier.  
The work on programming plans and beacons applicable to procedural languages morphed 
into understanding Prolog programmers’ knowledge in terms of Prolog schemata.  These 
were stereotypical, slightly abstracted chunks of Prolog code (Gegg-Harrison, 1991).  A 
useful guide to this work on Prolog can be found in Brna, du Boulay, and Pain (1999). 
 
New kinds of tool for novices were also emerging in the form of tutors, error diagnosis 
systems and support environments for learning programming, including tutors for learning 
Prolog (see du Boulay & Sothcott, 1987, for a review).  A notable example emerged from 
cognitive science: Anderson and Reiser (1985) developed a tutor for LISP, arising both out 
Anderson’s cognitive science learning theory “Adaptive Character of Thought” (ACT) and his 
analysis of students learning to program, mentioned above.  The strategy in this work was to 
exploit a cognitive science view of how a tutor might support a student’s declarative 
understanding of programming (“what it is”) as it developed into procedural skill (“how to do 
it”).  This tutor was the forerunner a large family of tutors that modelled the skills of a 
domain, in this case programming in LISP, based on a production-rule representation and 
were able to guide students step by step through problem-solving (Anderson, Corbett, 
Koedinger, & Pelletier, 1995).  Empirical evaluations of the tutor largely showed that it 
helped learners to master simple programming more quickly than other methods (e.g. 
lectures and text book) but that it did not necessarily provide deeper understanding than the 
other methods.  This was not the only tool developed at that time to assist computer science 



students that took a cognitive science stance towards learning programming.  We have 
already referred to Soloway and his colleagues’ analysis of programming knowledge in 
terms of “plans” (Soloway & Ehrlich, 1984).  In addition, Johnson and Soloway (1987) 
developed an error diagnosis system for student Pascal programs, PROUST, based on 
these ideas.  
 
4.3 Phenomenographic research 
 
Cognitive science and its notion of mental models were not the only perspective on 
computing education research.  By contrast, the phenomenographic perspective studied 
students in authentic settings to capture a sense of their personal experience of learning 
computer science.  Phenomenography entered computing education research through 
educational psychologist Ference Marton and his student, Shirley Booth. For a brief guide to 
several approaches for research in computer science education including cognitive science 
and phenomenography, see Ben-Ari, Berglund, Booth, and Holmboe (2004).  
 
Phenomenography emphasised the individual quality of the learning experience of each 
student in relation to the context in which it was learned.   
 

“Fundamental to an understanding of the phenomenographic approach is to 
realise that its epistemological stance is not “psychological”, treating man and 
his behaviour as separable from the world in which he moves and lives.  Nor 
is it “mentalist”, treating cognition and cognitive acts as isolated to the mind 
and separable from the one who lives through them.  The phenomenographic 
epistemological stance is that man is in relation to his world, and that 
cognition is such a relation . . .” (Booth, 1992, Page 52) 

 
An interesting example of the approach was the thesis work of Booth on undergraduates 
learning computer science.  In addition to teasing out the learner’s ways of understanding 
concepts such as recursion, she used an interview technique asking oblique questions to 
gain a sense of what they thought it meant and what they believed it took to learn to program 
(Booth, 1993).  The phenomenographic approach was later linked with Activity Theory to 
study how the learning situation for students doing a distributed course in computer systems 
influenced their learning (Berglund, 2002).  The phenomenographic approach was also used 
to explore the learning of advanced network concepts in a distributed course (Berglund & 
Pears, 2003). 
 
There were three main outcomes of the work described in this section.  First was the use of 
large cohorts and longitudinal studies to study learning programming in classrooms rather 
than in laboratories.  The second was the emergence of cognitive science to enable more 
detailed understanding of novice and expert programming skills, runnable models of human 
programming activity, and tools to support that activity, to be built.  The third were the use of 
phenomenographic methods to capture the individuality of the experience of students 
learning programming and other computing concepts. 

5  Computing Education Emerges as a Research Discipline  
 
This section looks at the emergence of organizations for computing education research 
rather than at the content of the research itself as we have done in the previous sections. 
 
