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Introduction	

	

Currently,	we	are	failing	to	meet	the	needs	of	all	learners.	The	gap	

between	those	who	achieve	the	most	and	those	who	achieve	the	least	is	

a	challenge	that	teachers,	school	leaders,	administrators,	and	

government	officials	face	every	day,	in	every	country.	Globally,	students	

from	poorer	backgrounds	perform	worse	than	students	from	richer	

backgrounds	(Conroy	and	Rothstein,	2013).	The	results	of	this	

achievement	gap	impacts	upon	a	country’s	economy	as	well	as	the	

social	well-being	of	their	population	(Hanushek	and	Woessmann,	

2010).	The	reasons	behind	the	achievement	gaps	in	different	countries	

vary,	but	the	fact	remains	that	not	all	learners	are	achieving	their	

potential	at	school.	

(Luckin,	Holmes,	Griffiths,	and	Forcier,	2016,	p.	42)		
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We	observe	achievement	gaps	even	in	rich	western	countries,	such	as	the	UK,	

which	in	principle	have	the	resources	as	well	as	the	social	and	technical	

infrastructure	to	provide	a	better	deal	for	all	learners.		The	reasons	for	such	

gaps	are	complex	and	include	the	social	and	material	poverty	of	some	

learners	with	their	resulting	other	deficits,	as	well	as	failure	by	government	

to	allocate	sufficient	resources	to	remedy	the	situation.	On	the	supply	side	of	

the	equation,	a	single	teacher	or	university	lecturer,	even	helped	by	a	

classroom	assistant	or	tutorial	assistant,	cannot	give	each	learner	the	kind	of	

one-to-one	attention	that	would	really	help	to	boost	both	their	motivation	

and	their	attainment	in	ways	that	might	mitigate	the	achievement	gap.	

	 This	chapter	argues	that	we	now	have	the	technologies	to	assist	both	

educators	and	learners,	most	commonly	in	science,	technology,	engineering	

and	mathematics	subjects	(STEM),	at	least	some	of	the	time.	We	present	case	

studies	from	the	fields	of	Artificial	Intelligence	in	Education	(AIED)	and	Big	

Data.	We	look	at	how	they	can	be	used	to	provide	personalised	support	for	

students	and	demonstrate	that	they	are	not	designed	to	replace	the	teacher.	

In	addition,	we	also	describe	tools	for	teachers	to	increase	their	awareness	

and,	ultimately,	free	up	time	for	them	to	provide	nuanced,	individualised	

support	even	in	large	cohorts.		

Artificial	Intelligence	and	Big	Data	in	Education		

	

The	name	“Artificial	Intelligence”	(AI)	can	be	a	little	scary,	especially	at	

present	where	the	notion	of	(an)	AI	taking	over	the	world	to	the	detriment	of	

society	is	a	popular	contemporary	nightmare.		

	 Artificial	intelligence	in	education	is	not	about	educational	robots	

taking	away	jobs	from	teachers	and	brainwashing	children.	It	is	much	more	
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prosaic	and	consists	of	programs	running	on	tablets	and	laptops	that	help	

teach	learners	on	a	one-to-one	basis	in	a	way	that	adapts	the	tasks,	assistance	

and	the	feedback	to	the	capabilities	and	progress	of	the	individual	learner.	

	 Artificial	Intelligence	in	Education	is	a	computer-based	technology	

that	tries	to	provide	insightful,	adaptive	and	personalised	teaching,	at	the	

level	of	competence	of	an	expert	human	tutor,	for	individuals	and	groups.	In	

particular,	such	computer-based	systems	attempt	to	choose	appropriate	

tasks	for	the	learner	to	work	on	and	then	react	dynamically	to	how	they	go	

about	dealing	with	these	tasks.	These	reactions	can	take	the	form	of	specific	

hints	on	individual	steps	taken	and	on	requests	for	help,	as	well	as	providing	

general	assistance	(or	“scaffolding”).	Note	that	the	reactions	of	the	system	

are	not	only	provided	once	the	learner	has	submitted	an	answer	but	can	also	

be	provided	in	response	to	individual	steps	towards	that	answer.	Such	

systems	are	also	known	as	“intelligent	tutoring	systems”	(ITS).	Other	systems	

are	more	open-ended	and	sometimes	less	individually	adaptive	but	provide	

opportunities	for	a	learner	to	explore	a	domain;	they	are	referred	to	as	

Exploratory	or	Open-Ended	Learning	Environments	(ELE).	We	will	refer	to	

all	of	these	here	as	“AIED	systems”.	

The	term	“Big	Data”	is	also	a	little	scary,	especially	where	

corporations	and	governments	hoover	up	huge	amounts	of	personal	data,	

where	there	seems	to	be	endless	breeches	of	privacy	and	data	hacking,	and	

the	boundary	between	secure	and	insecure	data	is	very	porous.		In	an	

educational	context,	Big	Data	can	be	beneficial	in	that	it	can	collect	

information	about	how	a	cohort	of	learners	are	interacting	with	a	learning	

environment	and	making	progress	with	their	learning.		This	information	can	

be	used	by	teachers	and	instructional	designers	to	improve	the	environment	

and	the	support	it	offers	to	students.	So	Big	Data	enables	learning	
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environments	to	be	adapted	by	showing	where	they	work	well	and	where	

they	do	not.	

This	chapter	is	organised	as	follows.		In	the	next	section	we	describe	

in	more	detail	what	an	AIED	system	is	and	provide	some	examples.		We	then	

describe	some	exploratory	learning	environments.		We	then	move	to	Big	

Data,	both	to	describe	it	and	give	examples.		In	the	final	part	of	the	chapter	

we	examine	the	evidence	for	the	educational	value	of	AIED	systems	and	Big	

Data.	

	

	

The	key	parts	of	AIED	systems	

	

The	capability	 to	 individualise	 its	 teaching	and	assist	even	with	partial	answers	

depends	on	an	AIED	system	having	the	following	four	components:		

	

1. The	Domain	Knowledge	Model	is	the	component	that	provides	the	

capability	of	the	system	to	complete	the	tasks	that	it	sets	the	students	and	

to	judge	which	steps	contribute	towards	a	solution,	or	which	parts	of	an	

answer	are	correct.	In	other	words	the	system	needs	to	understand	the	

material	that	it	is	teaching,	unlike	a	book	or	a	website	that	can	merely	

present	that	material.	Because	STEM	subjects	lend	themselves	much	

more	readily	to	having	their	domains	represented	in	ways	that	can	be	

automatically	reasoned	about,	most	AIED	systems	have	been	built	to	

teach	these	areas.		
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2. The	Student	Model	is	the	component	that	provides	a	representation	of	

the	learner	in	terms	of	their	developing	knowledge	and	skills.	This	is	

needed	so	that	tasks	of	an	appropriate	complexity	and	difficulty	can	be	

set.	As	the	learner	works	through	various	tasks,	the	system	builds	up	a	

“student	model”	of	what	the	learner	can	reliably	get	right,	what	they	seem	

to	partially	understand,	and	what	they	seem	to	be	as	yet	very	poor	at.	

This	model	can	never	be	exact,	but	is	a	best	guess	and	can	be	used,	for	

example,	to	select	the	next	task	for	the	learner	or	to	give	a	little	bit	of	

challenge	in	areas	not	yet	mastered	and	also	practice	in	areas	that	seem	

well	understood.	

	

3. The	Model	of	Pedagogy	is	the	component	that	represents	the	teaching	

capability	of	the	system.	This	is	used	to	make	decisions	about	how	best	to	

present	new	material,	how	best	to	deal	with	requests	for	help,	how	best	

to	deal	with	incorrect	steps	and	answers	and	so	on.	This	might	also	

include	an	understanding	of	how	to	motivate	the	learners	if	they	become	

demotivated	and	tactics	to	deal	with	students	who	try	to	“game	the	

system”	(Baker	et	al.,	2008)	by	demanding	so	much	help	that	the	system	

might	otherwise	give	them	all	the	answers.	

	

4. The	Interface	is	the	component	that	provides	the	channel	through	which	

the	learner	and	the	system	communicate.	This	channel	might	be	through	

spoken	dialogue,	or	text	and	diagrams	provided	either	by	the	learner	or	

the	system	(see	Figure	2).	Such	an	interface	may	also	include	an	animated	

pedagogical	agent	taking	the	role	of	a	tutor	or	of	a	fellow	student.	
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We	present	below	some	examples	of	AIED	systems	illustrating	their	Domain	

Model,	Student	Model,	Pedagogical	Model	and	Interface.	We	chose	a	variety	

of	systems	and	their	potential	to	support	students	in	different	contexts.	

