

This document is a pre-publication draft of:

M. Guzdial, B. du Boulay (2019) The History of Computing Education Research. In S. A. Fincher
& A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge,
UK: Cambridge University Press, [11-39].

The published version has been further edited, please obtain and cite the published version from:
http://www.cambridge.org/9781108721899
https://www.amazon.com/s?k=cambridge+handbook+computing+education

This draft has been made available (in an institutional archive or document repository) with
permission, under the Cambridge University Press Green Open Access policy:
https://www.cambridge.org/core/services/open-access-policies/introduction-to-open-access

The History of Computing Education

Research

M. Guzdial, B. du Boulay,

1 The Scope of Computing Education Research

Teachers have been educating students about computing for many years. For almost as
many years, computing education researchers have been studying, in particular, how
students learn programming and how to improve that process. Programming languages
such as Fortran (1957) and COBOL (1959) were originally invented to be easier than
assembler and other early notations so that programming could be made available to a
wider range of programmers. Programming languages such as BASIC (1964) and Pascal
(1970) were invented explicitly to ease learning how to program. In the late 1960’s,
researchers started gathering data, studying how learners were learning programming, when
they did not, and how they experienced programming.

We are limiting the scope of this chapter in three ways. The content focus of this chapter on
the history of computing education research is very specifically on research on how students
come to understand programming rather than on other aspects of computing such as
databases, networks, theory of computation, and so on. The time focus of this chapter is
from the first efforts to observe students learning programming (1967) up to the first offering
of the International Computing Education Research (ICER) Conference in 2005. After 2005
we consider to be the “modern era” of computing education research.

Finally, we have filtered the historical events to focus on those that inform today’s current
work in computing education research. Computing education researchers have explored
many paths over the last 50 years, and not all have been fruitful. We focus on the historical
events that have the clearest connection to today’s computing education research. As we
review these events, we use three lenses:

• Tools: Educators in science, engineering, and mathematics may use computing
technology, but computing education is necessarily tied to technology. Just as chemists
cannot directly touch individual atoms and physicists cannot touch velocity, the bits and
processes of programs cannot be directly sensed and manipulated by learners. Instead,
we create tools that provide views on the program and its execution at different levels of
granularity and from different viewpoints so making computing more malleable. What
tools do we use, what have we used, and how do we design tools to serve our
educational needs?

• Objectives: Why are we teaching students about computing? The answer has varied
over the previous five decades, from preparing future programmers, to influencing how
learners view their world, to a necessary part of general education like mathematics or
history.

• Research Methods: How do we evaluate the effectiveness of computing education
research, or answer our questions about how students learn? The earliest researchers
applied the empirical methods they knew, but as our tools, objectives, and strategies
have changed, we have also changed our research methods. We have even invented
methods unique to computing education research.

The 1970’s saw the emergence of many of the tools, objectives and research methods that
underpinned work in later decades. Section 2 of this chapter looks at the computing
education research conducted in the 1970s. It was an era when the programming
technology available was fairly primitive, notably in terms of limited input and output devices.
Section 3 explores the rapid developments in computing technology in the 1980’s,
particularly in interface capabilities, and how these affected computing education research.

Various claims had been made for the benefits of learning programming as a vehicle for
developing various thinking skills, notably by Papert. While there had been some
experimental work in the 1970’s to test these claims, it was in the 1980’s when educational
researchers brought longitudinal research methods to bear on these issues. This was also
the time when Cognitive Science research started to burgeon and this had an effect on the
way that programming was conceptualised via cognitive models of the processes of
programming, such as debugging. Section 4 explores the impact of these two disciplines on
computing education research.

We then shift our focus in Section 5 to the organisation of computing education research
activity over these decades, and in Section 6 we draw the threads together in anticipation of
the next chapter in this book, looking at present and future of computing education research.

Given the given the breadth of coverage in this Handbook, there is a certain amount of
overlap between this chapter and others. In addition to the next chapter on computing
education today and tomorrow, we draw the reader’s attention particularly to Chapter 3.4 on
introductory programming and Chapter 3.6 on programming paradigms. This latter chapter
extends the discussion in this chapter on notional machines, on the problems faced by
novices and on programming paradigms that go beyond the procedural that is presented
below. This chapter says a certain amount about teaching methods, but Chapters 2.2 and
3.2 extend the discussion much further. For a review of research on teaching methods for
introductory programming, see Pears et al. (2007).

2 Early Studies in Computing Education Research

The late 1960’s and early 1970’s was already a period of dynamic activity in computing
education research. There were two partially interacting streams of activity based on
different objectives. The objective of the first stream was to understand the psychology
around the activity of programming. The first stream was centred on the theoretical and

empirical study of programming as a human skill, including issues of learning, as exemplified
by the work of Green and his colleagues (see for example, Sime, Arblaster, & Green, 1977b,
Page 52) and the publication of the first book on the psychology of computer programming
(Weinberg, 1971). One driver for this stream was industry’s need for programmers and their
use of aptitude tests to identify them (see Chapter 3.4, Section 2.1 of this book). The second
stream was centred more specifically on the learning of programming in educational settings
as exemplified by the work of Papert and his colleagues (Papert, 1980a) and the publication
of the first paper on the Logo programming language (Feurzeig, Papert, Bloom, Grant, &
Solomon, 1969). The objective of this second stream was to understand the cognitive
benefits of programming to the student programmer.

2.1 Learning Programming in General

Weinberg’s book on the psychology of computer programming was quite short on the
empirical results of both learning of programming and exercising the skill of programming but
heralded an energetic decade of such work. Many of the research methods that survive into
today’s research emerged then, such as comparing novices and experts across different
aspects of programming skill and analysing the ease of use and ease of learning of different
representations of code. A review of the early work on empirical studies of programming
can be found in du Boulay and O'Shea (1981). This section of the chapter draws heavily
from that review, characterising the kinds of empirical work that were undertaken at that
time. Note that the research predated personal computers, mice and much of the screen-
based interaction we take for granted today. We return to this issue in Section 3 and show
how the changes in hardware and software changed the focus of computing education
research.

Two related areas of work were of special interest in this period: novices’ difficulties with
programming and language design for novices. Learning to program was already known to
be difficult, so attempts were made to understand the specific nature of those difficulties as
well as to explore how the design of programming languages and programming
environments might mitigate those difficulties.

Novices’ difficulties with programming were reported using observational research
methods and small-scale laboratory-based studies of the skills and understanding of
planning, coding and debugging. Two kinds of planning difficulty emerged: one concerned
with the translation of a problem expressed in everyday terms into a formulation suitable for
coding. The second concerned the degree of generality with which a problem was tackled,
i.e. the requirement that a program would normally have to work with a range of possible
data values, rather than a specific set. For example, concerning the issue of translation,
Miller (1974) studied how novices approached the problem of developing algorithms for
simple sorting tasks and found that disjunctions of properties caused more problems than
conjunctions. He also reported that novices found it hard to turn everyday qualification
statements (such as “PUT RED THINGS IN BOX 1”) into the kind of conditional format (such
as “IF THING IS RED PUT IN BOX 1”) required by many programming languages (Miller,
1975). Concerning generality, Hoc (1977) studied programmers developing an algorithm for
a change-giving machine and found that beginners tended to deal with specific instances of
the problem rather than the general case.

In terms of coding, several researchers analysed the errors in novices’ programs in various
languages. For example, Youngs (1974) observed both novices and experts programming
in a variety of languages (ALGOL, BASIC, COBOL, FORTRAN, PL/1). He categorised their
errors into “syntactic,” “semantic,” “logical,” or “clerical” and found that, for novices, semantic
errors predominated and that they found them the hardest to debug. By contrast, experts’
errors were more evenly distributed across the categories. Gannon (1978) found that

novices’ errors were clustered around specific language constructs. When the overall
relative frequency of use of different constructs was taken into account, Youngs (1974) and
Friend (1975), working on AID, a language similar to BASIC, found that conditional
constructs were a common cause of errors. Friend also found that many syntax errors arose
from novices overgeneralising the syntactic rules of the language.

There were several studies of debugging, mostly among experts but some among novices
(Gould & Drongowski, 1974; Miller, 1974; Youngs, 1974). One conclusion that has stood the
test of time is that there was great variability even amongst experts in terms of their
debugging skill and speed (Gould, 1975). Eason (1976) found that novices’ attitude to
learning programming affected the degree to which they were willing to engage in the hard
graft of learning debugging as well as the mastery of the tools needed (e.g. an interactive
development environment) and their command languages.

The work cited above mostly used observational methods to characterise different aspects
of novice and expert programming behaviour. A newer research methodology also started
to emerge in terms of building models of programmer cognition. For example, Brooks
(1977) developed a model of the cognitive processes in computer programming based on
the (Newell & Simon, 1972) theory of problem-solving and the role of short-term memory.
Brooks used think aloud methods and protocol analysis to uncover some of the implicit
planning rules that programmers used to develop code. These issues are explored later in
this chapter in Sections 4 and 6.

Language Design for Novices. In terms of high-level language design considerations,
Weinberg (1971) argued for uniformity, compactness, and locality, while Barron (1977) for
economy of concepts, uniformity, and orthogonality – each of them anticipating later work on
Cognitive Dimensions (Green & Petre, 1996). One important line of experimental work
concentrated on comparing, in laboratory settings, different ways of representing the code
for flow of control and specifically conditionals. For example, Sime, Green and others
conducted several studies on both the coding and comprehensibility of different ways of
specifying conditional flow of control in tiny programs consisting only of conditionals (Sime,
Arblaster, & Green, 1977a; Sime, Arblaster, et al., 1977b; Sime, Green, & Guest, 1977).
They introduced the important distinction between “sequence information”, which describes
what a program will do under a given set of conditions, and “taxon information”, which
describes what set of conditions would cause a program to reach a given point. The
experiments showed that a certain amount of redundancy in the notation reduced novices’
errors and improved debugging success. In one notable study, the introduction of an else
clause led to an enormous decrease in novice ability to solve taxon information problems.

