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ABSTRACT: The Tutoring Research Group at the University of Memphis has developed a
computer tutor (called AutoTutor) that simulates the discourse patterns and pedagogical strategies
of a typical human tutor.  The discourse patterns and pedagogical strategies were based on a
previous project that dissected 100 hours of naturalistic tutoring sessions.  AutoTutor is currently
targeted for college students in introductory computer literacy courses, who learn the
fundamentals of hardware, operating systems, and the Internet.  Instead of merely being an
information delivery system, AutoTutor serves as a discourse prosthesis or collaborative scaffold
that assists the student in actively constructing knowledge. Evaluations of AutoTutor-1 have
shown that the tutoring system improves learning and memory of the lessons by .5 standard
deviation units, compared with a control condition in which college students reread chapters.  This
paper contrasts the teaching tactics of AutoTutor-1 and AutoTutor-2.  In AutoTutor-1, a piece of
information is considered covered if it mentioned by either the computer tutor or the student in a
shared discourse space.  In AutoTutor-2, a piece of information is considered covered only if it is
articulated by the student.

1  Background

The Tutoring Research Group (TRG) at the University of Memphis has been developing a computer tutor,
called AutoTutor, that simulates a typical human tutor [17, 20, 41, 48].  AutoTutor attempts to
comprehend student contributions and to simulate dialog moves of human tutors.  AutoTutor-1 attempts to
simulate the dialog moves of normal (unskilled) tutors, whereas AutoTutor-2 will incorporate more
sophisticated tutoring strategies.  AutoTutor is currently being developed for college students who take an
introductory course in computer literacy.  These students learn the fundamentals of computer hardware, the
operating system, and the Internet.

2  An Example Tutorial Dialog between AutoTutor and a Student

A brief snapshot of AutoTutor in action should concretize the nature of AutoTutor.  AutoTutor works by
having a conversation with the learner.  AutoTutor appears as a talking head that acts as a dialog partner
with the learner.  The talking head delivers AutoTutor’s dialog moves with synthesized speech, intonation,
facial expressions, and gestures.  The major question or problem that is being worked on is both spoken by
AutoTutor and is printed at the top of the screen. The major questions/problems are generated
systematically from a curriculum script, a module that will be discussed later. AutoTutor’s major questions
and problems are not the fill-in-the blank, true/false, or multiple-choice questions that are so popular in the
US educational system.  Instead, the questions and problems invite lengthy explanations and deep
reasoning (e.g., answers to why, how, what-if questions).  The goal is to encourage students to articulate
lengthier answers that exhibit deep reasoning, rather than to recite short snippets of shallow knowledge.
There is a continuous multi-turn tutorial dialog between AutoTutor and the learner during the course of
answering a question (or solving a problem).  When considering both the learner and AutoTutor, it
typically takes 10 to 20 turns during the tutorial dialog that occurs when a single question from the
curriculum script is answered.  The learner types in his/her contributions during the exchange by keyboard.
For some topics, there are graphical displays and animation, with components that AutoTutor points to.  
We want AutoTutor to be a good conversation partner that comprehends, speaks, points, and displays
emotions, all in a coordinated fashion.
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The exchange below is one of the shorter tutorial dialogs between a college student and AutoTutor.  This
student was an above average student in the computer literacy class.  

01 AUTOTUTOR:  When you turn on the computer, how is the operating system first
            activated and loaded into RAM?
02 STUDENT:  When the computer is turned on a file is automatically booted up.
03 AUTOTUTOR:  Anything else?
04 STUDENT:  This file contains the operating system.
05 AUTOTUTOR:  What else?
06 STUDENT:  The operating system is then read into RAM and activated.
07 AUTOTUTOR:  Right.  The CPU executes instructions in ROM, which help the

operating system to start.  
08 STUDENT:  After being read from ROM the OS is activated.
09 AUTOTUTOR:  Right.  Let’s review what we’ve just gone over.  The operating system
           must first be stored on the hard disk.  When you turn on the computer, the CPU
executes
           instructions stored in ROM.  These instructions help boot the operating system.  The
           operating system is then loaded from the hard disk into RAM.  