	

Examples	of	AIED	systems		

	

Procedural	skills	–	the	Cognitive	Algebra	Tutor	

	

Our	first	example	is	an	older	and	‘traditional’	intelligent	tutoring	system.	It	

teaches	algebraic	skills	such	as	equation	solving.		In	the	Pittsburgh	Algebra	

Tutor,	and	other	similar	systems	derived	from	it,	the	overall	form	of	

interaction	is	that	the	system	chooses	an	individualised	sequence	of	algebraic	

problems	for	the	learner	to	solve	and	then	monitors	each	step	that	the	

learner	takes	in	solving	each	problem.	The	system	has	gone	through	several	

iterations.	The	interface	shown	in	Figure	1,	taken	from	a	much-cited	early	

paper	(Koedinger,	Anderson,	Hadley,	and	Mark,	1997),	offers	a	problem	

specific	worksheet	for	the	learner	to	fill	out	their	partial	answers	to	each	sub-

step	of	the	problem.	Later	versions,	such	as	the	one	used	in	a	large	evaluation	

described	later,	provide	a	more	modern	look	and	feel	with	access	to	a	

number	of	other	tools	to	help	the	learner	and	find	information	(Koedinger	

and	Aleven,	2016).	

	

<<FIGURE	1	about	here>>	

	

Figure	1.	Interface	for	the	Pittsburgh	Algebra	Tutor,	taken	from	Koedinger	et	al.	

(1997)	
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The	system	uses	its	domain	model	and	student	model	to	sequence	the	

problems	for	each	learner	on	an	individual	basis,	depending	on	their	rate	of	

progress	in	mastering	the	various	algebraic	subskills	needed	for	each	

problem	(see	bottom	right	of	the	interface).	They	are	also	used	to	reason	

about	partial	answers	in	various	representations,	such	as	a	graph,	

spreadsheet	and	equation	solver,	to	decide	when	a	partial	answer	is	a	step	in	

the	right	direction	to	solving	the	overall	problem	and	when	it	is	not.	The	

pedagogical	model	makes	the	system	react	quickly	to	any	mistake	made	by	

the	learner	so	as	to	reduce	the	chance	that	they	stray	too	far	from	the	

solution	and	get	muddled.	It	also	dynamically	assesses	what	is	the	best	next	

problem	for	the	learner	to	work	on	so	as	to	ensure	that	new	skills	are	

encountered	and	old	skills	practiced.	

	

Exploratory	Learning	Environments	for	conceptual	understanding	-	BETTY’s	Brain		

	

Our	second	example	is	Betty’s	Brain,	a	system	designed	to	teach	scientific	

conceptual	understanding	of	river	ecosystems	(Leelawong	and	Biswas,	

2008).		In	particular,	it	aims	to	help	learners	appreciate	the	complexity	of	the	

causal	and	other	relationships	between	different	processes	occurring	in	such	

ecosystems;	for	example,	that	fish	produce	waste	and	that	this	waste	is	food	

for	bacteria	(see	Figure	2).	There	is	also	skill	building	in	the	learner’s	

interactions	with	Betty’s	Brain,	such	as	following	causal	chains	of	reasoning	

and	developing	generic	study	skills,	but	the	main	focus	is	still	on	conceptual	

understanding.	

	

<<FIGURE	2	about	here	>>	
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Figure	2.	Betty’s	Brain	interface,	taken	from	Leelawong	and	Biswas	(2008)	

The	heart	of	the	system	is	the	Concept	Map	Editor	pane	in	the	top	right	of	the	

interface.	This	is	where	the	learner	builds	up	a	conceptual	map	of	the	river	

ecosystem,	using	nodes	and	links	via	the	Editor	on	the	top	left	of	the	screen.	

The	conceptual	map	can	also	be	understood	by	the	system	and	this	enables	it	

to	answer	questions	based	on	it.	

	 The	narrative	behind	the	interaction	is	that	the	human	learner	is	

attempting	to	teach	fellow	student,	Betty,	seen	on	the	bottom	left	of	the	

screen	in	Figure	2.	The	conceptual	map	is	a	record	of	what	the	learner	has	so	

far	taught	Betty	–	hence	“Betty’s	Brain”.	The	learner	can	test	the	adequacy	of	

what	Betty	has	learnt	by	asking	her	to	take	a	quiz	administered	by	Mr	Davis,	

the	teacher.	Mr	Davis	assesses	Betty’s	answers	to	the	quiz	questions	and	

provides	feedback	to	the	learner,	who	then	has	the	chance	to	edit	the	

conceptual	map	in	an	attempt	to	help	Betty	get	a	better	quiz	score.	Mr	Davis	

assesses	Betty’s	answers	to	the	quiz	by	reasoning	from	the	conceptual	map	

created	by	the	human	learner.	This	slightly	indirect	way	of	learning	has	a	

particular	advantage	for	the	human	learner	in	terms	of	somewhat	

forestalling	any	negative	reactions	from	the	learner	to	mistakes	in	the	quiz,	

as	they	are	Betty’s	mistakes.	

	 The	learner	can	test	the	adequacy	of	the	conceptual	map	directly	by	

asking	Betty	such	questions	as	“If	macroinvertebrates	increase	what	happens	

to	bacteria?”	Betty	can	answer	such	a	question	and	explain	that	answer	by	

following	the	causal	reasoning	indicated	in	the	conceptual	map	using	

qualitative	reasoning	techniques.	

	 The	system	also	provides	learning	materials	that	the	learner	is	

encouraged	to	use,	see	the	lower	part	of	the	screen	in	Figure	2.	In	addition	to	

feedback	about	the	domain	of	river	ecosystems,	Mr	Davis	also	makes	
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suggestions	at	the	meta-cognitive	level,	for	example	about	making	better	use	

of	the	reading	materials,	in	an	effort	to	help	the	learner	develop	good	study	

skills.		

	 In	terms	of	the	four	components	mentioned	in	the	previous	section	we	

note	that	domain	knowledge	of	the	system	is	its	ability	to	reason	using	the	

conceptual	maps	produced	by	the	learner.	Its	student	model	is	made	up	of	a	

record	of	the	various	actions	taken	by	the	learner	and	the	partial	but	growing	

understanding	of	the	domain	as	exemplified	in	the	conceptual	map.	In	

pedagogical	terms	the	system	is	driven	by	the	actions	of	the	learner,	although	

the	overall	educational	goal	of	having	Betty	pass	all	the	quizzes	is	clearly	

provided	by	the	system.	The	system	does	have	a	model	of	pedagogy	that	

drives	how	and	when	it	makes	comments	at	the	metacognitive	level,	for	

example	when	Betty	reacts	to	being	asked	to	take	a	second	quiz	even	though	

there	has	been	no	change	to	the	conceptual	map.	Finally,	the	interface	is	key	

to	the	interaction	as	the	conceptual	map	built	by	the	learner	is	both	an	

expression	of	their	evolving	understanding	and	can	be	reasoned	about	by	the	

system	(even	if	the	map	is	wrong	or	partial).	

	

	

eXpresser	and	the	MiGen	system	

	

Another	example	of	an	exploratory	environment	is	a	mathematical	

microworld	called	eXpresser	that	aims	to	support	11-14	year	olds’	learning	

of	algebraic	generalization,	as	part	of	a	system	called	MiGen	(Noss	et	al.	
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2012)1.	Using	eXpresser,	students	are	asked	to	construct	two-dimensional	

tiled	models	and	associated	algebraic	rules.	The	algebraic	rules	relate	to	the	

number	of	tiles	of	each	colour	required	to	paint	each	pattern	and	their	model	

overall	(see	Figure	3).	

	

<<FIGURE	3	here	>>	

	
Figure	3.	The	eXpresser	microworld.	Letters	highlight	the	main	features:	(A)	An	‘unlocked’	

number	(i.e.	variable)	is	given	the	name	‘reds’	and	signifies	the	number	of	red	(dark	grey)	

tiles	in	the	pattern.	(B)	Building	block	to	be	repeated	to	make	a	pattern.	(C)	Number	of	

repetitions	(in	this	case,	the	value	of	the	variable	‘reds’).		(D,E)	Number	of	grid	squares	to	

translate	B	to	the	right	and	down	after	each	repetition.		(F)	Units	of	colour	required	to	paint	

the	pattern.		(G)	General	expression	that	gives	the	total	number	of	units	of	colour	required	to	

paint	the	whole	pattern.	

	

	

Figure	4	illustrates	a	feedback	message	given	by	the	eXpresser	to	a	student	

who	has	constructed	a	correct	pattern	and	a	correct	colouring	rule	for	it,	

nudging	the	student	towards	“unlocking”	a	number	(i.e.	turning	it	into	a	

variable)	so	as	to	now	generalise	their	pattern	and	rule.		Figure	5	shows	a	

message	of	encouragement	but	also	a	stronger	prompt	to	guide	the	student	

towards	generalising	their	construction.		

	

<<FIGURE	4	here	>>	

	
Figure	4.	A	‘nudge’	from	the	eXpresser	

																																																								
1	eXpresser	is	one	of	a	set	of	tools	making	up	the	MiGen	system,	which	was	
developed	through	funding	from	the	ESRC/EPSRC	Technology	Enhanced	
Learning	programme,	award	no.	RES-139-25-0381	
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<<FIGURE	4	here	>>	

	
Figure	5.	A	message	of	encouragement	and	a	stronger	‘prompt’	from	the	eXpresser	

	

In	terms	of	the	four	components	of	AIED	systems	mentioned	earlier,	the	

domain	knowledge	of	the	system	is	its	internal	model	of	mathematical	

concepts	relating	to	algebraic	generalisation.	The	student	model	records	the	

learner’s	gradual	mastery	of	these	concepts	as	the	learner	works	through	

successively	harder	tasks,	as	well	as	a	history	of	the	learner’s	constructions	

and	interactions	with	the	system.	In	pedagogical	terms,	each	task	comprises	

a	set	of	learning	goals	that	the	learner	needs	to	achieve	as	they	work	on	the	

task	using	eXpresser.	The	system	provides	adaptive	support	based	on	how	

the	student	is	approaching	the	task	and	how	they	are	interacting	with	the	

system.	Again,	the	eXpresser	interface	is	key	to	the	student-system	

interactions	and	the	student’s	growing	conceptual	knowledge,	as	their	

construction	of	models	and	rules	can	be	reasoned	about	by	the	system	in	

order	to	provide	appropriate	support	and	also	demonstrates	the	student’s	

evolving	understanding	of	the	domain.	