Again using laboratory-based research methodologies, both Love (1977) and Shneiderman
(1977) conducted experiments on the ability of novices and experts to memorise short
programs, either in different forms (Love), or scrambled (not working) vs working
(Shneiderman). Both sets of experiments showed that novices attended to the surface form
of the code whereas more expert programmers paid attention to its deeper level structure,
just as cognitive scientists had noted among novices and experts solving physics problems
(Larkin et al., 1980).

2.2 Learning Programming in Educational Settings

One of the issues emerging in the 1970s centred on the design of the tools to be used by
novices. A central issue was the choice of the novice’s programming language and the
programming environment in terms of their capability to make the workings of the underlying
notional machine (the user-understandable semantics of the language) implied by the
language both more explicit and more visible (du Boulay, O'Shea, & Monk, 1981). For

example, Logo and its use of a Turtle to trace out a drawing were a good way of reifying the
flow of control as a program executed and of relating procedures to sub-procedures. Similar
notions were also applied in BASIC where, for pedagogical purposes, Mayer (1979)
characterised the behaviour of a BASIC program in terms of a sequence of “transactions”,
and Barr, Beard, and Atkinson (1976) built the BIP system for teaching BASIC that
highlighted each BASIC statement on the display as it was executed. Similar execution
tracing systems were built for other languages such as Pascal (Nievergelt et al., 1978) and
FORTRAN (Shapiro & Witmer, 1974). Note the further discussion of notional machines in
Chapter 3.6 on programming paradigms.

The next two subsections explore work undertaken in two areas. The first is on learning
topics through learning programming, such as thinking skills and cognitive science. The
second concentrates on learning programming for its own sake.

Learning through Programming. Logo (Feurzeig et al., 1969) was a language derived
from LISP (1958) and championed by Papert with the objective to teach mathematics and
problem-solving through programming rather than to teach programming per se. (Papert,
1972, 1980a). On the back of attempts to see whether Papert’s goals could be achieved
(see Section 4 of this chapter) there were several detailed investigations of novices (both
children and adults) learning Logo. For example, Cannara (1976) documented the
difficulties that children had in learning Logo. These difficulties turned out to be both in terms
of the language itself, such as the recursion/iteration distinction and the binding of argument
values, but also in terms of more general aspects of programming such as the need for
complete precision in coding (rather than assuming that the computer would figure out what
they had meant to say) and the ability to break down complex problems into simpler parts.
Similar difficulties were observed by Statz (1973) in her work with children, by Austin (1976)
in work teaching student teachers, and by du Boulay (1978) also working with student
teachers. So irrespective of the bigger issue of teaching mathematics through Logo
programming, Logo as a first programming language produced its own share of difficulties
for the learner. These arose for three reasons. First, the focus was much more on what
programs could do rather than on the form of the programming language itself. Second, the
language was developed by experts without input from learners. Third, the language was
designed at the end of the 1960s when the psychology of programming was in its infancy.

Towards the end of the decade, Eisenstadt (1979) developed the declarative language Solo
at the Open University (UK), designed with the objective to teach topics in cognitive science.
This language was semantically similar to Prolog but was designed to have an easier syntax
and a specialised editor which helped reduce syntax errors by including a predictive text
facility. For example, if the user typed the “if” part of a conditional the “then” and “else”
branches were automatically provided to be filled in. This kind of facility was crucial as
students at the Open University often worked remotely without the benefit of a tutor nearby
to help sort out programming difficulties. Students learning Solo were studied by Kahney
(1982) who explored their different, and often incorrect, understandings of the notion of
recursion, and by Hasemer (1983) who looked at their debugging behaviour and built a tool
to support debugging based on those observations.

Learning programming in its own right. While the developers of Logo and Solo had
objectives beyond simply teaching programming, other languages were studied whose aims
were more to teach computing. We have already referred to the work of Friend (1975) on
AID (similar to BASIC). Like Youngs (1974), she catalogued the errors that students made
and also found that the required number of conditions, loops and subroutines was a good
measure of how difficult beginners would find a problem.

Pascal (1970) was designed for novices and widely used in computer science departments
as a vehicle for undergraduates to learn programming. Pascal was the language of the first

Advanced Placement CS exam in 1984. There were various critiques of its problems, which
had little impact on its popularity (Habermann, 1973; Lecarme & Desjardins, 1975; Welsh,
Sneeringer, & Hoare, 1977). Ripley and Druseikis (1978) studied computer science
students’ errors and found that about 60% of the errors concerned punctuation, mostly the
use of the semi-colon, and that variable declarations were also another problematic area. A
similar study by Pugh and Simpson (1979) came to similar conclusions about the use of the
semi-colon. We see similar results today in analyses of Java error messages, and with the
worldwide scale of current data collection efforts (Altadmri & Brown, 2015), we know that
these problems are common and not just local to a particular study.

A pervading problem for learners of Pascal as well as other languages was
misunderstanding the capability of the computer. A study by Sleeman, Putnam, Baxter, and
Kuspa (1986) of Pascal learners noted that students attributed “to the computer the
reasoning power of an average person,” which Pea named the “superbug” problem (Pea,
1986). This was an issue already identified by Cannara (1976) in relation to Logo.

2.3 Research on teaching methods

Chapters 2.2 and 3.2 in this Handbook focus on pedagogic methods in the broad. Here we
concentrate on issues specifically associated with early computing education research. One
of the questions emerging in this period was “what is the best programming language for
novices” (Tagg, 1974), though we might now disagree that such a question is useful in its
most general form. An interesting variation on this question was whether one should start
with a low-level language (e.g. assembler) or a high-level language (e.g. BASIC). Weyer
and Cannara (1975) compared teaching Logo and then SIMPER (a low-level language),
SIMPER and then Logo, with teaching Logo and SIMPER at the same time. They found that
the joint approach worked best in that the differences and similarities between the languages
helped understanding despite some novices exhibiting a certain amount of muddling up of
commands between the languages.

Various experiments were conducted on characterising the notional machine, as we have
indicated above. For example, Mayer (1975, 1976) showed that providing a simplified model
of the FORTRAN notional machine was helpful in both coding and comprehension, and this
was most pronounced where the programming problems were more difficult. Mayer (1975)
found only a limited positive effect in learning FORTRAN. Shneiderman, Mayer, McKay, and
Heller (1977) found no effect in learning FORTRAN. Researchers also examined the utility of
using flowcharts as a learning aid. Brooks (1978) found that a variable dictionary (an
annotated listing of variables in a program) provided more effective assistance than a
flowchart for students were working in FORTRAN.

The issue of learning in pairs or groups was also explored. Lemos (1978, 1979) found that
students who debugged COBOL programs in small groups were more favourably disposed
towards programming and came to understand the language better. Likewise Cheney
(1977) found that students who worked on their programming assignments in pairs learned
more effectively – an interesting foretaste of much later research on pair-programming
(Bryant, Romero, & du Boulay, 2008). Bork (1971) explored the best order for introducing
programming concepts, contrasting top-down (“whole program”) with bottom-up
(“grammatical”). Lemos (1975) found no difference between the two approaches for
FORTRAN but Shneiderman (1977) argued for a “spiral approach” that amalgamated both
methods.

The main outcomes arising from the work in the 1970’s was greater clarity about the
difficulties that novices faced in learning to program. These difficulties included (i) learners
understanding what programming was for, (ii) how they should reconceptualise a problem in

terms of the kinds of structures and mechanisms available in the programming language
being used, and (iii) how those structures and mechanisms functioned when a program was
executed. There were also advances in the tools, notably in language design and in
programming environment design that helped to mitigate these issues.

3 Re-designing the Learner’s Interface for Computing Education

As mentioned earlier, the nature of computing education research was strongly influenced
by the hardware and systems software available at the time. Papert’s Logo and the rest of
the programming languages discussed above from the 1960’s and 1970’s were designed to
be a predominantly text-based experience. Logo was originally programmed using a
teletype. The first uses of Logo by children were to manipulate text language, like a program
to make poems or play games (Papert, 1971; Papert & Solomon, 1971). The turtle came
shortly thereafter, but was still controlled from a text-based interface. Starting in the 1970’s,
researchers explored how the interface might be changed so that the tool might better fit the
objectives.

3.1 Smalltalk

Alan Kay visited Seymour Papert during the early Logo experiments and saw the potential
learning benefits of computers (Kay, 1972). He reconceived the challenge of building a
programming language for students as the challenge of building computational media for
students, where programming was part of an authorial or creative process. Where Papert
had an objective of providing the computer as an object to think with (Papert, 1980b), Kay
saw the computer as a tool for expression and communication, as well as reflection and
problem-solving (Kay, 1993).

Kay designed Smalltalk, the first language explicitly called “object-oriented.” The earliest
version of Smalltalk, Smalltalk-72, had a syntax similar to Logo (Goldberg & Kay, 1976). The
later versions of Smalltalk (through the middle of the 1970’s) were often used by children
(Kay & Goldberg, 1977), but the focus of Smalltalk development shifted to support
professional developers. By the time Smalltalk was released in 1981, it had evolved into a
tool that was much more challenging for children to use (Goldberg & Robson, 1983).

When Kay and his group were designing Smalltalk, they wanted learners to be able to use
the environment as a creative medium. They wanted students to be able to draw and use
their drawings as part of animations that were programmed by computer. They wanted
students to be able to play music and write programs that would make music. They
developed the desktop user interface, with overlapping windows containing multiple fonts
and styles, pop-up menus, icons, and a mouse pointer (Kay & Goldberg, 1977). Computer
icons were first invented in Smalltalk-72 (Smith, 1975). The user interface that we use daily
today was designed in order to achieve Kay’s vision of the computer as a creative medium,
where programming was one of the ways in which learners would express and communicate
in this medium.

The research that Kay and his group did with Smalltalk was observation-based. Students
would visit their lab at the Xerox PARC to test the feasibility of students working with the
medium they were inventing. Smalltalk was used in a Palo Alto school for a while as a
classroom-based experiment (Kay, 1993). In those studies, the team documented some of
the challenges that students had with object-oriented programming, such as class-instance
differences and finding functionality in a large class hierarchy.