AutoTutor first asks a how-question in turn 1.  Then the student provides answer information in turns 2, 4,
and 6.  These answers are encouraged by AutoTutor’s pumps in turns 3 and 5 (i.e., “Anything else?”,
“What else?”).  AutoTutor delivers these pumps in an effort to encourage active learning and question
answering on the part of the student.  Thus, instead of being an    information       delivery       system     that bombards
the student with a large volume of information, AutoTutor is a    discourse       prosthesis    that attempts to get the
student to do the talking and explore what the student knows.  That is, a central educational philosophy
behind AutoTutor is that a key feature of effective learning lies in assisting students in actively
constructing subjective explanations and elaborations of the material [7,13], as students answer questions
and solve problems that require deep reasoning.  At the same time, however, the students need to answer
enough questions and to solve enough problems for them to understand the constraints of the domain
knowledge.  It would not be good for the student to flounder unproductively for a long time, so AutoTutor
sometimes needs to bring the student back on track by supplying cues and clues that lead to the evolution
of a complete answer to the question.  The student had forgotten the role of ROM in launching the
operating system, so AutoTutor brings up ROM in turn 7.  The student builds on this suggestion in turn
8.  At that point, the important pieces of a good complete answer have been covered, so AutoTutor
summarizes the answer in turn 9.  AutoTutor periodically gives positive immediate feedback after the
student contributions (i.e., “right.”).  This feedback is not only motivating, but creates the impression that
AutoTutor is listening to what the student is communicating.  These characteristics of a tutorial exchange
are quite similar to discourse patterns in normal tutoring between humans [18, 40].   

3  Performance of AutoTutor-1

After we developed AutoTutor-1, performance evaluations were made on a number of levels.  Some of
these evaluations are summarized below.

Gains in Learning and Memory.  AutoTutor-1 was tested on 64 students in a computer literacy course at
the University of Memphis.  Our evaluations of gains in learning and memory were very promising.
AutoTutor provided an effect size increment of approximately .5 standard deviations units when compared
to a control condition where students reread yoked chapters in the book.  This increment in learning gains
was found for questions that tap both deep and shallow learning.  

Conversational Smoothness and Pedagogical Quality of AutoTutor’s Speech Acts.  We evaluated
AutoTutor on the conversational smoothness and pedagogical quality of its dialog moves in the turn-by-
turn tutorial dialog [42].   When experts rate the quality of AutoTutor’s dialog moves, the mean ratings are
positive (i.e., more good than bad), but there clearly is room to improve in the naturalness and pedagogical
effectiveness of its dialog.  One of the goals of AutoTutor-2 is to improve the quality of the tutorial
dialog.



                                                                                                                

AutoTutor’s Evaluation of the Quality of Student Contributions .  We have evaluated AutoTutor on
how well it computes the quality of contributions that students type in during the tutorial dialog.
AutoTutor attempts to “comprehend” the student input by segmenting the contributions into speech acts
and matching the content to ideal answers to questions through latent semantic analysis (LSA)[26].  LSA
is a statistical, corpus-based method of representing knowledge that provides the foundation for grading
essays, which are frequently not well formed grammatically, semantically, and rhetorically; LSA-based
essay graders can assign grades to assays as reliably as experts in composition [14].  Our research revealed
that AutoTutor is almost as good as an expert in computer literacy in evaluating the quality of student
answers to questions and the quality of contributions in the tutorial dialog [21, 49].   