	

Combining	ITS	and	ELE	–	the	case	of	iTalk2Learn	

	

Intelligent	Tutoring	Systems	like	Cognitive	Algebra	Tutor	and	Exploratory	

Environments	like	eXpresser	do	not	have	to	exist	in	isolation.	The	

iTalk2learn	project	developed	an	adaptive	digital	learning	platform	for	

primary	school	mathematics	that	allows	interaction	via	direct	manipulation	
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and	speech	to	provide	intelligent	interventions	and	individualized	task	

sequences.2	Importantly,	for	the	discussion	here,	iTalk2Learn	combines	

structured	and	exploratory	activities	to	improve	learners’	procedural	as	well	

as	conceptual	knowledge	(Rummel	et	al.	2016).	It	does	so	by	offering	

activities	from	a	commercial	intelligent	tutoring	system	(Math-Whizz,	

http://www.whizz.com/)	to	support	procedural	knowledge,	and	from	a	

microworld	called	Fractions	Lab	to	improve	students’	conceptual	knowledge	

of	fractions	(Hansen	et	al.	2016).		In	Fractions	Lab,	students	are	asked	to	

construct	one	or	more	fractions	and,	using	the	affordances	of	the	system,	to	

compare,	add	or	subtract	fractions.	In	Figure	6,	for	example,	the	student	has	

been	asked	to	create	a	fraction,	and	then	to	create	four	equivalent	fractions	

with	increasingly	larger	denominators.	So	far	the	student	has	created	their	

first	fraction,	but	has	not	yet	created	any	equivalent	ones.	The	glowing	

lightbulb	at	the	top	of	the	screen	indicates	that	there	is	help	currently	

available	from	the	system	(Grawemeyer	et	al.	2015).	Clicking	on	the	lightbulb	

results	in	the	feedback	message	shown	in	Figure	7,	which	is	aiming	to	nudge	

the	student	towards	the	next	step.	Figure	8	shows	that	the	student	has	

indeed	made	their	first	equivalent	function.	After	a	period	of	inactivity,	

Figure	9	shows	a	message	of	encouragement	and	also	an	unsolicited	prompt	

(Grawemeyer	et	al.	2015)	to	guide	the	student	towards	the	next	step.		 	

	 As	students	are	undertaking	tasks,	they	are	encouraged	to	talk	aloud.	

A	speech	recognition	system	extracts	keywords	which	are	combined	with	

prosodic	features	also	extracted	from	the	speech	signal	and	used	as	input	to	

methods	for	the	classification	of	students’	sentiment	and	cognitive	load.	The	

outcomes	of	this	emotion	and	affect	recognition	serve	as	input	for	providing	

																																																								
2	The	iTalk2Learn	system	was	developed	through	co-funding	from	the	EU	
FP7	programme,	ref.	no.	ICT-318051.	
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intelligent	support	to	the	student	and	automatic	selection	of	interventions.	

This	relies	on	large	amounts	of	data	and	student	modelling,	as	described	in	

the	next	section	on	Big	Data.	

	

<<FIGURE	6	here	>>	

	
Figure	6.	FractionsLab	microworld,	showing	the	availability	of	low-interruption	feedback.	

	

<<FIGURE	7	here	>>	

	

Figure	7.	FractionsLab	microworld,	showing	the	elective	display	of	low-interruption	

feedback.	

	

<<FIGURE	8	here	>>	

	
Figure	8.	FractionsLab	microworld,	showing	that	the	student	has	progressed	to	the	next	step.	

	

<<FIGURE	9	here	>>	

	
Figure	9.	FractionsLab	microworld,	showing	a	message	of	encouragement	and	also	a	

stronger	prompt	to	guide	the	student	towards	accomplishing	the	subsequent	step.	

	

In	terms	of	the	four	components	of	AIED	systems,	these	are	similar	in	

functionality	to	those	of	eXpresser,	except	that	in	Fractions	Lab	the	student	

model	also	includes	information	about	the	student’s	evolving	affective	state	

as	the	student	works	on	a	task	using	the	microworld.		
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Two	ways	in	which	AIED	systems	might	be	used	

	

There	are	two	main	ways	that	AIED	systems	can	be	used	effectively	in	

schools.	First,	such	systems	can	be	deployed	as	classroom	assistants	in	the	

following	sense.	While	whole	group	teaching	or	small	group	teaching	by	a	

human	teacher	continues	to	be	the	norm,	it	is	commonplace	for	an	individual	

or	a	small	group	to	be	handed	over	to	a	human	classroom	assistant.	This	

might	be	to	provide	individual	help	for	pupils	who	are	not	doing	so	well,	or	it	

might	be	to	assist	pupils	who	have	already	mastered	the	material	ahead	of	

the	rest	of	the	class	and	who	need	a	bit	more	of	a	challenge.	The	idea	here	is	

that	in	addition	to	the	human	classroom	assistant,	an	AIED	system	could	be	

used	by	an	individual	pupil	or	a	group	of	pupils	who	need	extra	practice	or	

who	need	exposure	to	more	challenging	material.	The	ability	of	such	systems	

to	monitor	the	individual	problem-solving	steps	of	the	pupil	and	to	provide	

help,	hints	and	scaffolding	specifically	appropriate	to	the	individual	could	be	

a	valuable	extra	tool	in	the	classroom.		

	 There	are	also	potential	benefits	for	a	group	of	pupils	working	with	

such	a	system	to	discuss	and	argue	about	different	possible	answers	to	

problem-solving	steps,	as	well	as	the	meaning	and	intent	of	feedback	

received	from	the	system	on	their	errors.	For	the	more	able	pupils	running	

ahead	of	the	rest	of	the	class,	such	systems	can	provide	more	challenging	

problems,	possibly	with	less	help	and	scaffolding,	thus	maintaining	their	

motivation.	

	 The	second	way	that	AIED	systems	can	be	used	is	as	assistants	in	

after-school	classes,	revision	classes	or	for	homework.	In	these	situations	the	

classroom	teacher	is	typically	less	available,	but	the	pupil	will	still	need	the	

kind	of	detailed	assistance	that	such	systems	are	able	to	provide.	Just	as	we	
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have	mentioned	that	groups	of	pupils	can	discuss	an	ongoing	interaction	with	

an	AIED	system	to	help	create	better	understanding,	so	a	child	and	a	parent	

at	home	can	have	a	similarly	fruitful	discussion	together	in	the	context	of	

using	an	AIED	system.	

	 Note	that	our	use	cases	have	the	AIED	system	working	in	tandem	with	

the	classroom	teacher	and	not	as	a	replacement.	Those	visions	of	future	

education	involving	simply	computer-based	instruction	without	the	social	

and	pedagogic	support	of	human	teachers	are	barren	indeed.	It	is	instructive	

to	note	the	high	drop-out	rates	when	college-level	courses	are	delivered	

solely	via	Massive	Open	Online	Courses	(MOOCs)	direct	to	the	individual	

learner,	with	little	in	the	way	of	face-to-face	interaction	with	either	the	

teacher	or	with	fellow	students	(Liyanagunawardena,	Adams,	and	Williams,	

2013).	

Big	Data	in	Education	

	

Emergent	web,	mobile,	and	pervasive	digital	technologies	are	generating	

data	at	unprecedented	scales	and	speeds	in	virtually	all	areas	of	human	

activity.	Across	industry,	commerce	and	the	public	sector	this	Big	Data	is	

being	digitally	collected	and	computationally	analysed	in	order	to	gain	better	

understanding	of	providers’	services	and	products,	consumers’	needs	and	

preferences,	and,	more	fundamentally,	to	expand	human	knowledge	across	

the	sciences,	social	sciences	and	humanities.						

	 	Originally,	Big	Data	was	taken	to	mean	data	sets	that	are	beyond	the	

management	and	analysis	capabilities	of	traditional	software	tools.	The	

generation	of	such	data	sets	led	to	the	development	of	new	data	storage	and	

data	processing	paradigms,	such	as	NoSQL	data	stores	(Cattell	2011),	
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massively	data-parallel	distributed	processing	frameworks	(Dean	&	

Ghemawat	2008,	EMC	2015)	and	cloud	computing	platforms	(Armbrust	et	al	

2010).			

	 Big	data	is	distinguished	from	other	data	by	exhibiting	the	so-called	

‘V’	attributes.	These	include:		

	

• volume	–	the	size	of	the	datasets;	

• velocity	–	the	rapid	rate	at	which	the	data	may	generated;	

• variety	–	different	types	of	data	being	generated	from	multiple	

sources,	needing	to	be	cross-referenced	and	combined	in	order	to	be	

fully	exploited;		

• veracity	–	the	incompleteness	of	the	data	being	collected,	and	the	

imprecision	of	inferences	being	made	from	it;	and	

• volatility	–	data	being	collected	or	inferred	may	become	less	relevant	

over	time.	