3.2 Boxer and Programmable Toys

Of those first programming languages designed for learners (e.g., Logo, SOLO, Pascal),
Smalltalk has arguably had the largest impact on computing today, because of the user
interface inventions it advanced. Other early computer education research groups
recognized the importance of using the advancing user interface technologies in order to go
beyond simple text to provide a rich computational environment for learning. There are two
threads of this work that has had impact on today’s work. One is Boxer, which has given us
theory for how students come to understand computing. The second are the interactions
between toys and programming that have had an influence on today’s blocks-based
programming languages.

diSessa and Abelson developed Boxer as a successor to Logo (diSessa 1985; diSessa &
Abelson, 1986). Like Kay, their goal was to use more advanced user interface techniques to
improve the learning experience. Unlike any previous effort, Boxer gave semantic meaning
to these user interface elements. Everything in Boxer was in a graphical box on the screen,
both data and procedures. References to variables and binding to arguments (mentioned
earlier as a challenge in Logo) become references to concrete named boxes with visible
values on the screen. Boxer was developed with a similar objective to Smalltalk, which was
to serve as a medium for computational literacy (diSessa, 2001). The idea of using graphical
elements as semantically meaningful parts of a beginner’s programming language started in
Boxer and has led us to the blocks-based languages that are developed and studied today.

The earliest Logo turtle was a physical robotic device, which made the user’s experience of
programming as more than just text from the beginning. In the 1970’s, physical programming
of the turtle was made possible through Radia Perlman’s buttons and slots, which moved
away from text or graphics for the learner’s programming interface (McNerney, 2004). In
McNerney’s (2004) review of physical programming environments, he draws a direct line
from Perlman’s buttons and slots, to the development of a variety of connections between
Logo and Lego building sets (Resnick, Martin, Sargent, & Silverman, 1996), including
MultiLogo (Resnick, 1990). Allison Druin built physical programming environments where
students built physical, interactive spaces for story-telling, a different objective than previous
programming activities (Druin et al., 2011; Sherman et al., 2001). Resnick’s work on
developing programming languages that were more accessible for children programming
intelligent Lego bricks led some of the early blocks-based languages, including Scratch, the
most well-known blocks-based programming language today (Maloney et al., 2004;
Maloney, Peppler, Kafai, Resnick, & Rusk, 2008).

The main outcome of the work described in this section was the emergence of the
components of computer interfaces that we now take for granted including windows, icons,
pointers and mice. This outcome has certainly influenced the design of development
environments. Specifically for computing education research, a second but important theme
is consideration of non-textual elements (including physical devices) in supporting student
learning and programming.

4 Enter the Education Researchers

Two related disciplines started to impact on computing education research. One was
Education research, bringing with it an emphasis on research using large cohorts over
extended periods of time. The other was cognitive science which emerged in the
1970/1980s and its research methodology based on modelling human cognition. The
involvement of these researchers broadened computer education research. Cognitive
researchers modelled the user, not just the language or the interface. Both in general and in

educational settings, the cognitively-informed researchers who then started exploring
computing considered cognitive outcomes and transfer as well as the learning process.

4.1 The Impact of Education Researchers

Earlier work had already shown that Logo as a programming language had its own share of
difficulties for novices (see for example, Cannara, 1976). It was a series of studies by Pea,
Kurland and their colleagues that now examined whether learning Logo had the benefits
claimed for it in terms of increased problem-solving ability and other thinking skills (Papert,
1980a). Taking a developmental and cognitive perspective, Pea and Kurland (1984)
undertook a theoretical analysis and review of how learning to program might, in principle,
impact on children’s ability “to plan effectively, to think procedurally, or to view their flawed
problem solutions as ‘fixable’ rather than ‘wrong’”. Now the research methodology shifted
away from small-scale laboratory-based methods to longer-term evaluative studies in
authentic educational settings. In an empirical study of 8-10 year old children learning Logo
over a year, Pea, Kurland and their colleagues found that these children were no better at a
planning task at the end of the year than children who had not learned Logo (Pea, Kurland,
& Hawkins, 1985). In a much larger study involving 15-17 year old students learning a range
of languages over a year, including Logo over 9 weeks within that year, they found similar
results as well as misunderstandings of the Logo language and how it worked (Kurland, Pea,
Clement, & Mawby, 1986). Likewise, Kurland and Pea (1985) found in a small study with
children that they developed various incorrect mental models of how recursion worked,
similar to those reported in other studies of the understanding of recursion.

Papert and Pea famously debated these studies in 1987. Papert argued that Pea was
exhibiting “technocentric thinking,” by studying the technology as opposed to studying the
educational culture that could be created with tools like Logo (Papert, 1987). Papert argued
that we were too early in the development of new kinds of educational culture that
computers might facilitate to evaluate it in a treatment model. Pea argued in response that
we must study what we build, and that we can too easily fool ourselves into believing that
our interventions work without careful studies (Pea, 1987). The Pea and Papert position
papers highlight the sharp contrast between computing and educational research in terms of
both their objectives and their research methods. Is the goal of teaching programming to
improve the classroom or re-make it into something new which cannot be studied in the
same way? Do we use the traditional methods of educational research, or do we need new
methods?

These rather negative findings for Logo’s influence on the development of thinking skills was
underlined in a wide-ranging review of the literature covering Logo, BASIC and Pascal
(Palumbo, 1990). However, Palumbo criticised much of the research he reviewed for not
paying proper attention to “five critical issues concerning this area of research: (a) sufficient
attention to problem solving theory, (b) issues related to the programming treatment, (c) the
programming language selected and the method of instruction, (d) system-related issues,
and (e) the selection of an appropriate sample.”

Following this, Palumbo and Reed (1991) attempted to deal with these critical issues and
compared a group of students learning BASIC with a group learning computer literacy, which
focused on basic skills involved in computer operations, and did find evidence of improved
problem-solving in the group who had learned BASIC. In a similar fashion, Carver found
that the skill of debugging could be learned by the 8-11 year olds through experience with
Logo programming (Carver, 1986). Carver’s critical insight was that transfer occurred only
when that transferable skill was made an explicit part of the Logo curriculum, rather than
hoping it might be learned simply in passing (Carver, 1986).

4.2 The Impact of Cognitive Science

Brooks’ work, mentioned earlier, continued into the 1980’s with a theory of the
comprehension of programs that tried to explain the great variability in skill amongst both
experts and novices (Brooks, 1983). In a parallel vein, Soloway and Ehrlich (1984)
empirically explored questions around programmers’ knowledge of “programming plans –
stereotypic action sequences”, and of the “rules of programming discourse . . . which govern
the composition of plans into programs.” They used both fill-in-the-blank methods and recall
methods to demonstrate the effects of these two kinds of programming knowledge. Likewise
Wiedenbeck (1986) introduced the notion of beacons, "lines of code which serve as typical
indicators of a particular structure or operation”, that assisted experts better than novices to
recall programs that they had studied. This work on plans and beacons reflected the interest
in mental models and schemata in the cognitive science of the time (see for example,
Johnson-Laird, 1983).

With the emphasis on problem-solving emerging from cognitive science, it was not surprising
that work on understanding the nature of debugging was undertaken. Lukey (1980) built a
system, PUDSY, to embody and model his theory of how programmers debug (Pascal)
programs. His system made use of rules to segment programs, a description of the flow of
control, the recognition of debugging clues and simple data flow analysis, but as far as we
know there was no empirical work based on the system. In a series of empirical studies,
Katz and Anderson (1987) observed and analysed students’ debugging strategies in detail
as applied to LISP programs. Among other results they identified a range of students’ bugs
in LISP programs, in a similar fashion to Soloway and his colleagues’ analysis of bugs in
student Pascal programs (Johnson, Soloway, Cutler, & Draper, 1983; Spohrer et al., 1985).
These kinds of analysis provided evidence about which aspects of these languages required
extra tutorial support as well as providing the basis for progress on automated tutors and
debugging systems.

There was also interest in novices learning Prolog (Taylor & du Boulay, 1987). This is a
declarative language with a complex internal reasoning mechanism that novices find difficult
to comprehend, even when (and sometimes especially when) the “trace mechanism” is
switched on showing the internal reasoning steps. In effect, the work on trace mechanisms
was an attempt to provide the programmer with a Prolog notional machine (Eisenstadt &
Brayshaw, 1990), very different of course from the Logo notional machine mentioned earlier.
The work on programming plans and beacons applicable to procedural languages morphed
into understanding Prolog programmers’ knowledge in terms of Prolog schemata. These
were stereotypical, slightly abstracted chunks of Prolog code (Gegg-Harrison, 1991). A
useful guide to this work on Prolog can be found in Brna, du Boulay, and Pain (1999).

New kinds of tool for novices were also emerging in the form of tutors, error diagnosis
systems and support environments for learning programming, including tutors for learning
Prolog (see du Boulay & Sothcott, 1987, for a review). A notable example emerged from
cognitive science: Anderson and Reiser (1985) developed a tutor for LISP, arising both out
Anderson’s cognitive science learning theory “Adaptive Character of Thought” (ACT) and his
analysis of students learning to program, mentioned above. The strategy in this work was to
exploit a cognitive science view of how a tutor might support a student’s declarative
understanding of programming (“what it is”) as it developed into procedural skill (“how to do
it”). This tutor was the forerunner a large family of tutors that modelled the skills of a
domain, in this case programming in LISP, based on a production-rule representation and
were able to guide students step by step through problem-solving (Anderson, Corbett,
Koedinger, & Pelletier, 1995). Empirical evaluations of the tutor largely showed that it
helped learners to master simple programming more quickly than other methods (e.g.
lectures and text book) but that it did not necessarily provide deeper understanding than the
other methods. This was not the only tool developed at that time to assist computer science

students that took a cognitive science stance towards learning programming. We have
already referred to Soloway and his colleagues’ analysis of programming knowledge in
terms of “plans” (Soloway & Ehrlich, 1984). In addition, Johnson and Soloway (1987)
developed an error diagnosis system for student Pascal programs, PROUST, based on
these ideas.