4  Tutorial Dialog with Unskilled Tutors and Ideal Tutors

It is beyond the scope of this section to describe the methods and results of the research that Graesser and
Person conducted on naturalistic tutoring sessions. It suffices to say that we videotaped, transcribed, and
analyzed nearly 100 hours of naturalistic tutoring sessions during the last decade.  After analyzing this rich
corpus, we discovered what tutors do versus do not do during most tutoring sessions.  Our discoveries
were enlightening and often counterintuitive. Whatever tutors do is extremely effective when considering
learning gains. Human-to-human tutoring enhances learning by .4 to 2.3 standard deviation units compared
to classroom controls and other suitable controls [10,3].  Human tutors are extremely effective even though
over 90% percent of the tutors in actual school systems are untrained in tutoring skills and have moderate
domain knowledge.  They are peer tutors, cross-age tutors, or paraprofessionals, but rarely accomplished
professionals.  

Whereas AutoTutor-1 simulated the dialog moves of normal human tutors, AutoTutor-2 was designed to
advance the project to a new level by incorporating ideal tutoring strategies. Our anatomy of normal
tutoring sessions revealed that normal unskilled tutors do not use most of the ideal tutoring strategies that
have been identified in education and the intelligent tutoring system enterprise.  These strategies include
the Socratic method [11], modeling-scaffolding-fading [12], reciprocal training [39], anchored situated
learning [4], error identification and correction [2, 47, 32], frontier learning, building on prerequisites [16],
and sophisticated motivational techniques [31].  Detailed discourse analyses have been performed on small
samples of accomplished tutors in an attempt to identify sophisticated tutoring strategies [15, 22, 35, 36,
44].  However, we discovered that the vast majority of these sophisticated tutoring strategies were virtually
nonexistent in the unskilled tutoring sessions that we videotaped and analyzed [19, 40].   Tutors clearly
need to be trained how to use the sophisticated tutoring skills because they do not routinely emerge in
naturalistic tutoring with untrained tutors.  We believe that the most effective computer tutor will be a
hybrid between naturalistic tutorial dialog and ideal pedagogical strategies.  

5 The Mechanisms of AutoTutor-1 and AutoTutor-2  

This section briefly mentions the components and mechanisms of AutoTutor-1, along with the
enhancements that are currently being developed in AutoTutor-2.

5.1 Curriculum Scripts with Example Problems, Deep Questions, Graphics, and Animation

A curriculum script is a loosely ordered set of skills, concepts, example problems, and question-answer
units.  Most human tutors follow a script-like macrostructure, but briefly deviate from the structure when
the student manifests difficulties, misconceptions, and errors. The content of the curriculum script in
tutoring (compared with classrooms) has more deep reasoning questions (e.g., why, how, what-if, what-if-
not), more problems to solve, and more examples [19, 40].  AutoTutor has a curriculum script that
organizes the topics (i.e., content) of the tutorial dialog.  The script includes didactic descriptions, tutor-



                                                                                                                

posed questions, example problems, figures, and diagrams (along with anticipated good responses to each
topic).

Verbal Content. Each topic in the curriculum script is represented as a structured set of words, sentences,
or paragraphs in a free text format.  Associated with each topic (problem or question) is a focal question, a
set of basic noun-like concepts, a set of ideal good answer aspects (each being roughly a sentence of 10-20
words), different forms of expressing or eliciting each ideal answer aspect (i.e., a hint, prompt, versus
assertion), a set of anticipated bad answers (i.e., bugs, misconceptions), a correction for each bad answer, a
summary of the answer or solution, and a set of anticipated subquestions and answers.  All of this content
had to be hand-crafted by the research team in AutoTutor-1.  