		

More	recently,	there	is	a	recognition	that	these	‘V’	attributes	are	not	the	

whole	story	and	that	what	is	most	important	is	the	ability	to	extract	value	

from	such	data	while	also	complying	with	given	time,	human	and	technical	

resource	constraints.			

Learning	Analytics	and	Educational	Data	Mining	

	

Big	data	in	the	education	sector	is	the	focus	of	two	complementary	academic	

fields:	Learning	Analytics	and	Educational	Data	Mining.		

	 The	field	of	Learning	Analytics	(LA)	is	concerned	with	gathering,	

analysing	and	visualising	data	about	learners	and	learning	processes,	so	as	to	
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increase	stakeholders’	understanding	of	these	and	hence	to	improve	learning	

and	the	environments	in	which	it	occurs	(Siemens	2012,	Drachsler	and	Greller	

2012,	Ferguson	2012).		This	data	may	be	collected	from	many	different	

sources:			

	

• virtual	learning	environments	(VLEs)	that	track	and	support	students’	

activities,	interactions,	reflections	and	progress	through	learning	

tasks;	

• students’	assessment	activities	–	both	formative	and	summative;	

• students’	personal	records	and	records	of	prior	achievement;	

• learner	profiling	and	learner	modelling	software;	

• software	supporting	social	networking,	peer	support,	and	

collaboration;			

• audio	and	video	recordings;		

• gesture	and	physiological	sensor	recordings	(e.g.	heart	rate,	galvanic	

skin	response,	blood	pressure,	EEG	readings);	and	

• mobile	learning	apps,	gathering	large-scale	user-centred	and	context-

aware	data.	

	

This	exceptionally	broad	range	of	data	sources	is	allowing	increasingly	

individualised,	detailed	and	longitudinal	data	to	be	collected	and	analysed,	

bringing	with	it	the	potential	to	derive	new	insights	and	to	provide	more	

effective	support	to	learners	and	tutors.					

	 The	field	of	Educational	Data	Mining	(EDM)	was	established	a	few	

years	earlier	than	the	LA	field	and	it,	too,	is	concerned	with	gathering	and	

analysing	data	so	as	to	understand,	support	and	improve	students’	learning.	
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However,	the	LA	and	EDM	fields	have	somewhat	different	emphases	(Siemens	

and	Baker	2012):			

	

• LA	focuses	on	tools	to	aid	users	in	their	roles,	whereas	EDM	focuses	

on	tools	for	automated	knowledge	discovery.	

• LA	focuses	on	understanding	learning	processes	as	a	whole,	whereas	

EDM	focuses	on	understanding	specific	aspects	of	learning	and	the	

relationships	between	them.		

• LA	focuses	on	tools	that	empower	students,	learners,	teachers	and	

other	stakeholders	to	make	decisions,	whereas	EDM	focuses	on	

automated	personalisation	and	adaptation	of	learning	environments.			

	

Nonetheless,	there	is	also	much	commonality	between	LA	and	EDM	and	they	

can	indeed	be	regarded	as	parts	of	a	larger	interdisciplinary	continuum	of	

research	and	practice	involving	disciplines	such	as	computer	science,	

education	and	psychology,	as	well	as	teachers,	learners,	learning	designers,	

policy	makers	and	other	stakeholders	in	learning	processes	from	across	the	

public	and	private	sectors.		

There	is	also	commonality	in	the	computing	techniques	developed	

and	applied	in	the	LA	and	EDM	fields,	which	include:	data	modelling;	data	

cleansing,	transformation	and	integration;	knowledge	representation	and	

reasoning;	data	mining,	analytics	and	visualisation;	learner	modelling;	

recommender	systems;	predictive	modelling;	social	network	analysis;	and	

discourse	analysis.	We	refer	readers	to	(Poulovassilis	2016)	for	a	more	

detailed	discussion	of	these	different	techniques,	their	applications,	and	

references	to	the	relevant	technical	literature.			

	



	

	 19	

The	Sources	and	Design	Process	of	Big	Data	in	Education	

	

Collection	and	analysis	of	learning-related	data	has	been	used	in	Technology	

Enhanced	Learning	research	and	practice	for	many	years.	Big	data,	however,	

start	playing	a	particular	role	when	considering	data	from	systems	such	as	the	

AIED	ones	presented	in	the	previous	section.	We	can	see	from	the	description	

of	these	systems	that	the	data	they	generate	include:		

	

• Event-based	data:	log	data	of	students’	interactions	with	the	system;	

students’	responses,	ranging	from	simple	answers	to	a	question	to	

more	complex	reflections,	e.g.	through	text	(in	MiGen)	or	speech	(in	

iTalk2Learn);	occurrences	of	key	indicators	as	students	interact	with	

the	system;	generation	and	provision	of	feedback	by	the	system.	

• Students'	constructions:	the	diagrams	in	Betty’s	brain,	or	the	models	

and	mathematical	expressions	being	constructed	by	students	in	

eXpresser,	including	a	full	history	of	how	each	was	constructed.			

• Task	information:	task	descriptions,	task	learning	goals,	common	

solution	approaches	to	each	task.		

• Learner	models:	information	about	students’	level	of	attainment	of	

concepts	and	skills,	recent	history	of	interactions	with	the	system,	

progress	with	tasks	set,	achievement	of	learning	goals,	affective	states.			

	

We	can	see	that	this	data	exhibits	all	of	the	‘V’	attributes	that	we	discussed	

earlier.	As	well	as	its	evident	volume	and	velocity,	under	the	‘variety’	

attribute	we	have	unstructured	data	(e.g.	the	students’	reflections),	semi-

structured	data	(e.g.	the	log	data,	task	information,	and	students’	

constructions)	and	structured	data	(e.g.	the	learner	models	and	indicator	
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data).	Under	‘veracity’	there	is	the	inherent	imprecision	of	the	inferences	

being	made	by	the	system’s	intelligent	components,	e.g.	in	the	detection	of	

task-dependent	indicators	(Gutierrez-Santos	et	al	2012)	or	students’	affective	

states	(Grawemeyer	et	al	2015).	Under	‘volatility’,	a	student’s	history	of	

interactions,	inferred	indicators	and	affective	states	may	become	less	

relevant	with	time.			

	 The	rich	range	of	data	that	can	be	collected	by	an	AIED	system	

provides	not	only	the	possibility	to	generate	personalised	feedback	for	the	

learner,	but	also	the	opportunity	to	design	visualisation	and	notification	tools	

for	the	teacher.	The	provision	of	such	tools	can	help	the	teacher	to	formulate	

her	own	interventions	to	support	both	individual	students	and	the	class	as	a	

whole.		

	 To	be	fully	effective	in	the	classroom,	such	tools	need	to	be	designed	

by	multi-disciplinary	teams	involving	teachers,	pedagogical	experts	and	

computer	scientists.	In	our	own	work	in	this	area,	we	have	used	an	iterative	

participatory	methodology,	comprising	successive	phases	of	prototyping,	

requirements	elicitation,	incremental	development	and	evaluation	

(Gutierrez-Santos	et	al.	2012,	Mavrikis	et	al.	2016,	Gutierrez-Santos	et	al.	in	

press).	The	next	section	illustrates	this	through	examples.	

	

Examples	of	applications	of	Big	Data	in	Education	

	

Student	modelling	from	big	data	–	the	case	of	affective	learning		

	

Perhaps	the	most	common	use	of	data	from	digital	learning	environments	is	

to	inform	the	system’s	internal	conception	of	the	learner	and	its	learner	
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modelling,	as	mentioned	already	in	the	previous	section.	One	of	the	most	

innovative	applications	of	such	data	is	for	the	detection	of	a	student’s	

affective	state.	Such	information	can	be	used	to	enhance	learning	by	means	of	

nudges	that	move	students	out	of	negative	states	such	as	boredom	or	

frustration	that	inhibit	learning	into	positive	states	such	as	engagement	or	

enjoyment.	Affective	states	can	be	detected	through	computational	analysis	

of	data	extracted	from	speech,	facial	expressions,	eye	tracking,	body	

language,	physiological	signals,	or	combinations	of	these	(D'Mello	and	Kory	

2015).	In	the	iTalk2Learn	system,	for	example,	a	student’s	affective	state	is	

determined	through	detection	of	keywords	and	prosodic	features	in	their	

speech	as	they	talk	aloud	when	interacting	with	the	system	(Grawemeyer	et	

al	2015b).		Such	detailed	student	modelling	can	enable	affect-aware	support	

for	the	student,	which	has	been	shown	to	contribute	to	

reducing	boredom	and	off-task	behavior,	with	promising	effects	on	learning	

(Grawemeyer	et	al,	in	press).	 
	 In	addition,	rich	data	from	such	systems	can	be	used	by	designers	and	

researchers	to	investigate	the	system’s	performance	and	efficacy	and	to	

identify	areas	requiring	further	development.	For	example,	the	system-

student	interaction	data	arising	from	iTalk2Learn	have	been	recently	

remodelled	using	graph-based	methods	so	as	to	more	easily	investigate	the	

effectiveness	of	the	intelligent	support	being	provided	by	the	system.	Figure	

10	illustrates	one	possible	visualisation	of	how	a	student’s	affective	state	

changes	during	a	learning	task.			