4.3 Phenomenographic research

Cognitive science and its notion of mental models were not the only perspective on
computing education research. By contrast, the phenomenographic perspective studied
students in authentic settings to capture a sense of their personal experience of learning
computer science. Phenomenography entered computing education research through
educational psychologist Ference Marton and his student, Shirley Booth. For a brief guide to
several approaches for research in computer science education including cognitive science
and phenomenography, see Ben-Ari, Berglund, Booth, and Holmboe (2004).

Phenomenography emphasised the individual quality of the learning experience of each
student in relation to the context in which it was learned.

“Fundamental to an understanding of the phenomenographic approach is to
realise that its epistemological stance is not “psychological”, treating man and
his behaviour as separable from the world in which he moves and lives. Nor
is it “mentalist”, treating cognition and cognitive acts as isolated to the mind
and separable from the one who lives through them. The phenomenographic
epistemological stance is that man is in relation to his world, and that
cognition is such a relation . . .” (Booth, 1992, Page 52)

An interesting example of the approach was the thesis work of Booth on undergraduates
learning computer science. In addition to teasing out the learner’s ways of understanding
concepts such as recursion, she used an interview technique asking oblique questions to
gain a sense of what they thought it meant and what they believed it took to learn to program
(Booth, 1993). The phenomenographic approach was later linked with Activity Theory to
study how the learning situation for students doing a distributed course in computer systems
influenced their learning (Berglund, 2002). The phenomenographic approach was also used
to explore the learning of advanced network concepts in a distributed course (Berglund &
Pears, 2003).

There were three main outcomes of the work described in this section. First was the use of
large cohorts and longitudinal studies to study learning programming in classrooms rather
than in laboratories. The second was the emergence of cognitive science to enable more
detailed understanding of novice and expert programming skills, runnable models of human
programming activity, and tools to support that activity, to be built. The third were the use of
phenomenographic methods to capture the individuality of the experience of students
learning programming and other computing concepts.

5 Computing Education Emerges as a Research Discipline

This section looks at the emergence of organizations for computing education research
rather than at the content of the research itself as we have done in the previous sections.

Two international groups were formed in the 1980’s to promote and support computer
education research. One was the Psychology of Programming Interest Group (PPIG),
formed in the UK in the 1987 and holding its first workshop in 1989. The other was the
Empirical Studies of Programmers (ESP) formed in the USA and held its first workshop in in

1986 (Soloway & Iyengar, 1986). Both groups ran a series of workshops and conferences:
ESP until 1997 but with PPIG still doing so to the present day. A brief history of ESP can be
found on the PPIG website as follows:

“The ESP series was managed by the USA-based Empirical Studies of
Programmers Foundation. The last published list of the Board of Directors of
that Foundation (in 1997) was Deborah Boehm-Davis, Wayne Gray, Thomas
Moher, Jean Scholtz and James Spohrer.

There were seven ESP conferences, all held in the USA. The research
coverage of the series was very similar to the European (UK-based) PPIG
series, which is the host organisation for this newsletter. Many people
considered ESP and PPIG to be sister organisations. All ESP conferences
except ESP 3 published formal proceedings volumes. Until ESP 6, the
publisher of those proceedings was Ablex. The proceedings of ESP 7 in 1997
was published by the ACM Press. An attempt was made to convene an ESP
8 meeting that would have been held in 1999, although insufficient
submissions were received for the meeting to be viable. The papers received
were instead published as a special issue of the International Journal of
Human-Computer Studies (Volume 54, Number 2, published February
2001).” (Alan Blackwell, PPIG Website, http://www.ppig.org/news/2006-06-
01/whatever-happened-empirical-studies-programmers)

Over the years both groups were concerned with general issues in computer education
research as well as studies of expert programmers. To give an idea of the flavour of ESP
work, their first workshop included papers on novice/expert differences in debugging and in
specifying procedures, cognitive processes in program comprehension, novice debugging in
LISP, bugs in novice programs in Pascal, novice problems in coding BASIC and a plea that
expert professional programmers should also be studied. This range of papers suggest
differences in objective among these researchers. For the early Logo researchers, the goal
of teaching programming was to change thinking. For some of the first ESP researchers, the
goal of teaching programming was to get students to exhibit expert behaviour, so it was
important to study expert professional programmers and to contrast novice/expert
differences. A useful account of what was known about the psychology of programming at
this time can be found in (Hoc, Green, Samurcay, & Gilmore, 1990).

The ACM Special Interest Group in Computer Science Education was one of the first
organizations focused on Computer Science Education. Their annual symposium was
started in 1970 and continues to attract over 1000 attendees annually. The SIGCSE
Symposium was initially focused on providing a forum for teachers of computing education
to share their best practices, but research results were often presented at the symposia.
ACM SIGCSE’s non-US conference, Innovation and Technology in Computer Science
Education (ITiCSE), started in 1996. ITiCSE has been particularly important for its “working
groups” that served as fertile ground for developing computing education research. Other
conferences, such as IEEE Symposium on Visual Languages and Human-Centric
Computing (started in 1984) also often included computing education research results.

In 2001, the McCracken Working Group invented a research method for computing
education research, the Multi-Institutional Multi-National (MIMN) study (McCracken et al.,
2001). McCracken and his colleagues recognized that the validity of any study at one
institution was subject to critique because of experimental variables that might be unique to
that institution or in common with only a subset of institutions. These threats to validity made
it difficult to make progress in computing education research. The McCracken Working

Group used a common task across five different institutions in four different countries, in
order to avoid the limitations of single institution studies. The results were convincing to the
computing education research community, and the surprisingly poor performance was a
clarion call to make change in how we teach (Lister, 2011). Soon, other MIMN studies were
conducted (e.g., Lister, Box, Morrison, Tenenberg, & Westbrook, 2004), and MIMN studies
were generalized and defined as a research method (Fincher et al., 2005).

Some years later, the McCracken Working Group study was replicated. The results were not
better, but were no longer surprising (Utting et al., 2013). It is a measure of progress in
computing education research that we now better understand computing education and the
challenges in that field.

In the United States, there was growing recognition that more computing education research
was needed. Tenenberg, Fincher, and Petre began the Bootstrapping project which helped
develop computer science educators who wanted to become researchers. The success of
Bootstrapping led to another project in the United States (Scaffolding), and more capacity-
building projects around the world (Fincher & Tenenberg, 2006). Today, most computing
education researchers in the United States were part of one of the capacity-building projects
in the early 2000’s or are a student of someone who was.

Because of the capacity-building efforts, there were more active computing education
researchers than ever before. The community needed its own conference. While the ACM
SIGCSE (Special Interest Group on CS Education) technical symposium had been around
since the late 1960’s, the focus there was on supporting practitioners, not on advancing
research. Fincher, Anderson, and Guzdial were the first organizers of the ACM SIGCSE
International Computing Education Research (ICER) conference in 2005 (Anderson,
Fincher, & Guzdial, 2005). ICER became the best known and most respected computing
education research venue globally. ICER continues to grow, attracting 150 participants in
this last year. ICER papers are wide-ranging and cover tools, objectives, and research
methods.

6 Research Questions in Computing Education Research

The list of research questions that have been explored in the approximately five decades of
computing education research could already fill a book. For an excellent overview of the first
four decades of this field (see Robins, Rountree, & Rountree, 2003). In this section, we
consider three that are often revisited and connect across these decades.

6.1 Developing a Notion of Programming

One of the most significant problems in learning to program is developing a mental model of
what the computer is doing when it executes a program. The problem was first identified by
du Boulay in 1986, wherein he coined the term notional machine to describe a model of how
the computer interprets and executes a program (du Boulay, 1986). The first step in the
process is recognizing that the computer does not contain a homunculus which is trying to
understand the program. The belief that the computer contains a kind of human inside it is
called “the superbug” by Pea (1986). Resnick identified the challenge that the computer is
an external agent, and a robot being programmed is yet another agent (Resnick, 1990).
Children growing up rarely face the challenge of giving detailed process instructions to
another agent, let alone the complexity of instructing a non-human agent who does not
share a common language.

Some researchers in the 1960’s believed that eventually computers would understand
humans and natural language so that the task of programming would go away
(Greenberger, 1962). Perlis argued in 1961 that we would never reach that stage, that there
would always be “friction” because of the mismatch between humans and computers.
“Procedural literacy” is what Mateas (2008) called the knowledge and skills needed to
overcome that mismatch. The challenge of developing a mental model of the notional
machine is one that researchers have revisited every decade since the question was first
defined (Sorva, 2013).

A similar problem to developing a mental model of the notional machine is developing a
mental model of the programming process (Garner, Haden, & Robins, 2005; Joni &
Soloway, 1986). Setting aside the complexity of syntax and semantics, students struggle
with the notion of the interpreter or compiler, the act of debugging, and how the output or
result of a program might be found (Sleeman, 1986). A decade after Sleeman first identified
these issues, Clancy and Linn reported that students struggled to understand how all the
different aspects of programming fit together (Clancy & Linn, 1992). A further decade later,
researchers described the puzzling debugging strategies of students (Murphy et al., 2008).
Graphical user interfaces and physical programming may have increased the complexity for
students to try to understand the process of creating software and answering questions like,
“Where is the program that’s causing this behaviour?” For example, students do not
understand what their programs did when they were run (Hundhausen & Brown, 2007), nor
where their programs are stored (Resnick, 1990). More positively, the advent of the Internet
may allow us to explore recording student process information while programming, and
studying that may give us new insights into the development of models of how students
develop software and what they think is going on (Hundhausen, Olivares, & Carter, 2017).

6.2 Programming as a Notation for Thinking

Human languages, especially literacy in written language, has had a dramatic impact on
society (McLuhan, 1962, 1964) and even on individual readers’ brains (Wolf, 2007). The
early computing education researchers expected that programming and computational
literacy would have a similar impact (Kay, 1993), but they recognized that the design of the
language would be critical for broad social and individual impact (diSessa 1985).