Two international groups were formed in the 1980’s to promote and support computer 
education research. One was the Psychology of Programming Interest Group (PPIG), 
formed in the UK in the 1987 and holding its first workshop in 1989.  The other was the 
Empirical Studies of Programmers (ESP) formed in the USA and held its first workshop in in 



1986  (Soloway & Iyengar, 1986).  Both groups ran a series of workshops and conferences: 
ESP until 1997 but with PPIG still doing so to the present day.  A brief history of ESP can be 
found on the PPIG website as follows: 

“The ESP series was managed by the USA-based Empirical Studies of 
Programmers Foundation. The last published list of the Board of Directors of 
that Foundation (in 1997) was Deborah Boehm-Davis, Wayne Gray, Thomas 
Moher, Jean Scholtz and James Spohrer. 

There were seven ESP conferences, all held in the USA. The research 
coverage of the series was very similar to the European (UK-based) PPIG 
series, which is the host organisation for this newsletter. Many people 
considered ESP and PPIG to be sister organisations. All ESP conferences 
except ESP 3 published formal proceedings volumes. Until ESP 6, the 
publisher of those proceedings was Ablex. The proceedings of ESP 7 in 1997 
was published by the ACM Press. An attempt was made to convene an ESP 
8 meeting that would have been held in 1999, although insufficient 
submissions were received for the meeting to be viable. The papers received 
were instead published as a special issue of the International Journal of 
Human-Computer Studies (Volume 54, Number 2, published February 
2001).” (Alan Blackwell, PPIG Website, http://www.ppig.org/news/2006-06-
01/whatever-happened-empirical-studies-programmers) 

 
Over the years both groups were concerned with general issues in computer education 
research as well as studies of expert programmers.  To give an idea of the flavour of ESP 
work, their first workshop included papers on novice/expert differences in debugging and in 
specifying procedures, cognitive processes in program comprehension, novice debugging in 
LISP, bugs in novice programs in Pascal, novice problems in coding BASIC and a plea that 
expert professional programmers should also be studied. This range of papers suggest 
differences in objective among these researchers. For the early Logo researchers, the goal 
of teaching programming was to change thinking. For some of the first ESP researchers, the 
goal of teaching programming was to get students to exhibit expert behaviour, so it was 
important to study expert professional programmers and to contrast novice/expert 
differences.  A useful account of what was known about the psychology of programming at 
this time can be found in (Hoc, Green, Samurcay, & Gilmore, 1990). 
 
The ACM Special Interest Group in Computer Science Education was one of the first 
organizations focused on Computer Science Education.  Their annual symposium was 
started in 1970 and continues to attract over 1000 attendees annually. The SIGCSE 
Symposium was initially focused on providing a forum for teachers of computing education 
to share their best practices, but research results were often presented at the symposia.  
ACM SIGCSE’s non-US conference, Innovation and Technology in Computer Science 
Education (ITiCSE), started in 1996. ITiCSE has been particularly important for its “working 
groups” that served as fertile ground for developing computing education research. Other 
conferences, such as IEEE Symposium on Visual Languages and Human-Centric 
Computing (started in 1984) also often included computing education research results. 
 
In 2001, the McCracken Working Group invented a research method for computing 
education research, the Multi-Institutional Multi-National (MIMN) study (McCracken et al., 
2001).  McCracken and his colleagues recognized that the validity of any study at one 
institution was subject to critique because of experimental variables that might be unique to 
that institution or in common with only a subset of institutions. These threats to validity made 
it difficult to make progress in computing education research. The McCracken Working 



Group used a common task across five different institutions in four different countries, in 
order to avoid the limitations of single institution studies.  The results were convincing to the 
computing education research community, and the surprisingly poor performance was a 
clarion call to make change in how we teach (Lister, 2011). Soon, other MIMN studies were 
conducted (e.g., Lister, Box, Morrison, Tenenberg, & Westbrook, 2004), and MIMN studies 
were generalized and defined as a research method (Fincher et al., 2005).  
 
Some years later, the McCracken Working Group study was replicated. The results were not 
better, but were no longer surprising (Utting et al., 2013). It is a measure of progress in 
computing education research that we now better understand computing education and the 
challenges in that field. 
 
In the United States, there was growing recognition that more computing education research 
was needed. Tenenberg, Fincher, and Petre began the Bootstrapping project which helped 
develop computer science educators who wanted to become researchers.  The success of 
Bootstrapping led to another project in the United States (Scaffolding), and more capacity-
building projects around the world (Fincher & Tenenberg, 2006). Today, most computing 
education researchers in the United States were part of one of the capacity-building projects 
in the early 2000’s or are a student of someone who was. 
 