	

<<FIGURE	10	here	>>	
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Figure	10.	Graph-based	modelling	and	visualisation	of	students'	interactions;	the	figure	

illustrates	how	one	student’s	affective	state	changes	between	states	of	Engagement	(green),	

Frustration	(amber)	and	Confusion	(red).	Successive	events	are	shown	in	blue	and	are	

connected	by	red	edges.	

	

	

Teacher	tools	for	Exploratory	Learning	Environments	

	

We	described	earlier	the	eXpresser	mathematical	microworld,	which	is	one	

of	the	tools	making	up	the	MiGen	system.	Figures	11	and	12	illustrate	two	of	

that	system’s	Teacher	Assistance	tools,	each	of	which	draws	on	the	data	

generated	by	students’	use	of	eXpresser:	the	Classroom	Dynamics	(CD)	tool	

and	the	Goal	Achievements	(GA)	tool.	In	the	CD	tool,	each	student	present	in	

the	classroom	is	represented	by	a	circle	containing	their	initials.	At	the	outset	

of	the	lesson,	the	teacher	can	drag-and-drop	these	circles	so	that	their	

positions	on	the	screen	reflect	the	students’	spatial	positioning	in	the	

classroom.	The	colour	of	a	student's	circle	reflects	the	student's	current	

activity	status,	as	inferred	by	the	system.	Green	indicates	a	student	working	

productively	on	the	task	set.	Amber	indicates	a	student	who	has	not	

interacted	with	eXpresser	for	some	time	(by	default,	five	minutes).	Red	

indicates	a	student	who	has	requested	help	from	the	system	in	a	situation	

where	the	intelligent	support	cannot	help	any	further:	in	such	cases,	the	

eXpresser	displays	the	message	“The	teacher	will	come	to	help	you	now”	to	

the	student,	and	the	student's	circle	becomes	coloured	red	to	attract	the	

attention	of	the	teacher.	

	 Most	of	the	time,	the	teacher	will	have	the	CD	tool	selected	for	display	

on	her	handheld	computer.	When	students	show	as	amber,	she	can	approach	

them	and	encourage	them	to	resume	working	on	the	task	set.	If	students	who	
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are	not	showing	as	red	call	out	for	help	she	can	encourage	them	to	first	seek	

help	from	the	system,	knowing	that	if	the	intelligent	support	cannot	help	the	

student’s	circle	will	automatically	appear	as	red	in	the	CD	tool.	If	a	student	

does	appear	as	red,	the	teacher	can	click	on	the	student’s	circle	on	her	way	

over	to	the	student	so	as	to	see	their	current	model	and	rule,	which	helps	her	

to	prepare	her	feedback	for	the	student.			

From	time	to	time,	the	teacher	will	also	consult	the	GA	tool,	which	

again	visualises	part	of	the	big	data	being	generated	by	the	system	(in	this	

case,	indicators	inferring	the	current	status	of	the	student’s	achievement	of	

the	expected	learning	goals	of	the	task).	The	GA	tool	presents	a	tabular	

display	of	students	and	task	goals.	Each	row	of	the	table	shows	the	progress	

of	one	student	(identified	by	their	initials)	in	completing	the	task	goals.	A	

white	cell	indicates	a	goal	that	has	not	yet	been	achieved	by	the	student.	A	

green	cell	indicates	that	the	goal	is	currently	being	achieved	by	the	student's	

construction.	An	amber	cell	indicates	that	the	goal	was	achieved	at	some	

point,	but	is	not	currently	being	achieved	by	the	student's	construction.	

Knowing	which	students	have	accomplished	all	the	task	goals	allows	the	

teacher	to	set	them	additional	activities,	for	example	comparing	their	

construction	approach	with	that	of	a	peer	(see	below).	If	the	GA	tool	shows	

that	many	students	are	not	achieving	a	particular	task	goal,	the	teacher	can	

interrupt	the	lesson	to	help	all	the	students	at	the	same	time.		

	

<<FIGURE	11	here	>>	

	
Figure	11.	MiGen’s	Classroom	Dynamics	tool.	On	the	left,	a	classroom	with	the	students	

sitting	at	benches	in	rows.	On	the	right,	the	teacher	has	clicked	on	the	‘red’	student	to	see	

their	construction	and	rule	on	the	way	over	to	help	them.	
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<<FIGURE	12	here	>>	

	

Figure	12.	MiGen’s	Goal	Achievements	tool.		We	see	that	some	students	have	achieved	all	or	

most	task	goals,	some	students	have	not	made	any	progress	yet,	and	some	students	are	

moving	back	and	forth.	

	

	

Another	of	MiGen’s	teacher	tools	–	the	Grouping	Tool	(GT)	(Gutierrez-Santos	

et	al,	in	press)		–	supports	the	teacher	in	managing	group	discussion	activities	

after	students	have	finished	their	individual	construction	activities,	by	

automating	the	pairing	of	students	based	on	their	constructions.	Identifying	

appropriate	pairs	would	be	very	time-consuming	for	the	teacher	to	do	

manually	during	a	lesson:	it	would	require	the	teacher	to	investigate	every	

student’s	construction,	identify	pairs	of	constructions	that	are	sufficiently	

dissimilar	to	lead	to	fruitful	student	discussions	and	reflections,	and	then	put	

the	students	into	pairs,	taking	also	into	account	interpersonal	factors.	The	GT	

generates	an	initial	set	of	pairings,	aiming	to	minimise	the	overall	similarity	

across	all	pairings.	The	proposed	pairings	are	presented	visually	to	the	

teacher,	who	can	then	confirm	or	change	each	pairing	–	see	Figure	13	(we	

note	that	in	the	case	of	an	odd	number	of	students,	one	of	the	‘pairings’	

generated	will	be	a	triplet!).	In	the	GT,	students	are	represented	by	their	

initials	within	a	circle.	The	degree	of	similarity	between	pairs	of	

constructions	is	represented	by	a	small	green	rectangle	for	low	similarity;	

medium-sized	yellow	rectangle	for	moderate	similarity;	or	large	red	

rectangle	for	high	similarity.	The	teacher	can	select	students’	circles	and	drag	

them	into	different	groups	in	order	to	change	the	pairings	suggested	by	the	

system	so	as	to	take	into	account	factors	that	are	beyond	the	system’s	

knowledge,	such	as	students’	interpersonal	relationships.	
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<<FIGURE	13	here	>>	

	
Figure	13.	MiGen’s	Grouping	Tool.	

	

The	immediacy	of	the	big	data	presented	through	MiGen’s	teacher	tools	can	

help	teachers	formulate	their	interventions	during	the	current	lesson,	set	

additional	homework,	plan	the	next	lesson,	as	well	as	adjust	the	design	of	

future	tasks	to	be	set	for	a	given	class	of	students.	The	availability	of	such	

tools	allows	teachers	to	use	ELEs	in	the	classroom	in	new	ways	because	they	

provide	a	greater	sense	of	awareness	than	is	possible	with	general-purpose	

student	monitoring	tools.	Moreover,	such	tools	can	support	teachers	in	

providing	evidence	of	students’	learning,	even	in	a	context	that	is	less	subject	

to	formal	assessment,	and	to	engage	in	their	own	enquiry	into	more	

conceptual	student	learning.		

	

Tools	for	planning	and	reflecting	on	learning	

	

So	far,	we	have	seen	examples	of	educational	software	in	which	data	volume	

and	velocity	arise	from	the	fact	that	the	majority	of	the	data	are	being	

generated	by	the	system	as	users	interact	with	it.	There	are	other	categories	

of	system	(most	notably,	social	networking	and	collaboration	software)	in	

which	high	data	volume	and	velocity	arise	from	the	numbers	of	users	and	

where	the	majority	of	the	data	are	user-generated.	Research	in	the	L4All	and	
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MyPlan	projects3	provides	an	example	of	this	latter	category	of	system.	The	

prototype	L4All	system	developed	by	these	projects	aimed	to	support	adult	

learners	in	exploring	learning	opportunities	and	in	planning	and	reflecting	

on	their	learning.	The	system	allows	users	to	create	and	maintain	a	

chronological	record	of	their	learning,	work	and	personal	episodes—their	

timelines.	Users’	timelines	are	encoded	as	RDF	triples,	compliant	with	an	

RDFS	ontology4.	There	are	some	20	types	of	episode,	each	belonging	to	one	of	

four	categories:	Educational,	Occupational,	Personal,	and	Other.	Figure	14	

illustrates	a	fragment	of	the	overall	L4All	ontology.		