Like Papert, diSessa and his students argued that programming would lead to different kinds
of understanding in mathematics than traditional pen-and-paper based forms. Turtles allow
students to explore issues as complicated as differentials and general relativity through
programs that can be more accessible than the equivalent equations (Abelson & DiSessa,
1986). Programming can be used by students to invent new kinds of graphical notations to
represent variables of interest and their relations (diSessa , Hammer, Sherin, &
Kolpakowski, 1991). In physics, equations better represent balance, but programs can be
better for representing causal and temporal relationships (Sherin, 2001).

The form of the programming language has been studied since the development of graphical
user interfaces. Green and Petre and colleagues studied a variety of graphical notations
(such as LabView and petri nets) and found that textual programming interfaces led to better
performance by programmers (Green & Petre, 1992; Green & Petre, 1996; Green, Petre, &
Bellamy, 1991). They suggest that the superiority of textual languages was likely not
inherent, but learned. We have much more experience with textual notations than with visual
notations (Petre, 1995).

The trade-off between graphical and textual languages may be different for beginners.
Hundhausen, Farley, & Brown (2006) found a visual, direct-manipulation language led to
students writing programs sooner than another group of students using a textual language.

Weintrop and Wilensky have found that some of the conditionals and iteration errors that
students make with text-based languages are much less common when students use
graphical blocks-based languages (Weintrop & Wilensky, 2015). Several studies have
shown that students learning blocks-based languages can transfer their knowledge to more
traditional text-based languages (e.g., Weintrop & Wilensky, 2015). The future of
computational literacy will likely be of mixed modality. Students will use different kinds of
programming languages at different stages, e.g., blocks-based languages as beginners,
text-based languages if they become computing professionals, and perhaps domain-specific
languages with graphical or textual forms for end-user programmers.

6.3 Representing Execution

In 1987, Brown introduced the idea of animating algorithms in order to make them
accessible by students and professional programmers (Brown, 1987). For decades, we have
been asking if animated representations of program execution do help with understanding,
when they might, and how best should they be designed. A challenge in this research is
deciding the objective of the animation. Is the objective to improve learning of the algorithm,
to provide new insights when the programmer already understands the program, or to
support debugging? Sorva’s (2012) dissertation is an excellent starting place for
understanding program visualization.

In general, there is little evidence that viewing algorithm animations leads to improved
learning about the animations (Hundhausen, Douglas, & Stasko, 2002). However, we can
use algorithm animations as part of other learning goals and develop successful learning
activities beyond just viewing. For example, Stasko found that students learned from building
the animations, rather than just viewing them (Stasko, 1997a, 1997b) and from answering
questions about static representations after viewing a dynamic animation (Byrne,
Catrambone, & Stasko, 1999). While animations themselves may have limited impact on
learning, they are motivating and can engage students for greater time-on-task and thus
greater learning (Kehoe, Stasko, & Taylor, 2001). Sorva has suggested a different role for
program execution visualizations – to teach a mental model of the notional machine, rather
than to teach the particular algorithm being taught (Sorva, 2012; Sorva, Sirkå, 2010).

7 Conclusion: Future Research Questions in a Historical Context

We started this chapter by mentioning the tools, objectives and research methods of CER.

The computational power and interface capability of the tools available to learners have
increased greatly since the early days of CER (Good, 2011), as has the ubiquity of devices
to learn with and on, including smartphones, tablets, tangible computing and a range of
cheap hardware kits such as the Arduino. The kinds of problem that a beginner programmer
can tackle are richer and more varied, and no longer restricted to printing “Hello World” or
printing out the Fibonacci sequence, not least because the range of input and output devices
has also developed dramatically since Turtles first crawled the floor. Indeed, programming
novices may even use their own bodies as input devices for coding up dance and other
movement sequences (Romero, du Boulay, Robertson, Good, & Howland, 2009). We see
that the hardware and systems software available to students and teachers influence what
students were taught and how they were taught. The advent of more computational
materials suggests the need to explore how these new media influence student learning.

The objectives argued about in the Papert vs. Pea debate mentioned earlier have now re-
emerged in two new ways. First there is interest around the world in introducing school
pupils to programming at an early age (see e.g. http://www.computingatschool.org.uk/ and

http://www.csforall.org/). This has happened in response to the increased importance of
computing in our everyday lives and the expectation that informed citizens should have at
least some understanding of programming to be able to function effectively, or possibly
choose a career in computing. This has reawakened many of the questions around how
novices can come to understand programs and programming as a process that we have
sketched earlier. Even the word “algorithm” has now entered everyday vocabulary, though
perhaps with different meanings than was meant when Perlis and Snow talked about
teaching algorithms to all undergraduates in (Greenberger, 1962). However, children are
now so surrounded by computers of many kinds that the issue of understanding in principle
what a computer and a program might be used for may be less problematic than in the early
days (du Boulay, 1986). The ubiquity and invisibility of programs might make developing
understanding of how programs work even harder. It’s hard to learn about something one
cannot see.

International interest in making computing education accessible to all puts the computing
education literature in a new light. The studies we have reviewed here do not always tell us
who was doing the learning. Papert’s studies were mostly with children, but we do not have
data about class or socioeconomic status. Most of the studies in computing education that
we have reviewed here have been undertaken with computer science students in higher
education, which is a privileged subset of students (Margolis & Fisher, 2002). Many studies
published in venues like ACM SIGCSE do not tell us the gender of the participants. There
are very few studies of students with learning disabilities or below-average intelligence
(Ladner & Israel, 2016). Indeed, we now have a whole new cohort of the population who
need to learn to program their smart devices and their homes (see for example, Blackwell,
Rode, & Toye, 2009). We need to revisit past studies and consider if the results might have
been different with a broader sample of study participants.

The second echo of the Papert vs. Pea debate centres on the notion of computational
thinking (Wing, 2006). This develops some of Papert’s ideas about how programming offers
a model of how to think effectively, solve problems and manage complex situations that can
be applied in other areas of life. So school pupils and college students are offered
computational thinking courses that help them practice some of the thinking skills that
programmers apply, without necessarily learning to program. The echo of Pea’s paper still
can be heard, as the field struggles to measure computational thinking (Roman-Gonzalez,
Perez-Gonzalez, & Jimenez-Fernandez, 2016).

In terms of research methods, we now see a wide variety of methods derived from
educational research including long and short-term evaluations, data-driven and at-scale
methods (Moreno-León, Robles, & Román-González, 2017), design-based research from
learning sciences (Ericson, Guzdial, & Morrison, 2015), action-based research by teachers
(Ni, Tew, Guzdial, & McKlin, 2011), and learner-centred design methods for building
programming environments for novices (Good, 2011; Guzdial, 2015; Howland, Good, & du
Boulay, 2013). From psychology and cognitive science we see both qualitative and
quantitative analyses of programming processes involving a range of data-capture
technologies such as eye-tracking (Bednarik & Tukiainen, 2006), think aloud protocols
(Bryant et al., 2008), as well as modeling. We also see measures of cognitive load applied
to learning programming, from validated instruments (Morrison, Dorn, & Guzdial, 2014) to
setting a background task to be undertaken in parallel (Abdul-Rahman & du Boulay, 2014).

We are limited in our research methods by who comes to our research enterprise today. In
the early years, computing education research occurred across campus, e.g., Perlis
described research in business and economics departments in (Greenberger, 1962). Section
4 described the education researchers entering into computing education research. Today,
most authors publishing at ICER are computer scientists or have a strong computing
background. We have too few education researchers (or learning scientists, or

psychologists), which means that we have too few people bringing new research methods
into the community. We need that rich interdisciplinary background that our field used to
enjoy in the past.

Back in the 1960’s, the two most prominent objectives for starting computing education were
(1) to prepare future programmers, see Sackman (1968) cited in Ensmenger (2010), and (2)
to use computing as a tool for thinking and problem-solving (Greenberger, 1962). The former
focused on industry-standard programming tools, while the latter encouraged the
development of new learner-focused programming tools. Computing education research
started when scientists began asking whether these efforts worked. The research methods
selected have always been inextricably tangled with the objectives. As we define new roles
for computing in people’s lives, we will be defining new objectives, creating new tools, and
applying a variety of research methods as we try to understand what happens when humans
learn to control machines and to measure how successful the humans are at the task.

References

Abdul-Rahman, S. S., & du Boulay, B. (2014). Learning programming via worked-examples:

Relation of learning styles to cognitive load. Computers in Human Behavior, 30, 286-
298. doi:http://dx.doi.org/10.1016/j.chb.2013.09.007

Abelson, H., & DiSessa, A. (1986). Turtle geometry: The computer as a medium for exploring
mathematics: MIT press.

Altadmri, A., & Brown, N. C. C. (2015). 37 Million Compilations: Investigating Novice
Programming Mistakes in Large-Scale Student Data. Paper presented at the
Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
Kansas City, Missouri, USA.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive Tutors:
Lessons Learned. The Journal of the Learning Sciences, 4(2), 167-207.

Anderson, J. R., & Reiser, B. J. (1985). The LISP Tutor. BYTE, 10(4), 159-175.
Anderson, R., Fincher, S. A., & Guzdial, M. (2005). Proceedings of the 1st International

Computing Education Research Workshop, ICER 2005. Unknown Journal.
Austin, H. (1976). Teaching Teachers LOGO: The Lesley Experiments. Retrieved from

http://hdl.handle.net/1721.1/6237
Barr, A., Beard, M., & Atkinson, R. C. (1976). The computer as a tutorial laboratory: the

Stanford BIP project. International Journal of Man-Machine Studies, 8(5), 567-582.
doi:https://doi.org/10.1016/S0020-7373(76)80021-1

Barron, D. W. (1977). An Introduction to the Study of Programming Languages. Cambridge:
Cambridge University Press.

Bednarik, R., & Tukiainen, M. (2006). An eye-tracking methodology for characterizing
program comprehension processes. Paper presented at the Proceedings of the 2006
symposium on Eye tracking research & applications (ETRA '06), San Diego, California.