Because of the capacity-building efforts, there were more active computing education 
researchers than ever before. The community needed its own conference. While the ACM 
SIGCSE (Special Interest Group on CS Education) technical symposium had been around 
since the late 1960’s, the focus there was on supporting practitioners, not on advancing 
research. Fincher, Anderson, and Guzdial were the first organizers of the ACM SIGCSE 
International Computing Education Research (ICER) conference in 2005 (Anderson, 
Fincher, & Guzdial, 2005). ICER became the best known and most respected computing 
education research venue globally. ICER continues to grow, attracting 150 participants in 
this last year. ICER papers are wide-ranging and cover tools, objectives, and research 
methods. 
 

6  Research Questions in Computing Education Research  
 
The list of research questions that have been explored in the approximately five decades of 
computing education research could already fill a book.  For an excellent overview of the first 
four decades of this field (see Robins, Rountree, & Rountree, 2003).  In this section, we 
consider three that are often revisited and connect across these decades. 
 
6.1 Developing a Notion of Programming 
 
One of the most significant problems in learning to program is developing a mental model of 
what the computer is doing when it executes a program. The problem was first identified by 
du Boulay in 1986, wherein he coined the term notional machine to describe a model of how 
the computer interprets and executes a program (du Boulay, 1986). The first step in the 
process is recognizing that the computer does not contain a homunculus which is trying to 
understand the program. The belief that the computer contains a kind of human inside it is 
called “the superbug” by Pea (1986). Resnick identified the challenge that the computer is 
an external agent, and a robot being programmed is yet another agent (Resnick, 1990). 
Children growing up rarely face the challenge of giving detailed process instructions to 
another agent, let alone the complexity of instructing a non-human agent who does not 
share a common language. 
 



Some researchers in the 1960’s believed that eventually computers would understand 
humans and natural language so that the task of programming would go away 
(Greenberger, 1962). Perlis argued in 1961 that we would never reach that stage, that there 
would always be “friction” because of the mismatch between humans and computers. 
“Procedural literacy” is what Mateas (2008) called the knowledge and skills needed to 
overcome that mismatch. The challenge of developing a mental model of the notional 
machine is one that researchers have revisited every decade since the question was first 
defined (Sorva, 2013). 
 
A similar problem to developing a mental model of the notional machine is developing a 
mental model of the programming process (Garner, Haden, & Robins, 2005; Joni & 
Soloway, 1986). Setting aside the complexity of syntax and semantics, students struggle 
with the notion of the interpreter or compiler, the act of debugging, and how the output or 
result of a program might be found (Sleeman, 1986). A decade after Sleeman first identified 
these issues, Clancy and Linn reported that students struggled to understand how all the 
different aspects of programming fit together (Clancy & Linn, 1992). A further decade later, 
researchers described the puzzling debugging strategies of students (Murphy et al., 2008). 
Graphical user interfaces and physical programming may have increased the complexity for 
students to try to understand the process of creating software and answering questions like, 
“Where is the program that’s causing this behaviour?” For example, students do not 
understand what their programs did when they were run (Hundhausen & Brown, 2007), nor 
where their programs are stored (Resnick, 1990).  More positively, the advent of the Internet 
may allow us to explore recording student process information while programming, and 
studying that may give us new insights into the development of models of how students 
develop software and what they think is going on (Hundhausen, Olivares, & Carter, 2017). 
 
6.2 Programming as a Notation for Thinking 
 
Human languages, especially literacy in written language, has had a dramatic impact on 
society (McLuhan, 1962, 1964) and even on individual readers’ brains (Wolf, 2007). The 
early computing education researchers expected that programming and computational 
literacy would have a similar impact (Kay, 1993), but they recognized that the design of the 
language would be critical for broad social and individual impact (diSessa 1985). 
 
Like Papert, diSessa and his students argued that programming would lead to different kinds 
of understanding in mathematics than traditional pen-and-paper based forms. Turtles allow 
students to explore issues as complicated as differentials and general relativity through 
programs that can be more accessible than the equivalent equations (Abelson & DiSessa, 
1986). Programming can be used by students to invent new kinds of graphical notations to 
represent variables of interest and their relations (diSessa , Hammer, Sherin, & 
Kolpakowski, 1991).  In physics, equations better represent balance, but programs can be 
better for representing causal and temporal relationships (Sherin, 2001). 
 