Appendix A shows a portion of one of the curriculum scripts on the topic of operating systems.  This
curriculum script was developed for AutoTutor-2.  The difficulty level of this question is moderate, as
opposed to easy or difficult.  Context information is presented prior to the focal question: “How does the
operating system of a typical computer process !several jobs simultaneously, with only !one CPU?”  The
explanation point symbol (!) is part of the mark-up language to the talking head; it designates that the
word should be stressed in the synthesized speech.  The ideal answer to this question is a lengthy answer
that has 5 good answer aspects; Appendix A includes information about two of the 5 good answer aspects,
but not the other three good answer aspects.  For each good answer aspect (signified as    pgood   ), there is a
verbal description.  The student’s input, entered by keyboard, is constantly compared to each of the 5 good
answer aspects as the dialog evolves, turn by turn.  LSA is used to assess the match between student
contributions and each good answer aspect.  

Very often, a student cannot articulate a particular good answer aspect.  AutoTutor needs to provide some
scaffolding to extract this information from student or to get the student to articulate this knowledge.
Elaborations, hints, and prompts provide this scaffolding. Elaborations succinctly assert the desired
information (signified by    pelab   ).  Hints are questions (signified by    phint   ) that lead the student to the
desired information (signified by    phintc   ). Prompts are assertions that that leave out the last word (signified
by    pprompt   ); when these get articulated, there is an intonation that strongly encourages or signals the
student to fill in the desired word (signified by    ppromptk   ).  After the student types in the response to the
prompt, AutoTutor presents the correct missing word or expressions (signified by    ppromptc   ).   It should be
noted that there are several prompts and hints for each good answer aspect.  AutoTutor attempts to extract
the desired information from the student by many different cues and clues.   

The curriculum script also has a number of bad answers that capture common bugs and misconceptions.
When a student expresses a contribution that matches one of the bad answers (signified by    bad    and    bbad   ),
then AutoTutor corrects the error by splicing in a correction (signified by    splice   ).  

In the future we plan on developing software modules that either automatically generates or assists the
instructor in generating the hints, prompts, assertions for each good answer aspect, using recent advances in
computational linguistics.  Similarly, the corrections need to be generated for each bad answer.  We also
plan on tuning and increasing the number of production rules that assign the correct intonation patterns to
questions, answers, hints, prompts, assertions, corrections, and summaries.

Graphics and Animation.  AutoTutor-1 and AutoTutor-2 have graphic displays and a small number of
animation clips that coordinate graphic and animated displays, speech synthesis, facial expressions,
communicative gestures, and pointing. Extensive use of multimedia can have its advantages.  But there are
also liabilities from “feature bloat” to the extent that a multimedia show splits the attention of the student
[46].  The coordination of the visual and auditory information was guided by recent research on
multimedia, education, and cognitive science to the extent that research is available.  For example,
narrative information (i.e., what AutoTutor says) needs to be sequenced simultaneously with visual
information [33], text and pictures must be in spatial and temporal contiguity [33], and it is not a good
policy to present lengthier narrative messages in both a text and an auditory modality simultaneously [24].

5.2 Natural Language Extraction and Speech Act Classification.



                                                                                                                

AutoTutor needs to classify the speech acts of student contributions in order to flexibly respond to what
the student types in.  Speech act classification requires analysis of the language and punctuation that is
entered in a student’s turn.  The field of computational linguistics has made noticeable progress in
automating many components of language analysis that lie within the span of a sentence and short
discourse segments, such as identifying the correct sense of words with multiple senses, parsing sentence
syntax, and extracting information that is relevant to slots in conceptual templates [1, 29].  Unfortunately,
most of the work in computational linguistics has used programming languages (i.e., LISP and Prolog)
that are not readily integrated with AutoTutor’s Java.  We did use some of the some of the lexicons and
computational architectures that have been developed in cognitive science, however.  AutoTutor segments
each student’s turn into words and assigns each word into one of 17 syntactic classes with near perfect
accuracy [38].  Then AutoTutor segments the categorized string of words and punctuation marks within a
learner’s turn into speech act units, relying on punctuation to perform this segmentation. Then a neural
network and a frozen expression catalogue are used to assign each speech act into one of the following
speech act categories:  Assertion, WH-question, YES/NO question, Metacognitive comments (I don’t
understand), Metacommunicative acts (Could you repeat that?), and Short Response.  The syntactic tags of
the first 3 words of a speech act are very diagnostic of the speech act category.  