Ben-Ari, M., Berglund, A., Booth, S., & Holmboe, C. (2004). What do we mean by
theoretically sound research in computer science education? ACM SIGCSE Bulletin,
230-231. doi:http://dx.doi.org/10.1145/1026487.1008059

Berglund, A. (2002). Learning computer systems in a distributed course: Problematizing
content and context. Paper presented at the EARLI, SIG 10.

Berglund, A., & Pears, A. (2003). Students’ Understanding of Computer Networks in an
Internationally Distributed Course. Paper presented at the The 3rd IEEE International
Conference on Advanced Learning Technologies (ICALT’03), Athens, Greece.

Blackwell, A. F., Rode, J. A., & Toye, E. F. (2009). How do we program the home? Gender,
attention investment, and the psychology of programming at home. International
Journal of Human-Computer Studies, 67(4), 324-341.
doi:https://doi.org/10.1016/j.ijhcs.2008.09.011

Booth, S. (1992). Learning to Program: A phenomonographic perspective. (PhD), University
of Gothenburg.

Booth, S. (1993). A Study of Learning to Program From an Experiential Perspective.
Computers in Human Behavior, 9(2-3), 185-202. doi:https://doi.org/10.1016/0747-
5632(93)90006-E

Brna, P., du Boulay, B., & Pain, H. (Eds.). (1999). Learning to Build and Comprehend Complex
Information Structures: Prolog as a Case Study. Stamford, Connecticut: Ablex
Publishing Corporation.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming.
International Journal of Man-Machine Studies, 9(6), 737-751.
doi:https://doi.org/10.1016/S0020-7373(77)80039-4

Brooks, R. (1978). Using a behavioral theory of program comprehension in software
engineering. Paper presented at the ICSE '78 Proceedings of the 3rd international
conference on Software engineering Atlanta, Georgia, USA.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.
International Journal Man-Machine Studies, 18(6), 543-554.
doi:https://doi.org/10.1016/S0020-7373(83)80031-5

Brown, M. H. (1987). Algorithm animation. Brown University.
Bryant, S., Romero, P., & du Boulay, B. (2008). Pair Programming and the Mysterious Role of

the Navigator. International Journal of Human-Computer Studies, 66(7), 519-529.
Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as student aids in

learning computer algorithms. Comput. Educ., 33(4), 253-278. doi:10.1016/s0360-
1315(99)00023-8

Cannara, A. B. (1976). Experiments In Teaching Children Computer Programming (271).
Retrieved from

Carver, S. M. (1986). Transfer of LOGO Debugging Skill: Analysis, Instruction, and
Assessment. (PhD), Carnegie-Mellon University, Pittsburgh, USA. (ERIC:ED284678)

Cheney, P. H. (1977). Teaching Computer Programming in an Environment Where
Collaboration is Required. Journal of the Association for Educational Data Systems,
11(1), 1-5.

Clancy, M. J., & Linn, M. (1992). Designing Pascal Solutions: A Case Study Approach: W.H.
Freeman & Company.

diSessa, A. (2001). Changing Minds: MIT Press.
diSessa , A. A. (1985). A principled design for an integrated computational environment.

Human-Computer Interaction, 1(1), 1-47.
diSessa , A. A., & Abelson, H. (1986). Boxer: A reconstructible computational medium.

Communications of the ACM, 29(9), 859-868.
diSessa , A. A., Hammer, D., Sherin, B. L., & Kolpakowski, T. (1991). Inventing graphing:

Meta-representational expertise in children. Journal of Mathematical Behavior,
2(117-160).

Druin, A., Knell, G., Soloway, E., Russell, D., Mynatt, E., & Rogers, Y. (2011). The future of
child-computer interaction CHI EA '11: CHI '11 Extended Abstracts on Human Factors
in Computing Systems (pp. 693-696). Vancouver, BC, Canada: ACM.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1), 57-73.

du Boulay, B., & O'Shea, T. (1981). Teaching Novices Programming. In M. J. Coombs & J. L.
Alty (Eds.), Computing skills and the user interface (pp. 147-200): Academic Press.

du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside the glass box: presenting
computing concepts to novices. International Journal of Man-Machine Studies, 14(3),
237-249.

du Boulay, B., & Sothcott, C. (1987). Computers teaching programming: an introductory
survey of the field. In R. W. Lawler & M. Yazdani (Eds.), Artificial Intelligence and
Education (Vol. 1, pp. 345-372). Norwood, New Jersey: Ablex.

du Boulay, J. B. H. (1978). Learning Primary Mathematics through Computer Programming.
(PhD), University of Edinburgh.

du Boulay, J. B. H. (1986). Some Difficulties of Learning to Program. Journal of Educational
Computing Research, 2, 57-73.

Eason, K. D. (1976). Understanding the naive computer user. The Computer Journal, 19(1), 3-
7. doi:https://doi.org/10.1093/comjnl/19.1.3

Eisenstadt, M. (1979). A friendly software environment for psychology students. AISB
Quarterly.

Eisenstadt, M., & Brayshaw, M. (1990). A fine-grained account of Prolog execution for
teaching and debugging. Instructional Science, 19(4-5), 407-436. doi:https://doi-
org.ezproxy.sussex.ac.uk/10.1007/BF00116447

Ensmenger, N. L. (2010). The computer boys take over: Computers, programmers, and the
politics of technical expertise. Cambridge, MA: MIT Press.

Ericson, B. J., Guzdial, M. J., & Morrison, B. B. (2015). Analysis of Interactive Features
Designed to Enhance Learning in an Ebook. Paper presented at the Proceedings of
the eleventh annual International Conference on International Computing Education
Research, Omaha, Nebraska, USA.
http://delivery.acm.org/10.1145/2790000/2787731/p169-
ericson.pdf?ip=128.61.71.130&id=2787731&acc=ACTIVE%20SERVICE&key=A79D83B
43E50B5B8%2E5E2401E94B5C98E0%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35
&CFID=542853285&CFTOKEN=14252009&__acm__=1441306284_79ae35835ba068
e72b3a9a581ce4a31e

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1969). Programming-
Languages as a Conceptual Framework for Teaching Mathematics. Final Report on
the First Fifteen Months of the LOGO Project. Retrieved from
https://eric.ed.gov/?id=ED038034

Fincher, S., Lister, R., Clear, T., Robins, A., Tenenberg, J., & Petre, M. (2005). Multi-
institutional, multi-national studies in CSEd Research: some design considerations
and trade-offs ICER '05: Proceedings of the first international workshop on
Computing education research (pp. 111-121). Seattle, WA, USA: ACM.

Fincher, S., & Tenenberg, J. (2006). Using Theory to Inform Capacity-Building: Bootstrapping
Communities of Practice in Computer Science Education Research. Journal of
Engineering Education, 95(4), 265-277.

Friend, J. (1975). Programs Students Write. Retrieved from
https://eric.ed.gov/?id=ED112861

Gannon, J. D. (1978). Characteristic errors in programming languages. Paper presented at
the ACM '78 Proceedings of the 1978 annual conference.

Garner, S., Haden, P., & Robins, A. (2005). My program is correct but it doesn't run: a
preliminary investigation of novice programmers' problems. Paper presented at the
Proceedings of the 7th Australasian conference on Computing education - Volume
42, Newcastle, New South Wales, Australia.

Gegg-Harrison, T. S. (1991). Learning Prolog in a schema-based environment. Instructional
Science, 20(2-3), 173-192. doi:https://doi.org/10.1007/BF00120881

Goldberg, A., & Kay, A. (1976). Smalltalk-72: Instruction Manual: Xerox Corporation.
Goldberg, A., & Robson, D. (1983). Smalltalk-80: the language and its implementation:

Addison-Wesley Longman Publishing Co., Inc.
Good, J. (2011). Learners at the Wheel: Novice Programming Environments Come of Age.

International Journal of People-Oriented Programming (IJPOP), 1(1), 1-24.
doi:http://dx.doi.org/10.4018/ijpop.2011010101

Gould, J. D. (1975). Some Psychological Evidence On How People Debug Computer
Programs. International Journal Man-Machine Studies, 7(2), 171-182.
doi:https://doi.org/10.1016/S0020-7373(75)80005-8

Gould, J. D., & Drongowski, P. (1974). An Exploratory Study of Computer Program
Debugging. Human Factors, 16(3), 258-277.
doi:https://doi.org/10.1177/001872087401600308

Green, T. R. G., & Petre, M. (1992). When visual programs are harder to read than textual
programs. In G. C. v. d. Veer, M. J. Tauber, S. Bagnarola, & M. Antavolits (Eds.),
Human-Computer Itneraction: Tasks and Organisation, Proceedings EECE-6 (6th
European Conference on Cognitive Ergonomics).

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a
'cognitive dimensions' framework. Journal of Visual Languages and Computing, 7(2),
131-174.

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Programming Environments:
A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages & Computing, 7(2),
131-174. doi:https://doi.org/10.1006/jvlc.1996.0009

Green, T. R. G., Petre, M., & Bellamy, R. K. E. (1991). Comprehensibility of visual and textual
programs: a test of 'superlativism' against the 'match-mismatch' conjecture. In J.
Koenemann-Belliveau, T. Moher, & S. Robertson (Eds.), Empirical Studies of
Programmers: Fourth Workshop (pp. 121-146). Norwood, NJ: Ablex.

Greenberger, M. (1962). Computers and the World of the Future: MIT Press.
Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on

Computing for Everyone: Morgan & Claypool Publishers.
Habermann, A. N. (1973). Critical comments on the programming language Pascal. Acta

Informatica, 3(1), 47-57. doi:https://doi.org/10.1007/BF00288652
Hasemer, T. (1983). An Empirically-Based Debugging System for Novice Programmers

(Technical Report No. 6). Retrieved from
Hoc, J.-M. (1977). Role of mental representation in learning a programming language.

International Journal Man-Machine Studies, 9(1), 87-105.
doi:https://doi.org/10.1016/S0020-7373(77)80044-8

Hoc, J.-M., Green, T. R. G., Samurcay, R., & Gilmore, D. J. (1990). Psychology of
Programming: European Association of Cognitive Ergonomics and Academic Press.