The form of the programming language has been studied since the development of graphical 
user interfaces. Green and Petre and colleagues studied a variety of graphical notations 
(such as LabView and petri nets) and found that textual programming interfaces led to better 
performance by programmers (Green & Petre, 1992; Green & Petre, 1996; Green, Petre, & 
Bellamy, 1991). They suggest that the superiority of textual languages was likely not 
inherent, but learned. We have much more experience with textual notations than with visual 
notations (Petre, 1995). 
 
The trade-off between graphical and textual languages may be different for beginners. 
Hundhausen, Farley, & Brown (2006) found a visual, direct-manipulation language led to 
students writing programs sooner than another group of students using a textual language. 



Weintrop and Wilensky have found that some of the conditionals and iteration errors that 
students make with text-based languages are much less common when students use 
graphical blocks-based languages (Weintrop & Wilensky, 2015). Several studies have 
shown that students learning blocks-based languages can transfer their knowledge to more 
traditional text-based languages (e.g., Weintrop & Wilensky, 2015). The future of 
computational literacy will likely be of mixed modality. Students will use different kinds of 
programming languages at different stages, e.g., blocks-based languages as beginners, 
text-based languages if they become computing professionals, and perhaps domain-specific 
languages with graphical or textual forms for end-user programmers. 
 
6.3 Representing Execution 
 
In 1987, Brown introduced the idea of animating algorithms in order to make them 
accessible by students and professional programmers (Brown, 1987). For decades, we have 
been asking if animated representations of program execution do help with understanding, 
when they might, and how best should they be designed. A challenge in this research is 
deciding the objective of the animation. Is the objective to improve learning of the algorithm, 
to provide new insights when the programmer already understands the program, or to 
support debugging? Sorva’s (2012) dissertation is an excellent starting place for 
understanding program visualization. 
 
In general, there is little evidence that viewing algorithm animations leads to improved 
learning about the animations (Hundhausen, Douglas, & Stasko, 2002). However, we can 
use algorithm animations as part of other learning goals and develop successful learning 
activities beyond just viewing. For example, Stasko found that students learned from building 
the animations, rather than just viewing them (Stasko, 1997a, 1997b) and from answering 
questions about static representations after viewing a dynamic animation (Byrne, 
Catrambone, & Stasko, 1999). While animations themselves may have limited impact on 
learning, they are motivating and can engage students for greater time-on-task and thus 
greater learning (Kehoe, Stasko, & Taylor, 2001). Sorva has suggested a different role for 
program execution visualizations – to teach a mental model of the notional machine, rather 
than to teach the particular algorithm being taught (Sorva, 2012; Sorva, Sirkå, 2010). 
 

7  Conclusion: Future Research Questions in a Historical Context 
 
We started this chapter by mentioning the tools, objectives and research methods of CER.   
 
The computational power and interface capability of the tools available to learners have 
increased greatly since the early days of CER (Good, 2011), as has the ubiquity of devices 
to learn with and on, including smartphones, tablets, tangible computing and a range of 
cheap hardware kits such as the Arduino.  The kinds of problem that a beginner programmer 
can tackle are richer and more varied, and no longer restricted to printing “Hello World” or 
printing out the Fibonacci sequence, not least because the range of input and output devices 
has also developed dramatically since Turtles first crawled the floor. Indeed, programming 
novices may even use their own bodies as input devices for coding up dance and other 
movement sequences  (Romero, du Boulay, Robertson, Good, & Howland, 2009). We see 
that the hardware and systems software available to students and teachers influence what 
students were taught and how they were taught. The advent of more computational 
materials suggests the need to explore how these new media influence student learning.  
 
