Modeling Human Teaching Tactics in a
Computer Tutor*

Mark G. Core, Johanna D. Moore, Claus Zinn, and Peter Wiemer-Hastings

HCRC, University of Edinburgh
Edinburgh EH8 9LW, UK

markc, jmoore,zinn,peterwh@cogsci.ed.ac.uk

Abstract. Previous psychological research has shown that students must
construct knowledge themselves to learn most effectively. This means tu-
tors should not simply give explanations or tell the student the correct
answer to a question. Tutors and students should co-construct explana-
tions and tutors should walk students through lines of reasoning. These
activities unfold over multiple turns and tutors must be flexible enough
to deal with (i) failure (students may answer a tutor question wrong or
the whole tactic may not be working), (ii) interruptions (students may in-
terrupt with a question) and (iii) the need to revise their tactics (student
behavior may indicate that the tutor can skip steps in an explanation).
We discuss these problems in relation to tutorial dialogue planning and
propose tentative solutions.

1 Motivation

Research on student learning has shown that students must construct knowledge
themselves to learn most effectively [4, 5]. Studies also show that one-on-one hu-
man tutoring is more effective than other modes of instruction. Tutoring raises
students’ performance as measured by pre and post-tests by 0.40 standard de-
viations with peer tutors [6] and by 2.0 standard deviations with experienced
tutors [1]. What is it about human tutoring that facilitates this learning? Many
researchers argue that it is the collaborative dialogue between student and tutor
that promotes the learning [15,9, 12]. Through collaborative dialogue, tutors can
intervene to ensure that errors are detected and repaired and that students can
work around impasses [16]. The consensus from these studies is that experienced
human tutors maintain a delicate balance, allowing students to do as much of the
work as possible and to maintain a feeling of control, while providing students
with enough guidance to keep them from becoming too frustrated or confused.

For an intelligent tutoring system (ITS) to imitate these successful tutors, it
must support:

1. unconstrained natural language input — other modes of input (menus, fill-
in-the-blank forms) change the task from knowledge construction to correct
answer recognition.

* The research presented in this paper was supported by Grant #N00 014-91-J-1694
from the Office of Naval Research, Cognitive and Neural Sciences Division.

2. “extended” tutoring strategies (i.e., strategies that unfold over multiple di-
alogue turns) — allowing tutors and students to co-construct explanations
and allowing tutors to lead students through a line of reasoning point by
point.

To support unconstrained natural language and multi-turn teaching tactics,
a computer tutor must be able to deal with:

1. failure — (i) the tutor may not understand a student response; (ii) the
student may answer a tutor question in an unexpected manner; and (iii) the
tutor’s teaching tactic may not be working.

2. interruption — the student may interrupt with a question.

. the need to revise tactics — a student may skip steps in an explanation.

4. the need to disambiguate student meaning.

[S]

To test our ideas about building such tutors, we have been investigating
tutoring basic electricity and electronics (BE&E). Our starting point is a course
on basic electricity and electronics developed with the VIVIDS authoring tool
[17]. Students read textbook-style lessons written in HTML and then perform
labs using the graphical user interface (GUI) shown in Fig. 1. In [19], Rosé et al.
describe an experiment where students go through these lessons and labs with
the guidance of a human tutor. The video signal from the student’s computer was
split so the tutor who was hidden behind a partition could watch the student’s
progress. The tutor and student were allowed to type messages to each other
through a chat interface. We will refer to the logs of this chat interface as the
BE&E dialogues. We use the BE&E dialogues to identify teaching tactics to be
used by our tutor and plan to use them to train our system.

In this paper, we focus on how such teaching tactics are best implemented in
a computer tutor’s dialogue planner. In Sect. 2, we discuss previous work in di-
alogue planning. We identify several requirements a dialogue planner must meet
and tentatively choose a two-level approach with recursive transition networks
handling communication management and a hierarchical reactive planner per-
forming content planning using domain independent teaching tactics. In Sect. 3,
we show an example demonstrating why reactive planning is necessary. Section
4 contains general discussion.

2 Previous Work

Our goal is to support coherent tutorial dialogue that effectively promotes stu-
dent learning. There are two aspects to this goal; the tutor must plan how to
teach a student a particular concept (content planning) as well as maintain the
conversation (communication management planning). Communication manage-
ment refers to signaling topic shifts, acknowledging and accepting student ut-
terances, and handling cases where one of the conversants did not fully hear or
understand the other. One should keep the two types of planning separate. Com-
munication management operators can be used to provide a level of abstraction.

PARTS BOX

Fig. 1. BE&E Graphical User Interface

Content plan operators can then be written to capture teaching tactics without
having to include details such as acknowledgment and acceptance. The CIRC-
SIM tutor [10] does not make this separation but the EDGE explanation system
[3] has separate content operators and communication management operators
(called discourse operators in [3]).