Howland, K., Good, J., & du Boulay, B. (2013). Narrative Threads: A Tool to Support Young
People in Creating Their Own Narrative-Based Computer Games. In Z. Pan, A. D.
Cheok, W. Müller, I. Iurgel, P. Petta, & B. Urban (Eds.), Transactions on Edutainment
X (pp. 122-145). Berlin, Heidelberg: Springer Berlin Heidelberg.

Hundhausen, C. D., & Brown, J. L. (2007). An experimental study of the impact of visual
semantic feedback on novice programming. J. Vis. Lang. Comput., 18(6), 537-559.
doi:10.1016/j.jvlc.2006.09.001

Hundhausen, C. D., Douglas, S. H., & Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing, 13, 259-290.

Hundhausen, C. D., Farley, S., & Brown, J. L. (2006). Can Direct Manipulation Lower the
Barriers to Programming and Promote Positive Transfer to Textual Programming? An
Experimental Study. Paper presented at the Proceedings of the Visual Languages and
Human-Centric Computing.

Hundhausen, C. D., Olivares, D. M., & Carter, A. S. (2017). IDE-Based Learning Analytics for
Computing Education: A Process Model, Critical Review, and Research Agenda.
Trans. Comput. Educ., 17(3), 1-26. doi:10.1145/3105759

Johnson, W. L., & Soloway, E. (1987). Proust: an automatic debugger for Pascal programs. In
G. P. Kearsley (Ed.), Artificial Intelligence \& Instruction: applications and methods.
Reading, Massachusetts: Addison-Wesley Publishing.

Johnson, W. L., Soloway, E., Cutler, B., & Draper, S. (1983). Bug Catalogue 1 (286). Retrieved
from

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Sceince of Language,
Inference and Consciousness. Cambridge, Massachusetts: Harbard University Press.

Joni, S.-N. A., & Soloway, E. (1986). But My Program Runs! Discourse Rules for Novice
Programmers. Journal of Educational Computing Research, 2(1), 95-125.
doi:10.2190/6e5w-ar7c-nx76-hut2

Kahney, H. (1982). An In-Depth Study of the Cognitive Behaviour of Novice Programmers
(Technical Report No. 5). Retrieved from

Katz, I. R., & Anderson, J. R. (1987). Debugging: an analysis of bug-location strategies.
Human-Computer Interaction, 3(4), 351-399.
doi:http://dx.doi.org/10.1207/s15327051hci0304_2

Kay, A., & Goldberg, A. (1977). Personal dynamic media. IEEE Computer, 31-41.
Kay, A. C. (1972). A Personal Computer for Children of All Ages. Paper presented at the

Proceedings of the ACM annual conference - Volume 1, Boston, Massachusetts, USA.
Kay, A. C. (1993). The Early History of Smalltalk The Second ACM SIGPLAN Conference on

History of Programming Languages (pp. 69-95). Cambridge, Massachusetts, USA:
ACM.

Kehoe, C., Stasko, J., & Taylor, A. (2001). Rethinking the evaluation of algorithm animations
as learning aids. Int. J. Hum.-Comput. Stud., 54(2), 265-284.
doi:10.1006/ijhc.2000.0409

Kurland, D. M., & Pea, R. D. (1985). Children’s Mental Models Of Recursive Logo Programs.
Journal of Educational Computing Research, 1(2), 235-243.
doi:http://dx.doi.org/10.2190/JV9Y-5PD0-MX22-9J4Y

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1986). A Study Of The Development Of
Programming Ability And Thinking Skills In High School Students. Journal of

Educational Computing Research, 2(4), 429-458.
doi:http://dx.doi.org/10.2190/BKML-B1QV-KDN4-8ULH

Ladner, R. E., & Israel, M. (2016). "For all" in "computer science for all". Commun. ACM,
59(9), 26-28. doi:10.1145/2971329

Larkin, J., McDermott, J., Simon, D.P. and Simon, H.A., 1980. Expert and novice performance
in solving physics problems. Science, 208(4450), pp.1335-1342.

Lecarme, O., & Desjardins, P. (1975). More comments on the programming language Pascal.
Acta Informatica, 4(3), 231-243. doi:https://doi.org/10.1007/BF00288728

Lemos, R. S. (1975). FORTRAN Programming: an analysis of pedagogical alternatives. Journal
of Educational Data Processing, 12(3), 21-29.

Lemos, R. S. (1978). Students' attitudes towards programming: The effects of structured
walk-throughs. Computers & Education, 2(4), 301-306.
doi:https://doi.org/10.1016/0360-1315(78)90005-2

Lemos, R. S. (1979). Teaching programming languages: A survey of approaches. ACM SIGCSE
Bulletin - Proceedings of the 10th SIGCSE symposium on Computer science, 11(1),
174-181. doi:https://doi.org/10.1145/953030.809578

Lister, R. (2011). Ten Years After the McCracken Working Group. ACM Inroads, 2(4), 18-19.
Lister, R., Box, I., Morrison, B., Tenenberg, J., & Westbrook, D. S. (2004). The Dimensions of

Variation in the Teaching of Data Structures. SIGCSE Bull., 36(3), 92--96.
doi:10.1145/1026487.1008023

Love, T. (1977). An experimental investigation of the effect of program structure on program
understanding. Paper presented at the Proceedings of an ACM conference on
Language design for reliable software, Raleigh, North Carolina.

Lukey, F. J. (1980). Understanding and Debugging Programs. International Journal of Man-
Machine Studies, 12(2), 189-202. doi:https://doi.org/10.1016/S0020-7373(80)80017-
4

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A Sneak
Preview C5 '04: Proceedings of the Second International Conference on Creating,
Connecting and Collaborating through Computing (pp. 104-109). Washington, DC,
USA: IEEE Computer Society.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
urban youth learning programming with scratch. Paper presented at the SIGCSE '08:
Proceedings of the 39th SIGCSE technical symposium on Computer science
education, New York, NY, USA. http://doi.acm.org/10.1145/1352135.1352260

Margolis, J., & Fisher, A. (2002). Unlocking the Clubhouse: Women in Computing: MIT Press.
Marton, F., 1981. Phenomenography—describing conceptions of the world around

us. Instructional science, 10(2), pp.177-200.
Mateas, M. (2008). Procedural literacy: educating the new media practitioner. In D. Drew

(Ed.), Beyond Fun (pp. 67-83): ETC Press.
Mayer, R. E. (1975). Different problem-solving competencies established in learning

computer programming with and without meaningful models. Journal of educational
psychology, 67(6), 725-734. doi:http://dx.doi.org/10.1037/0022-0663.67.6.725

Mayer, R. E. (1976). Comprehension as Affected by Structure of Problem Representation.
Memory and Cognition, 4(3), 249-255. doi:https://doi.org/10.3758/BF03213171

Mayer, R. E. (1979). A psychology of learning BASIC. Communications of the ACM, 22(11),
589-593. doi:https://doi.org/10.1145/359168.359171

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-D., . . . Wilusz,
T. (2001). A multi-national, multi-institutional study of assessment of programming
skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-140.

McLuhan, M. H. (1962). The Gutenberg Galaxy: The Making of Typographic Man: University
of Toronto Press.

McLuhan, M. H. (1964). Understanding Media: The Extensions of Man. Cambridge, MA: MIT
Press.

McNerney, T. S. (2004). From turtles to Tangible Programming Bricks: explorations in
physical language design. Personal and Ubiquitous Computing, 8(5), 326-337.
doi:10.1007/s00779-004-0295-6

Miller, L. A. (1974). Programming by non-programmers. International Journal of Man-
Machine Studies, 6(2), 237-260. doi:https://doi.org/10.1016/S0020-7373(74)80004-0

Miller, L. A. (1975). Naive programmer problems with specification of transfer-of-control.
Paper presented at the AFIPS '75 Proceedings national computer conference,
Anaheim, California.

Moreno-León, J., Robles, G., & Román-González, M. (2017). Towards Data-Driven Learning
Paths to Develop Computational Thinking with Scratch. IEEE Transactions on
Emerging Topics in Computing, PP(99), 1-1.
doi:http://dx.doi.org/10.1109/TETC.2017.2734818

Morrison, B. B., Dorn, B., & Guzdial, M. (2014). Measuring cognitive load in introductory CS:
adaptation of an instrument. Paper presented at the Proceedings of the tenth annual
conference on International computing education research, Glasgow, Scotland,
United Kingdom. http://delivery.acm.org/10.1145/2640000/2632348/p131-
morrison.pdf?ip=143.215.63.175&id=2632348&acc=ACTIVE%20SERVICE&key=A79D
83B43E50B5B8%2E5E2401E94B5C98E0%2E4D4702B0C3E38B35%2E4D4702B0C3E38
B35&CFID=463892605&CFTOKEN=52470917&__acm__=1418761875_da921306656
14ac939c9f0d8fbbd41e9

Murphy, L., Lewandowski, G., Ren, #233, McCauley, e., Simon, B., . . . Zander, C. (2008).
Debugging: the good, the bad, and the quirky -- a qualitative analysis of novices'
strategies. Paper presented at the Proceedings of the 39th SIGCSE technical
symposium on Computer science education, Portland, OR, USA.

Newell, A., & Simon, H. A. (1972). Human problem solving: Prentice-Hall.
Ni, L., Tew, A. E., Guzdial, M. J., & McKlin, T. (2011). A regional professional development

program for computing teachers: The disciplinary commons for computing educators.
Paper presented at the 2011 Annual Meeting of the American Educational Research
Association, New Orleans, LA.