The objectives argued about in the Papert vs. Pea debate mentioned earlier have now re-
emerged in two new ways.  First there is interest around the world in introducing school 
pupils to programming at an early age (see e.g. http://www.computingatschool.org.uk/ and 



http://www.csforall.org/ ).  This has happened in response to the increased importance of 
computing in our everyday lives and the expectation that informed citizens should have at 
least some understanding of programming to be able to function effectively, or possibly 
choose a career in computing.  This has reawakened many of the questions around how 
novices can come to understand programs and programming as a process that we have 
sketched earlier.  Even the word “algorithm” has now entered everyday vocabulary, though 
perhaps with different meanings than was meant when Perlis and Snow talked about 
teaching algorithms to all undergraduates in (Greenberger, 1962).  However, children are 
now so surrounded by computers of many kinds that the issue of understanding in principle 
what a computer and a program might be used for may be less problematic than in the early 
days (du Boulay, 1986). The ubiquity and invisibility of programs might make developing 
understanding of how programs work even harder. It’s hard to learn about something one 
cannot see. 
 
International interest in making computing education accessible to all puts the computing 
education literature in a new light. The studies we have reviewed here do not always tell us 
who was doing the learning.  Papert’s studies were mostly with children, but we do not have 
data about class or socioeconomic status. Most of the studies in computing education that 
we have reviewed here have been undertaken with computer science students in higher 
education, which is a privileged subset of students (Margolis & Fisher, 2002). Many studies 
published in venues like ACM SIGCSE do not tell us the gender of the participants. There 
are very few studies of students with learning disabilities or below-average intelligence 
(Ladner & Israel, 2016).  Indeed, we now have a whole new cohort of the population who 
need to learn to program their smart devices and their homes (see for example, Blackwell, 
Rode, & Toye, 2009).  We need to revisit past studies and consider if the results might have 
been different with a broader sample of study participants.  
 
The second echo of the Papert vs. Pea debate centres on the notion of computational 
thinking (Wing, 2006).  This develops some of Papert’s ideas about how programming offers 
a model of how to think effectively, solve problems and manage complex situations that can 
be applied in other areas of life.  So school pupils and college students are offered 
computational thinking courses that help them practice some of the thinking skills that 
programmers apply, without necessarily learning to program. The echo of Pea’s paper still 
can be heard, as the field struggles to measure computational thinking (Roman-Gonzalez, 
Perez-Gonzalez, & Jimenez-Fernandez, 2016). 
 
In terms of research methods, we now see a wide variety of methods derived from 
educational research including long and short-term evaluations, data-driven and at-scale 
methods (Moreno-León, Robles, & Román-González, 2017), design-based research from 
learning sciences (Ericson, Guzdial, & Morrison, 2015), action-based research by teachers 
(Ni, Tew, Guzdial, & McKlin, 2011), and learner-centred design methods for building 
programming environments for novices (Good, 2011; Guzdial, 2015; Howland, Good, & du 
Boulay, 2013).  From psychology and cognitive science we see both qualitative and 
quantitative analyses of programming processes involving a range of data-capture 
technologies such as eye-tracking (Bednarik & Tukiainen, 2006), think aloud protocols 
(Bryant et al., 2008), as well as modeling.  We also see measures of cognitive load applied 
to learning programming, from validated instruments (Morrison, Dorn, & Guzdial, 2014) to 
setting a background task to be undertaken in parallel (Abdul-Rahman & du Boulay, 2014). 
 
We are limited in our research methods by who comes to our research enterprise today. In 
the early years, computing education research occurred across campus, e.g., Perlis 
described research in business and economics departments in (Greenberger, 1962). Section 
4 described the education researchers entering into computing education research. Today, 
most authors publishing at ICER are computer scientists or have a strong computing 
background. We have too few education researchers (or learning scientists, or 



psychologists), which means that we have too few people bringing new research methods 
into the community. We need that rich interdisciplinary background that our field used to 
enjoy in the past.  
 
Back in the 1960’s, the two most prominent objectives for starting computing education were 
(1) to prepare future programmers, see Sackman (1968) cited in Ensmenger (2010), and (2) 
to use computing as a tool for thinking and problem-solving (Greenberger, 1962). The former 
focused on industry-standard programming tools, while the latter encouraged the 
development of new learner-focused programming tools. Computing education research 
started when scientists began asking whether these efforts worked. The research methods 
selected have always been inextricably tangled with the objectives.  As we define new roles 
for computing in people’s lives, we will be defining new objectives, creating new tools, and 
applying a variety of research methods as we try to understand what happens when humans 
learn to control machines and to measure how successful the humans are at the task. 
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