5.3 Latent Semantic Analysis

The fact that world knowledge is inextricably bound to the process of comprehending language and
discourse is widely acknowledged, but researchers in computational linguistics and artificial intelligence
have not had a satisfactory approach to handling the deep abyss of world knowledge. The traditional
approach to representing world knowledge in artificial intelligence has been structured representations, such
as semantic networks and conceptual graphs [28, 30].  However, it takes too long to perform the
knowledge engineering that is needed to build an intelligent tutoring system of reasonable scope. Latent
semantic analysis (LSA) has recently been proposed as a statistical representation of a large body of world
knowledge [26, 27]. LSA capitalizes on the fact that particular words appear in particular texts (called
“documents”).  Each word, sentence, or text ends up being a weighted vector on the K dimensions.  The
“match” (i.e., similarity in meaning, conceptual relatedness) between two words, sentences, or texts is
computed as a geometric cosine (or dot product) between the two vectors, with values ranging from 0 to 1.
The match between two language strings can be high even though there are few if any words in common
between the two strings.  LSA goes well beyond simple string matches because the meaning of a language
string is partly determined by the company (other words) that each word keeps.  

As mentioned earlier, AutoTutor-1 successfully used LSA as the backbone for representing computer
literacy. The quality of student answers was successfully computed from the assertions expressed during
the student’s turns.  A student with high ability had (a) a high mean LSA between the assertions and good
answer aspects and (b) a low mean LSA match with bad answers.  AutoTutor-2 will continue to use LSA
for representing world knowledge, but will also use structured representations that are needed for some of
the natural language processing modules.

5.4 Selection of Dialog Moves  

AutoTutor-1 selects dialog moves by using fuzzy production rules and algorithms that will not be
elaborated here.  There are different categories of dialog moves: main questions, short feedback (i.e.,
positive, neutral, negative), pumps (“uh huh”, “tell me more”), prompts (“The primary memories of the
CPU are ROM and _____"), hints, assertions (elaborations), corrections, and summaries.  The selection
and sequencing of the categories are sensitive to various parameters that are induced from the tutorial
dialog. Fuzzy production rules are tuned to (a) the quality of the student’s assertions in the preceding turn,
as computed by LSA, (b) global parameters that refer to the ability, verbosity, and initiative of the student,
and (c) the extent to which the good answer aspects of the topic had been covered.  

The selection of the next good answer aspect to cover was determined by the    zone       of       proximal       development   
in AutoTutor-1.  AutoTutor-1 keeps track of the extent to which each aspect (Ai) has been covered as the



                                                                                                                

dialog evolves for a topic.  The coverage metric varies from 0 to 1 and gets updated as each Assertion is
produced by the tutor or learner.  LSA is used to compute the extent to which the various Assertions cover
the particular aspects associated with a topic.  If some threshold (t) is met or exceeded, then the aspect Ai is
considered covered. AutoTutor-1 selects, as the next aspect to cover, that aspect that has the highest
subthreshold coverage score.  Therefore, AutoTutor builds on the fringes of what is known in the discourse
space between the student and AutoTutor.  A topic is finished when all of the aspects have coverage values
that meet or exceed the threshold t.  AutoTutor-2 will use two additional factors when computing what
aspect to cover next.  First, AutoTutor-2 will enhance discourse    coherence    by selecting the next aspect (Ai)
that is most similar to the previous aspect that was covered.  Second, AutoTutor-2 will select    pivotal
aspects    that have a high family resemblance to the remaining uncovered aspects; that is, there will be an
attempt to select an aspect that drags in the content of the remaining aspects to be covered.   Whereas
AutoTutor-1 capitalized on the zone of proximal development exclusively, AutoTutor-2 will also consider
conversational coherence and pivotal ideas when selecting the next good answer aspect to cover.  