Nievergelt, J., Frei, H. P., Burkhart, H., Jacobi, C., Pattner, B., Sugaya, H., . . . Weydert, J.
(1978). XS-0: a self-explanatory school computer. ACM SIGCSE Bulletin, 10(4), 66-69.
doi:https://doi.org/10.1145/988906.988921

Palumbo, D. J. (1990). Programming Language/Problem-Solving Research: A Review of
Relevant Issues. Review of Educational Research, 60(1), 65-89. doi:https://doi-
org.ezproxy.sussex.ac.uk/10.3102/00346543060001065

Palumbo, D. J., & Reed, M. W. (1991). The Effect Of Basic Programming Language Instruction
On High School Students' Problem Solving And Computer Anxiety. Journal of
Research on Computing in Education, 23(3), 343-372.
doi:http://dx.doi.org/10.1080/08886504.1991.10781967

Papert, S. (1971). Teaching children to be mathematicians versus teaching about
mathematics. Retrieved from

Papert, S. (1972). Teaching Children to be Mathematicians Versus Teaching About
Mathematics. International Journal of Mathematical Education in Science and
Technology, 3(3), 249-262. doi:http://dx.doi.org/10.1080/0020739700030306

Papert, S. (1980a). Mindstorms: Children, Computers and Powerful Ideas. Brighton, Sussex:
Harvester Press.

Papert, S. (1980b). Mindstorms: Children, computers, and powerful ideas: Basic Books.
Papert, S. (1987). Information Technology and Education: Computer Criticism vs.

Technocentric Thinking. Educational Researcher, 16(1), 22-30.
doi:10.3102/0013189x016001022

Papert, S. A., & Solomon, C. (1971). Twenty Things to Do with A Computer. Retrieved from
Cambridge, MA:

Pea, R. D. (1986). Language-Independent Conceptual ``bugs" in novice programming.
Journal of Educational Computing Research, 1(1986).

Pea, R. D. (1987). The Aims of Software Criticism: Reply to Professor Papert. Educational
Researcher, 16(5), 4-8. doi:10.3102/0013189x016005004

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer
programming. New Ideas in Psychology, 2(2), 137-168.
doi:https://doi.org/10.1016/0732-118X(84)90018-7

Pea, R. D., Kurland, D. M., & Hawkins, J. (1985). LOGO and the Development of Thinking
Skills. In M. Chen & W. Paisley (Eds.), Children and Microcomputers: Research on the
Newest Medium (pp. 193-317): Sage.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., . . . Paterson, J.
(2007). A Survey of Literature on the Teaching of Introductory Programming. ACM
SIGCSE Bulletin, 39(4), 204-223. doi:http://dx.doi.org/10.1145/1345375.1345441

Petre, M. (1995). Why looking isn't always seeing: readership skills and graphical
programming. Commun. ACM, 38(6), 33-44. doi:10.1145/203241.203251

Pugh, J., & Simpson, D. (1979). Pascal errors - empirical evidence. Computer Bulletin, 2, 26-
28.

Resnick, M. (1990). Multilogo: A study of children and concurrent programming. Interactive
Learning Environments, 1(3), 153-170.

Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable bricks: toys to
think with. IBM Syst. J., 35(3-4), 443-452.

Ripley, G. D., & Druseikis, F. C. (1978). A statistical analysis of syntax errors. Computer
Languages, 3(4), 227-240. doi:https://doi.org/10.1016/0096-0551(78)90041-3

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 13(2), 137-172.
doi:http://dx.doi.org/10.1076/csed.13.2.137.14200

Roman-Gonzalez, M., Perez-Gonzalez, J.-C., & Jimenez-Fernandez, C. (2016). Which
cognitive abilities underlie computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human Behavior, 72, 678-691.
doi:https://doi.org/10.1016/j.chb.2016.08.047

Romero, P., du Boulay, B., Robertson, J., Good, J., & Howland, K. (2009). Is Embodied
Interaction Beneficial When Learning Programming? VMR '09 Proceedings of the 3rd
International Conference on Virtual and Mixed Reality: Held as Part of HCI
International 2009 (pp. 97-105). Berlin: Springer-Verlag.

Sackman, H. (1968). Conference on Personnel Research. Datamation, 14(7), 74-76.
Shapiro, S. C., & Witmer, D. P. (1974). Interactive visual simulators for beginning

programming students. ACM SIGCSE Bulletin - Proceedings of the 4th SIGCSE
symposium on Computer science education, 6(1), 11-14.
doi:https://doi.org/10.1145/953057.810431

Sherin, B. L. (2001). A comparison of programming languages and algebraic notation as
expressive langauges for physics. International Journal of Computers for
Mathematical Learning, 6, 1-61.

Sherman, L., Druin, A., Montemayor, J., Farber, A., Platner, M., Simms, S., . . . Lal, A. (2001).
StoryKit: tools for children to build room-sized interactive experiences. Paper
presented at the CHI '01 Extended Abstracts on Human Factors in Computing
Systems, Seattle, Washington.

Shneiderman, B. (1977). Measuring computer program quality and comprehension.
International Journal Man-Machine Studies, 9(4), 465-478.
doi:https://doi.org/10.1016/S0020-7373(77)80014-X

Shneiderman, B. (1977). Teaching Programming: a spiral approach to syntax and semantics.
Computers and Education, 1(4), 193-197. doi:https://doi.org/10.1016/0360-
1315(77)90008-2

Shneiderman, B., Mayer, R. E., McKay, D., & Heller, P. (1977). Experimental investigations of
the utility of detailed flowcharts in programming. Communications of the ACM,
20(6), 373-381. doi:http://dx.doi.org/10.1145/359605.359610

Sime, M. E., Arblaster, A. T., & Green, T. R. G. (1977a). Reducing programming errors in
nested conditionals by prescribing a writing procedure. International Journal Man-
Machine Studies, 9(1), 119-126. doi:https://doi.org/10.1016/S0020-7373(77)80046-1

Sime, M. E., Arblaster, A. T., & Green, T. R. G. (1977b). Structuring the Programmer's Task.
Journal of Occupational Psychology, 50(3), 205-216.
doi:http://dx.doi.org/10.1111/j.2044-8325.1977.tb00376.x

Sime, M. E., Green, T. R. G., & Guest, D. J. (1977). Scope marking in computer conditionals—
a psychological evaluation. International Journal Man-Machine Studies, 9(1), 107-
118. doi:https://doi.org/10.1016/S0020-7373(77)80045-X

Sleeman, D. (1986). The challenges of teaching computer programming. Commun. ACM,
29(9), 840-841. doi:10.1145/6592.214913

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and High School Students: A
Study of Errors. 2(1), 5-23. doi:https://doi.org/10.2190/2XPP-LTYH-98NQ-BU77

Smith, D. C. (1975). PYGMALION: A creative programming environment. (PhD), Stanford
University, Stanford, CA.

Soloway, E., & Ehrlich, K. (1984). Empirical Studies of Programming Knowledge. IEEE
Transactions on Software Engineering, SE-10:5(5), 595-609.
doi:http://dx.doi.org/10.1109/TSE.1984.5010283

Soloway, E., & Iyengar, S. (Eds.). (1986). Emprical Studies of Programmers: Papers presented
at the first Workshop on Empirical Studies of Programmers. Norwood, New Jersey,
USA: Ablex.

Sorva, J. (2012). Visual Program Simulation in Introductory Programming Education. (Doctor
of Science in Technology), Aalto University School of Science.

Sorva, J. (2013). Notional Machines and Introductory Programming Education. Trans.
Comput. Educ., 13(2), 8:1-8:31.

Sorva, J., Sirki\, T., & \#228. (2010). UUhistle: a software tool for visual program simulation.
Paper presented at the Proceedings of the 10th Koli Calling International Conference
on Computing Education Research, Berlin, Germany.

Spohrer, J. C., Pope, E., Lipman, M., Sack, W., Freiman, S., Littman, D., . . . Soloway, E. (1985).
Bug Catalogue: II, III, IV (386). Retrieved from

Stasko, J. T. (1997a). Supporting student-built algorithm animation as a pedagogical tool.
Paper presented at the CHI '97 Extended Abstracts on Human Factors in Computing
Systems, Atlanta, Georgia.

Stasko, J. T. (1997b). Using student-built algorithm animations as learning aids. Paper
presented at the Proceedings of the twenty-eighth SIGCSE technical symposium on
Computer science education, San Jose, California, USA.

Statz, J. A. (1973). The Development Of Computer Programming Concepts And Problem-
Solving Abilities Among Ten-Year-Olds Learning Logo. (PhD), Syracuse University.

Tagg, W. (1974). Programming languages for school use. Computer Education, 16, 11-22.
Taylor, J., & du Boulay, B. (1987). Why novices may find programming in Prolog hard. In J. C.

Rutkowska & C. Crook (Eds.), Computers, Cognition and Development: Issues for
Psychology and Education. Chichester, Sussex: John Wiley \& Sons.

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., . . . Wilusz, T. (2013). A
Fresh Look at Novice Programmers' Performance and Their Teachers' Expectations
Proceedings of the ITiCSE Working Group Reports Conference on Innovation and
Technology in Computer Science Education-working Group Reports (pp. 15-32).
Canterbury, England, United Kingdom: ACM.

Weinberg, G. M. (1971). The Psychology of Computer Programming. New York: Van
Nostrand / Reinhold.

Weintrop, D., & Wilensky, U. (2015). Using Commutative Assessments to Compare
Conceptual Understanding in Blocks-based and Text-based Programs. Paper
presented at the Proceedings of the eleventh annual International Conference on
International Computing Education Research, Omaha, Nebraska, USA.

Welsh, J., Sneeringer, W. J., & Hoare, C. A. R. (1977). Ambiguities and insecurities in pascal.
Software: Practice and Experience. doi:http://dx.doi.org/10.1002/spe.4380070604

Weyer, S. A., & Cannara, A. B. (1975). Children Learning Computer Programming:
Experiments with Languages, Curricula and Programmable Devices (250). Retrieved
from

Wiedenbeck, S. (1986). Beacons in computer program comprehension. International Journal
of Man-Machine Studies, 25(6), 697-709. doi:http://dx.doi.org/10.1016/S0020-
7373(86)80083-9

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
doi:http://dx.doi.org/10.1145/1118178.1118215

Wolf, M. (2007). Proust and the Squid: The Story and Science of the Reading Brain: Harper
Colins.

Youngs, E. A. (1974). Human errors in programming. International Journal of Man-Machine
Studies, 6(3), 361-376. doi:https://doi.org/10.1016/S0020-7373(74)80027-1