	

<<FIGURE	14	here	>>	

	
Figure	14.	Fragment	of	the	L4All	ontology.	Each	instance	of	the	Episode	class	is:	linked	to	

other	episode	instances	by	edges	labelled	`next'	or	`prereq'	(indicating	whether	the	earlier	

episode	simply	preceded,	or	was	necessary	in	order	to	be	able	to	proceed	to,	the	later	

episode;	linked	either	to	an	Occupation	or	to	an	educational	qualification	(Subject)	by	means	

of	an	edge	labelled	‘job’	or	‘qualif’.	Each	occupation	is	linked	to	an	instance	of	the	Industry	

Activity	Sector	class	by	an	edge	labelled	‘sector’.		Each	qualification	is	linked	to	an	instance	of	

the	National	Qualification	Framework	(NQF)	class	by	an	edge	labelled	‘level’.	The	

Occupation,	Subject,	Industry	Activity	Sector	and	NQF	hierarchies	are	drawn	from	standard	

United	Kingdom	occupational	and	educational	taxonomies	(see	Labour	Force	Survey	User	

Guide,	Vol	5,	http://www.ons.gov.uk/ons/guide-method/method-quality/speci_c/labour-

market/labour-market-statistics/index.html).	

	

																																																								
3	L4All	–	Lifelong	Learning	in	London	for	All;	MyPlan	–	Personal	Planning	for	
Learning	throughout	life.	Funded	by	JISC	Distributed	e-learning	Pilot	Call,	
2005	–	2008.		
4	See	https://www.w3.org/standards/semanticweb/	for	information	about	
RDF	and	RDFS.		
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Users	can	choose	to	make	their	timelines	‘public’	and	thus	accessible	by	other	

users.	This	sharing	of	timelines	exposes	future	learning	and	work	

possibilities	that	may	otherwise	not	have	been	considered,	positioning	

successful	learners	as	role	models	to	inspire	confidence	and	a	sense	of	

opportunity.		The	system’s	interface	provides	screens	for	the	user	to	enter	

their	personal	details,	to	create	and	maintain	their	timeline	(see	Figure	15),	

and	to	search	over	the	timelines	of	other	users	based	on	a	variety	of	search	

criteria.		

	

<<FIGURE	15	here	>>	

	
Figure	15.	The	main	screen	of	the	L4All	system.	At	its	centre	is	a	visual	representation	of	the	

user's	timeline,	and	the	system	functionalities	are	organised	around	this.	Each	episode	of	

learning	or	work	is	displayed	in	chronological	order,	depicted	by	an	icon	specific	to	its	type	

and	a	horizontal	block	representing	its	duration.	Details	of	an	episode	can	be	viewed	by	

clicking	on	the	block	representing	it,	which	pops-up	more	detailed	information	about	the	

episode	(dates,	description),	as	well	as	access	to	edit	and	deletion	functions.	

	

Van	Labeke	et	al.	(2009,	2011)	describe	two	of	the	search	facilities	provided	

by	the	system,	one	to	search	for	“people	like	me”	and	another	to	find	

recommendations	of	“what	to	do	next”.		The	latter	is	illustrated	in	Figure	16	

where	we	see	one	of	the	recommended	timelines	being	displayed	beneath	

the	user’s	own,	for	easy	visual	comparison.	

	

<<FIGURE	16	here	>>	

	
Figure	16.	The	“What	Next”	user	interface.	Episodes	in	the	recommended	(lower)	timeline	

that	match	episodes	in	the	user’s	own	(upper)	timeline	are	shown	in	blue;	episodes	that	start	
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after	all	blue	episodes	are	shown	in	orange	–	these	are	deemed	by	the	system	to	be	relevant	

for	this	user	as	they	occur	after	the	matching	episodes,	and	thus	represent	possible	choices	

that	the	user	may	be	inspired	to	explore	further	for	their	future	learning	and	career	

development;	episodes	that	occur	earlier	than	all	blue	episodes	or	have	no	matches	within	

the	user’s	own	timeline,	are	shown	in	grey.	

	

The	technical	basis	for	both	the	“people	like	me”	and	the	“what	to	do	next”	

facilities	is	the	users’	annotation	of	their	episodes	with	concepts	drawn	from	

the	L4All	ontology.	The	availability	of	this	metadata	allows	similarity	

algorithms	to	be	used	to	compare	the	user’s	own	timeline	with	all	other	

timelines	(see	Van	Labeke	et	al.	2009,	2011,	Poulovassilis	et	al.	2012).				

In	terms	of	the	four	components	of	AIED	systems,	the	domain	

knowledge	of	the	system	is	represented	in	the	L4All	ontology.	Its	‘student	

model’	is	the	timeline	that	is	created	and	annotated	by	the	user.	The	

pedagogical	model	is	encapsulated	in	the	“people	like	me”	and	“what	to	do	

next”	functionalities	offered	to	users,	to	help	them	explore	possible	future	

learning	and	career	options	and	to	plan	and	reflect	on	their	lifelong	learning.		

Again,	the	system’s	interface	is	key	to	the	user’s	growing	knowledge	and	

confidence	as	they	interact	with	their	peers’	timelines.		

	

Evidence	of	Effectiveness	

	

Over	the	last	35	years	or	so	a	great	variety	of	AIED	systems	have	been	

developed	and	evaluated	in	the	laboratory	and	in	schools,	colleges	and	

universities.	Such	evaluations	have	compared	AIED	systems	against	more	

traditional	teaching	methods,	such	as	whole	class	teaching	by	an	individual	

human	teacher,	one-to-one	tutoring	by	a	human	teacher,	or	the	use	of	a	text-
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book	on	its	own,	or	some	blend	of	these	and	other	teaching	methods.	The	

evaluations	have	usually	looked	at	either	comparative	learning	gains	or	the	

study	time	needed	to	reach	some	mastery	criterion.	To	date,	there	have	been	

few	comparative	evaluations	of	big	data-enabled	interventions	(although	see	

Ferguson	et	al.	2016	for	a	recent	review	of	the	use	of	Learning	Analytics	in	

education),	so	our	scope	in	this	chapter	is	AIED	systems	in	general.		

There	has	now	been	a	sufficient	body	of	work	published	to	allow	a	

number	of	meta-reviews	to	be	created.	These	are	reviews	that	look	at	a	large	

number	of	individual	evaluations	and	try	to	draw	general	conclusions,	

typically	by	computing	an	average	of	the	comparative	learning	gains.	This	

chapter	focuses	on	the	meta-review	evaluations	of	AIED	systems,	comparing	

them	either	against	one-to-one	human	tutoring	or	against	whole	class	

teaching	by	a	single	instructor.	These	include	using	an	AIED	system	blended	

into	whole	class	teaching	as	compared	to	simply	whole	class	teaching	by	an	

individual	teacher.	

Table	1	shows	the	results	from	six	meta-reviews	as	well	as	a	large	

study	that	evaluated	a	single	AIED	system,	the	Cognitive	Algebra	Tutor	

described	earlier,	in	a	large	number	of	schools	in	the	USA.	Some	meta-

reviews	involved	more	than	one	kind	of	comparison.	In	the	table	positive	

effect	sizes	and	percentile	rank	changes	indicate	that	the	AIED	system	

produced	better	learning	outcomes	than	the	human	method	it	was	compared	

with.	Negative	effect	sizes	and	percentile	rank	changes	indicate	the	opposite.	

	

	

Table	1.	Six	meta-reviews	and	a	large	scale	study	adapted	from	du	Boulay	(2016)		

<<	TABLE	1	about	here	>>	
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Column	2	in	the	table	shows	the	kind	of	comparison	being	made	and	column	

3	shows	the	number	of	such	comparisons	collected	in	that	meta-review.	

Column	4	shows	the	mean	effect	size	across	the	comparisons	(bigger	

indicates	a	larger	effect).	Column	5	shows	the	standard	error	of	the	mean	

effect	size	(smaller	indicates	reduced	disparity	between	the	individual	

studies	examined).	The	effect	size	measures	how	far	the	mean	of	the	

experimental	group	is	from	the	mean	of	the	control	group	measured	in	terms	

of	the	standard	deviation	of	the	control	group	scores,	with	effects	above	0.4	

“worth	having”	(Hattie,	2008).	Note	that	although	most	of	the	effect	sizes	in	

Table	1	are	positive,	some	are	negative.	A	negative	effect	size	indicates	that	

the	AIED	systems	produced	worse	learning	outcomes	than	human	tutoring	

(see	rows	1,	2,	6	and	9).		

Column	6	shows	the	equivalent	increase/decrease	in	percentile	rank	

as	a	result	of	using	the	AIED	system	in	the	comparison.	For	example,	a	change	

in	percentile	rank	of	10	would	mean	that	on	average	students	using	the	AIED	

system	would	have	increased	their	ranking	by	10	percentage	points	

compared	to	the	control	group.	

The	final	study,	Row	11	in	Table	1,	was	different	from	the	others.	This	

was	an	evaluation	of	a	single	system,	The	Cognitive	Tutor	for	Algebra	(this	is	

a	successor	to	the	Pittsburgh	Algebra	Tutor,	see	earlier)	across	a	large	

number	of	matched	pairs	of	schools	in	the	USA	(Pane	et	al.,	2014).	The	

comparisons	were	between	schools	that	included	the	AIED	system	“blended”	

into	their	algebra	teaching	versus	schools	that	carried	on	teaching	in	a	

traditional	manner.	There	were	four	comparisons,	see	Row	9	of	Table	1.	The	

study	was	conducted	over	two	years	in	both	middle	schools	and	high	schools.	
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The	most	positive	result	(an	effect	size	of	0.21)	was	in	the	second	year	of	the	

study	in	the	high	schools.	The	other	results	were	more	mixed,	but	still	

broadly	positive	with	respect	to	the	utility	of	AIED	system	used	in	a	blended	

fashion.	