AutoTutor-2 will incorporate tactics that attempt to get the student to articulate the good answer aspect that
is selected. Whereas AutoTutor-1 scored aspect (Ai) as covered if it was expressed by either the tutor or the
student,  AutoTutor-2 counts only what the student says when evaluating coverage; so if aspect (Ai) was
not expressed by the student, it is not covered at all.  This forces the student to articulate the explanations
in their entirety, an extreme form of constructivism.  AutoTutor-2 will use progressive specificity when
formulating dialog moves that flesh out a particular aspect (Ai); there will be 2 or more cycles of hinting,
prompting, and then asserting until the student articulates (Ai).

5.5 Talking Head with Gestures

Researchers have recently developed computer-generated animated talking heads that have facial features
synchronized with speech and in some cases appropriate gestures [6, 9, 23].  Ideally, the computer would
control the eyes, eyebrows, mouth, lips, teeth, tongue, cheekbones, and other parts of the face in a fashion
that is meshed appropriately with the language and emotions of the speaker.  A talking head is an
important feature of AutoTutor because it concretely grounds the conversation between the tutor and
learner.  A talking head also provides a separate channel of cues for providing mixed feedback to the
learner.  When a learner’s contribution is incorrect or vague, for example, the speech is often positive and
polite whereas the face has a puzzled expression; this conflicting message that satisfies both pedagogical
and politeness constraints would be preferable to a threatening speech message that says, “That’s wrong” or
“I’m having trouble understanding you.”  The nonverbal facial cues are known to be an important form of
backchannel feedback during tutoring [15, 19, 43], as well as other contexts of conversation [8].  Similarly,
pitch, pause, duration, amplitude, and intonation contours are among the intonation cues that signal
backchannel feedback, affect, and emphasis [5].  AutoTutor-1’s dialog moves are delivered by a talking
head that synchronizes synthesized speech, facial expressions, and sometimes gestures.   Microsoft Agent
is currently being used as the talking head with synthesized speech, with parameters of the facial
expressions and intonation being generated by fuzzy production rules [34].  Unfortunately, the grain size of
the intonation and facial parameters of Microsoft Agent is too crude to handle the subtle facial expressions
that we desire.  Also, the sequential constraints of microcomputers make it difficult to handle the
synchronization of components in parallel.  For example, the current version of Microsoft Agent does not
allow AutoTutor to point and to display facial expressions at the same time that it produces synthesized
speech.   Therefore, AutoTutor-2 will use Java 3D plus a neurofuzzy controller [25] that allows lower-level
programming for new behaviors on the fly, after interpolating from a sample of pre-scripted prototype
behaviors during its development.  The animated agents in the MIT Media Labs [6] normally require
several powerful computers to provide synchronization of speech, intonation, face, and gesture, whereas
AutoTutor-2 will be delivered on a Pentium and the web.

6 Conclusions

The success of AutoTutor rests on the fundamental premise that discourse patterns provide an important
class of teaching tactics and strategies.  A computer tutor can be viewed as a dialogue partner that assists
the learner in exploring his or her own knowledge and that exposes the students to the constraints of the
problem and the fragments of the good answer.  In essence, AutoTutor is a discourse prosthesis that



                                                                                                                

scaffolds the student to new levels of mastery through conversation.  The pedagogical philosophy is
similar to the Intelligent Collaborative Learning System [45], except that the latter system manages
discourse in groups of learners.  We believe that one important key to learning lies in getting the student to
say the right thing and the right time.      
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Appendix A:  An Example Curriculum Script for One Question and Answer  

\topic_Operating_System
\problem_solution-8 \moderate



                                                                                                                

\info-8 !Large, !multi-user !computers often work on several jobs !simultaneously.  This is known
as !concurrent processing. Computers with state-of-the-art !parallel !processing use multiple CPUs to
process !several jobs simultaneously. However, the typical computer today has only !one CPU.  
So here's your !question.