The	overall	picture	from	the	meta-reviews	is	positive	with	respect	to	

the	use	of	AIED	systems	compared	to	whole	class	teaching.	The	weighted	

mean	(weighted	by	number	of	comparisons)	of	the	effect	size	from	the	meta-

reviews	is	0.47	(see	row	10	of	Table	1).	When	AIED	systems	have	been	

compared	to	one-to-one	human	teaching	they	do	not	do	so	well,	with	a	

weighted	mean	of	-0.19	(see	row	9	of	Table	1).	This	is	hardly	surprising	at	

this	stage	of	the	development	of	such	systems.		

The	authors	of	these	meta-reviews	made	the	following	comments.		

For	example,	VanLehn	found	that	AIED	systems	were,	within	the	limitations	

of	his	review,	‘just	as	effective	as	adult,	one-to-one	tutoring	for	increasing	

learning	gains	in	STEM	topics’	(VanLehn,	2011,	p.	214).		While	Nesbit	et	al.	

found,	‘a	significant	advantage	of	ITS	over	teacher-led	classroom	instruction	

and	non-ITS	computer-based	instruction’	(Nesbit	et	al.,	2014,	p.	99).		

Likewise,	Kulik	and	Fletcher	concluded	that,		

This	meta-analysis	shows	that	ITSs	can	be	very	effective	

instructional	tools	.	.	.	Developers	of	ITSs	long	ago	set	out	to	improve	

on	the	success	of	CAI	tutoring	and	to	match	the	success	of	human	

tutoring.	Our	results	suggest	that	ITS	developers	have	already	met	

both	of	these	goals.		

(Kulik	and	Fletcher,	2016,	p.	67).			

	

Steenbergen-Hu	and	Cooper	found	that,		
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ITS	have	demonstrated	their	ability	to	outperform	many	[human	

led]	instructional	methods	or	learning	activities	in	facilitating	college	

level	students’	learning	of	a	wide	range	of	subjects,	although	they	are	

not	as	effective	as	human	tutors.	ITS	appear	to	have	a	more	

pronounced	effect	on	college-level	learners	than	on	K-12	students.		

(Steenbergen-Hu	and	Cooper,	2014,	p.	344).		

	

Two	points	are	of	special	note.	First,	there	is	some	double	counting	in	

that	there	is	some	overlap	in	the	papers	that	the	meta-reviews	examined.	

Second,	most	of	the	comparisons	concerned	STEM	subjects,	as	it	is	these	

kinds	of	domain	that	are	best	suited	to	the	development	of	AIED	systems	(see	

the	earlier	section	on	What	is	Artificial	Intelligence	in	Education).	

	

Conclusions	

	

This	chapter	has	described,	on	the	one	hand,	the	nature	of	AIED	systems	in	

terms	of	their	four	major	components	and	provided	examples	of	such	

systems	and,	on	the	other	hand,	examples	of	some	of	the	opportunities	that	

Big	Data	brings	to	children’s	and	adults’	learning.	

We	have	argued	that	AIED	systems	have	been	sufficiently	evaluated	

through	a	number	of	meta-reviews	to	demonstrate	their	effectiveness	as	part	

of	blended	learning	in	STEM	subjects.	These	meta-reviews	have	shown	that	

AIED	systems	do	rather	better	than	conventional	classroom	teaching,	though	

a	bit	worse	than	one-to-one	human	tutoring.	We	have	also	made	the	case	that	

the	provision	of	personalised	and	adaptive	feedback	to	students	can	enhance	

Deleted: one	side

Deleted: side



	

	 33	

students’	engagement,	motivation	and	self-confidence,	leading	to	improved	

learning	outcomes.		

	 No	argument	in	favour	of	replacing	teachers	by	AIED	systems	has	been	

offered	or	is	implied	by	these	results.	Human	teachers	are	still	the	essential	

factor	in	any	classroom	to	take	control	of	the	overall	learning	trajectory	of	the	

students,	 to	motivate	 the	 unmotivated	 and	 the	 demotivated	 and	 to	 answer	

queries	from	students,	particularly	those	who	do	not	exactly	know	what	it	is	

that	 they	do	not	understand.	 Indeed	 it	 is	acknowledged	 that	some	students	

may	not	have	the	study	skills	and	reasoning	powers	to	take	advantage	of	such	

systems	(Biswas,	Segedy,	&	Bunchongchit,	2016)	and	so	need	support	beyond	

what	the	system	itself	can	provide.		

	 However,	we	do	argue	that	provision	of	individual	automated	feedback	

to	 students	 for	 common	 occurrences	 can	 free	 up	 time	 for	 the	 teacher	 to	

formulate	 more	 complex	 or	 nuanced	 support	 for	 students,	 particularly	 in	

larger	classes.	In	addition,	the	rich	data	generated	by	such	systems	are	being	

used	to	design	visualisation	and	notification	tools	for	the	teacher.	Such	tools	

can	increase	the	teacher's	awareness	of	the	classroom	state	and	of	individual	

students'	progress	on	the	task	set,	and	hence	help	the	teacher	in	supporting	

both	individual	students	and	the	class	as	a	whole.		

	 Despite	 these	 opportunities,	 there	 are	 still	 many	 challenges	 to	 fully	

exploiting	the	potential	of	AIED	and	big	data	in	education.	For	example,	this	

chapter	has	not	addressed	the	issue	of	the	cost-effectiveness	of	such	systems.	

They	 are	 time-consuming	 to	 create	 and,	 for	 them	 to	 be	 effective,	 multi-

disciplinary	 teams	of	pedagogical	experts,	 learning	designers	and	computer	

scientists	must	work	 together	 to	 understand	what	 information	 is	 useful	 to	

whom	and	in	what	learning	contexts,	and	to	design	computational	techniques	

for	 detecting	 or	 inferring	 such	 information	 and	 generating	 appropriate	
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feedback	 for	users.	Also,	many	AIED	systems	cover	only	a	small	part	of	 the	

curriculum.	 However,	 both	 these	 factors	 are	 changing	 for	 the	 better,	 as	

authoring	 tools	 emerge	 that	 allow	more	 cost-effective	 design	 of	 intelligent	

systems	without	 the	 need	 for	 specialist	 computing	 expertise.	Moreover,	 as	

AIED	systems	are	increasingly	used,	the	data	they	collect	can	be	analysed	so	

as	to	design	improvements	to	them.		

	 There	 are	 also	wider	 socio-technical	 challenges.	 As	we	have	 already	

argued,	the	design	of	AIED	systems	and	of	methods	for	collecting,	managing,	

integrating,	 analysing	 and	 visualising	 their	 big	 data	 needs	 to	 be	 both	

practically	 feasible	 and	 pedagogically	 meaningful.	 Moreover,	 it	 requires	

teachers,	 learners	 and	 other	 stakeholders	 to	 be	 sufficiently	 empowered,	

involved,	 and	 trained	 to	 make	 effective	 use	 of	 these	 systems	 and	 the	

information	 that	can	be	obtained	 from	them.	Lastly,	agreements	need	 to	be	

framed	between	different	educational	stakeholders	so	as	to	allow	sharing	of	

learning-related	 data	 for	 the	 benefit	 of	 learners.	 This	 exposes	 numerous	

ethical	questions,	such	as:	What	data	about	an	individual	should	require	their	

explicit	consent	in	order	to	be	collected,	combined,	used	and	shared?	Likewise,	

what	knowledge	should	be	allowed	to	be	inferred	from	the	data,	and	what	uses	

of	 such	 knowledge	 should	 be	 permitted?	 What	 levels	 of	 information	 and	

explanation	are	needed	so	that	individuals	can	make	fully	informed	decisions?	

What	are	appropriate	anonymization,	privacy,	authorisation	and	preservation	

policies	for	both	data	and	inferred	knowledge	in	different	contexts	of	usage?		

From	 the	opposite	perspective,	what	 inequalities	may	be	 faced	by	 students	

(for	example	from	less	advantaged	backgrounds)	whose	learning-related	data	

is	 not	 being	 collected	 and	 used	 to	 offer	 them	 enhanced	 educational	

opportunities?	Some	of	these	ethical	issues	are	explored	by	Manca	et	al.	(2016)	
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focussing	specifically	on	the	information	being	gathered	by	large-scale	web-

based	learning	platforms	and	social	media	applications.			

In	 our	 own	 research	 projects,	 we	 aim	 to	 address	 these	 challenges	

through	 close	 collaboration	 between	 researchers,	 developers,	 students,	

teachers,	 and	other	 stakeholders.	 	We	draw	on	multi-disciplinary	 expertise	

from	 across	 computer	 science,	 the	 learning	 sciences	 and	 education.	 In	 the	

absence	as	yet	of	sufficiently	broad	and	robust	ethical	frameworks,	we	address	

ethical	 challenges	 on	 a	 project-by-project	 basis,	 fully	 engaging	 with	 our	

institutions’	processes	for	ethical	review	of	research,	and	also	aiming	to	inform	

and	shape	these	anticipating	an	era	where	Artificial	Intelligence	and	Big	Data	

are	pervasive.	