\question-8 How does the operating system of a typical computer process !several jobs
simultaneously, with only !one CPU?

\ideal-8  The operating system helps the computer to work on several jobs simultaneously by
rapidly switching back and forth between jobs.  By rapidly switch back and forth between jobs,
the operating system takes advantage of idle time on one job by working on another job.  
Timesharing computers use concurrent processing whenever multiple users are connected to the
system.  A timesharing computer moves from terminal to terminal, checking for input and
processing each user's data in turn.  Concurrent processing is common in personal computer
operating systems that allow multitasking.  Multitasking allows the computer user to issue a
command that initiates a process in one application while the user works with other
applications.

\pgood-8-1 The operating system helps the computer to work on several jobs simultaneously by
rapidly switching back and forth between jobs.
\pelab-8-1 The operating system switches rapidly !back and !forth between !jobs.
\phint-8-1-1 How can the operating system take advantage of !idle !time on the job?
\phintc-8-1-1 The operating system switches between jobs.
\phint-8-1-2 How does the operating system manage different programs?
\phintc-8-1-2 It switches rapidly back and forth.
\phint-8-1-3 Why would the operating system switch rapidly between jobs?
\phintc-8-1-3 The computer can work on several jobs simultaneously.
\pprompt-8-1-1 The operating system switches rapidly between
\ppromptc-8-1-1 Between !jobs.
\ppromptk-8-1-1 jobs.
\pprompt-8-1-2 Instead of being !sequential , the computer works on several jobs
\ppromptc-8-1-2 Several jobs !simultaneously.
\ppromptk-8-1-2 simultaneously, concurrently, at the same time.  
\pprompt-8-1-3 Several jobs are run at the same !time by having the operating system  
\ppromptc-8-1-3 The operating system !switch between jobs.
\ppromptk-8-1-3 switch, alternate.

\pgood-8-2 When there is idle time on one process or job, the operating system takes advantage of this
idle time by working on another job.
\pelab-8-2 The operating system takes advantage of idle time on !one job by working on !another job.
\phint-8-2-1 How does the operating system avoid idle time on a job?
\phintc-8-2-1 When there is idle time on one process or job, the operating system works on another job.
\phint-8-2-2 How can the !operating system take advantage of !idle !time on a job?
\phintc-8-2-2 The operating system works on another job.
\phint-8-2-3 What computer component allows the computer to work on !several jobs at the same !time?
\phintc-8-2-3 The operating system.  
\pprompt-8-2-1 When there is idle time on !one job, the operating system can work on another
\ppromptc-8-2-1 On another !job.
\ppromptk-8-2-1 job.
\pprompt-8-2-2 The operating system can work on !another job when the !first job encounters
\ppromptc-8-2-2 Encounters !idle !time.  
\ppromptk-8-2-2 idle time.  
\pprompt-8-2-3 A job faces idle time when there is no progress on any of its
\ppromptc-8-2-3 Any of its !processes.
\ppromptk-8-2-3 processes.

THERE ARE 3 ADDITIONAL GOOD ANSWER ASPECTS



                                                                                                                

\bad-8-1 The operating system completes one job first and then works on another.
\bbad-8-1 The operating system does one job at a time.
\splice-8-1 The operating system can work on !several jobs at !once.

\bad-8-5 If I give my command and someone else gives their command, then my command will be
carried out first.
\bbad-8-5 The command entered first is done first.
\splice-8-5 The operating system responds to !both commands !concurrently.

THERE ARE 5 ADDITIONAL BAD ANSWERS

\summary-8  The operating system !rapidly switches !back and !forth between !jobs. When there is
idle time on !one job, the operating system switches to !another job.  multi !tasking allows the
computer to work concurrently on !one command while processing !other commands of a single user.  
!Timesharing allows several !users to use an operating system !simultaneously.  