What	the	research	says	

	

• Globally,	students	from	poorer	backgrounds	perform	worse	than	

students	from	richer	backgrounds.	Artificial	Intelligence	in	Education	

(AIED)	and	Big	Data	in	Education	are	technologies	that	can	help	with	

this	problem.	

• AIED	might	be	used	both	in	classrooms	(to	support	teachers	much	as	

human	classroom	assistants	support	teachers)	and	at	home	(enabling	

students	to	build	on	what	they	have	learned	in	the	classroom	while	

being	given	personalised	support).	

• The	AIED	known	as	Intelligent	Tutoring	Systems	(ITS)	have	been	

shown	in	many	classroom	studies	to	be	more	effective	than	group	

tuition	but	not	(yet)	quite	as	effective	as	individual	tuition.	

• AIED	is	most	effective	when	it	is	working	in	tandem	with	the	

classroom	teacher.	
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• Digital	educational	systems,	such	as	VLEs,	ITS	and	ELEs,	are	

generating	data	at	unprecedented	scale	and	speed.	Computational	

techniques	can	extract	value	from	such	data.	

• The	two	complementary	fields	of	Learning	Analytics	and	Educational	

Data	Mining	are	devising	multiple	computational	techniques	to	

gather,	analyse	and	visualise	data	about	learners	and	processes	of	

learning.	

• Visualisation	and	other	tools	can	help	teachers	integrate	AIED	

systems	in	the	classroom,	increase	their	awareness	and,	ultimately,	

free	up	time	to	provide	nuanced	support	to	students,	beyond	what	is	

possible	through	the	system.	

• There	remains	a	range	of	challenges	–	pedagogical,	technical,	socio-

technical	and	ethical	–	that	need	to	be	addressed	by	multidisciplinary	

teams.	
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Table	1	

	 1.	Meta-

review	

2.	Comparison	 3.	No.	of	

Compar-

isons	

4.	

Mean	

Effect	

Size	

5.	

Stand-

ard	

Error	

6.	

Approx.	

percentile	

rank	

change	

1	 VanLehn	

(2011)	

AIED	system	vs	one-

to-one	human	

tutoring	

10	 -0.21	 0.19	 -8	

2	

Ma,	Adesope,	

Nesbit,	and	Liu	

(2014)	

AIED	system	vs	one-

to-one	human	

tutoring	

5	 -0.11	 0.10	 -4	

3	 AIED	system	vs	

“large	group	human	

instruction”	

66	 0.44	 0.05	 17	

4	 Nesbit,	

Adesope,	Liu,	

and	Ma	(2014)	

examining	

systems	to	

teach	

computer	

science	

AIED	system	vs	

“teacher	led	group	

instruction”	

11	 0.67	 0.09	 25	

5	 Kulik	and	

Fletcher	(2016)	

	

AIED	system	vs	

“conventional	

classes”	

63	 0.65	 0.07	 24	

6	

Steenbergen-

Hu	and	Cooper	

(2014)	

AIED	system	vs	one-

to-one	human	

tutoring	

3	 -0.25	 0.24	 -10	

7	 AIED	system	vs	

“traditional	

16	 0.37	 0.07	 15	
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examining	

college	level	

use	

classroom	

instruction”	

8	 Steenbergen-

Hu	and	Cooper	

(2013)	

examining	

school	level	

use	

AIED	or	CAI	system	

vs	“traditional	

classroom	

instruction”	

26	 0.09	 0.01	 3	

9	 Overall	

weighted	

mean	

AIED	system	vs	one-

to-one	human	

tutoring	

18	 -0.19	 	 18	

10	 Overall	

weighted	

mean	

AIED	system	vs	

conventional	classes	

182	 0.47	 	 -7	

	 	 	 	 	 	 	

11	 Pane,	Griffin,	

McCaffrey,	and	

Karam	(2014)	

Examining	the	

Algebra	Tutor		

Blended	learning	

including	a	AIED	

system	vs	traditional	

classroom	

instruction	

147	

schools	

-0.1	 0.10	 -4	

0.21	 0.10	 8	

0.01	 0.11	 0	

0.19	 0.14	 7	
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	Figure	1.	Interface	for	the	Pittsburgh	Algebra	Tutor,	taken	from	Koedinger	et	al.	

(1997)	
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Figure	2.	Betty’s	Brain	interface,	taken	from	Leelawong	and	Biswas	(2008)	
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Figure	3.	The	eXpresser	microworld.	Letters	highlight	the	main	features:	(A)	

An	‘unlocked’	number	is	given	the	name	‘reds’	and	signifies	the	number	of	

red	(dark	grey)	tiles	in	the	pattern.	(B)	Building	block	to	be	repeated	to	make	

a	pattern.	(C)	Number	of	repetitions	(in	this	case,	the	value	of	the	variable	

‘reds’).		(D,E)	Number	of	grid	squares	to	translate	B	to	the	right	and	down	

after	each	repetition.		(F)	Units	of	colour	required	to	paint	the	pattern.		(G)	
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General	expression	that	gives	the	total	number	of	units	of	colour	required	to	

paint	the	whole	pattern.		

	

	

	
Figure	4.	A	‘nudge’	from	the	eXpresser	
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Figure	5.	A	message	of	encouragement	and	a	stronger	‘prompt’	from	the	

eXpresser	
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Figure	6.	FractionsLab	microworld,	showing	the	availability	of	low-

interruption	feedback.		
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Figure	7.	FractionsLab	microworld,	showing	the	elective	display	of	low-

interruption	feedback.		
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Figure	8.	FractionsLab	microworld,	showing	that	the	student	has	progressed	

to	the	next	step.		
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Figure	9.	FractionsLab	microworld,	showing	a	message	of	encouragement	

and	also	a	stronger	prompt	to	guide	the	student	towards	accomplishing	the	

subsequent	step.		
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Figure	10.	Graph-based	modelling	and	visualisation	of	students'	interactions,	

illustrating	how	a	student’s	affective	state	changes	between	states	of	

Engagement	(green),	Frustration	(amber)	and	Confusion	(red).	Successive	

events	are	shown	in	blue	and	linked	to	each	other	by	red	edges.				
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Figure	11.	MiGen’s	Classroom	Dynamics	tool.	On	the	left,	a	classroom	with	

the	students	sitting	at	benches	in	rows.	On	the	right,	the	teacher	has	clicked	

on	the	‘red’	student	to	see	their	construction	and	rule	on	the	way	over	to	help	

them.		
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Figure	12.	MiGen’s	Goal	Achievements	tool.		We	see	that	some	students	have	

achieved	all	or	most	task	goals,	some	students	have	not	made	any	progress	

yet,	and	some	students	are	moving	back	and	forth.	
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Figure	13.	MiGen’s	Grouping	Tool.		
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Figure	14.	Fragment	of	the	L4All	ontology.	Each	instance	of	the	Episode	class	

is:	linked	to	other	episode	instances	by	edges	labelled	`next'	or	`prereq'	

(indicating	whether	the	earlier	episode	simply	preceded,	or	was	necessary	in	

order	to	be	able	to	proceed	to,	the	later	episode;	linked	either	to	an	

Occupation	or	to	an	educational	qualification	(Subject)	by	means	of	an	edge	

labelled	‘job’	or	‘qualif’.	Each	occupation	is	linked	to	an	instance	of	the	

Industry	Activity	Sector	class	by	an	edge	labelled	‘sector’.		Each	qualification	

is	linked	to	an	instance	of	the	National	Qualification	Framework	(NQF)	class	

by	an	edge	labelled	‘level’.	The	Occupation,	Subject,	Industry	Activity	Sector	

and	NQF	hierarchies	are	drawn	from	standard	United	Kingdom	occupational	

and	educational	taxonomies	(see	Labour	Force	Survey	User	Guide,	Vol	5,	

http://www.ons.gov.uk/ons/guide-method/method-quality/speci_c/labour-

market/labour-market-statistics/index.html).			
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Figure	15.	The	main	screen	of	the	L4All	system.	At	its	centre	is	a	visual	

representation	of	the	user's	timeline,	and	the	system	functionalities	are	

organised	around	this.	Each	episode	of	learning	or	work	is	displayed	in	

chronological	order,	depicted	by	an	icon	specific	to	its	type	and	a	horizontal	

block	representing	its	duration.	Details	of	an	episode	can	be	viewed	by	

clicking	on	the	block	representing	it,	which	pops-up	more	detailed	

information	about	the	episode	(dates,	description),	as	well	as	access	to	edit	

and	deletion	functions.	
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Figure	16.	The	“What	Next”	user	interface.	Episodes	in	the	recommended	

(lower)	timeline	that	match	episodes	in	the	user’s	own	(upper)	timeline	are	

shown	in	blue;	episodes	that	start	after	all	blue	episodes	are	shown	in	orange	

–	these	are	deemed	by	the	system	to	be	relevant	for	this	user	as	they	occur	

after	the	matching	episodes,	and	thus	represent	possible	choices	that	the	

user	may	be	inspired	to	explore	further	for	their	future	learning	and	career	

development;	episodes	that	occur	earlier	than	all	blue	episodes	or	have	no	

matches	within	the	user’s	own	timeline,	are	shown	in	grey.		

	

	

	