We have tentatively chosen to go one step further and have a separate commu-
nication management planner and content planner following the architecture of
the Autoroute spoken dialogue system [14] and the three-level architecture com-
monly used for planning in robotics [2]. It is not clear if the missing third level,
physical control of the robot, has an analogy in tutorial dialogue planning. In
Autoroute, communication management is considered low-level and is performed
by a series of recursive transition networks. Each network implements a conversa-
tional game such as asking a question or giving information. Each game handles
the communication management associated with the system’s utterances. Such
a technique has the potential to be faster than having one traditional planner
deal with both content and communication management actions. In addition, as
described in [18], Bayes nets can be used to navigate the conversational games.
One can train the Bayes nets on a corpus to determine when, for example, to
explicitly acknowledge. This is not a simple decision and should be based on
confidence scores from the speech recognizer and natural language parser and
judgment of the input (in the case of Autoroute, judgment is made with respect
to whether the user utterance is a valid database command).

The Autoroute content planner is high-level, and treats conversational games
as atomic actions having preconditions and postconditions. It uses the situation
calculus to combine these games in a STRIPS-like manner into a plan to achieve
its major goal (constructing a query to a route planning system).

To plan an entire dialogue in this manner, one must assume that the other
conversant will respond as expected. In tutorial dialogues especially, this assump-

tion is likely to be wrong; a student may not answer a question correctly and may
not be easily led “back on track”. Or a student may give more information than
was requested and part of the tutor’s plan may be unnecessary. Thus, we follow
[11] and use a reactive planner to implement content planning in our tutor. As
in the EDGE explanation system [3], we will plan in a depth-first manner until
an executable action is reached; we will not elaborate future parts of the plan
until necessary.

To help build the library for this planner, we will identify and annotate the
teaching tactics in the BE&E dialogues. Since we have pre- and post-test scores
for the students in our corpus, we can evaluate the effectiveness of the teaching
tactics used. This annotation will help us gain a more detailed understanding of
the capabilities needed of the dialogue planner, and test our decision to use a
hierarchical reactive planner for content planning and recursive transition net-
works for communication management. One might ask whether reactive planning
is necessary at all, and whether Autoroute’s original STRIPS-style planner would
be adequate for dialogue planning. In Sect. 3, we go through an example showing
the need for a reactive planner.

Our teaching tactics are specific to procedural tasks but our goal is make them
otherwise domain independent. The CIRCSIM tutor [10] and EDGE explanation
system [3] have a mixture of domain dependent and domain independent teaching
tactics in their dialogue plan libraries. To test whether we have been successful
in developing a domain independent plan library, we will try applying it to
another procedural tutoring domain such as guiding students through chemistry
experiments or medical training.

ordering

. congtraint L current must flow
removewirer - - - -~ - energize circuit to be measured

must measure current
in series

provide parameter

prevent

de-energize | shock |
circuit
CONNECT THE LEADS

[set meter to measure DC current | must use DC ammeter and meter must be on

Fig. 2. Domain Plan for Measuring Current

read-amt-current

polarity is observed &

|
I
|

connect lead 1 [~ |-~
i
| circuit is complete
I
I

connect lead X2~ |-~ -

3 Proposed Dialogue Planner

Appendix A depicts the start of a BE&E dialogue. Utterances labeled GUI are
text displayed as part of the graphical user interface while utterances labeled
Student and Tutor were produced by the human student and tutor. In this
dialogue, the student is supposed to be measuring current; the plan for measuring
current is shown in Fig. 2. Preconditions are depicted as lines connecting actions.

This dialogue contains three instances where the student does not respond
as expected to tutor questions (utterances 21, 28, 30-31). In utterances 28 and
30-31, the student is clearly not able to produce the right answer. Utterance 21
has three problems: it uses wrong terminology (wire instead of lead), is vague
(which lead is picked?), and does not fully answer the question (there are other
steps in connecting leads). In this section, we show how a two-level dialogue
planning architecture can be used to deal with these unexpected responses.

WORLD
Simulation Environment Verbal tutor-student-communication
T [}
I TUTOR
SENSING SYSTEM
Simulation
Parser Observer TEXT GENERATION
Input/Output
Dialogue Dialog goals
context DIALOGUE (Agenda)
PLANNER Tutor
INTERPRETER i i i Teaching Agent
SUdent mOdd
Planner
Expectations Engine

Problem Domain Domain
solving context] . Reasoner 1-N
ving Problem-Solving Knowledge

Manager

Expert + bugg (PSM) Plan
knowledge Recogniser

I

Fig. 3. The BEE Tutor Architecture

To implement the teaching tactics used by the tutor in this dialogue, we
propose the architecture presented in Fig. 3. The architecture is inspired by the
TRIPS dialogue system [8]. Control flows through this architecture as follows:

1. If the student types input then the parser produces an underspecified logical
form that the interpreter attempts to fully specify.

2. The interpreter uses the problem solving manager, dialogue context, expecta-
tions, and curriculum to evaluate input (note, input to the tutor may simply
be that the student is idle).

3. The interpreter updates the student model.

4. The interpreter may send messages directly to the dialogue planner (e.g., an
evaluation of the student’s answer to a question or an alert when one of the
values in the student model falls below threshold)

5. If a conversational game is in progress, then the conversational game engine
runs it, else the reactive planner is run to load a new conversational game.

6. The reactive planner is run if a conversational game ends or there is unex-
pected student input (e.g., the student says red wire instead of red lead).

The problem solving manager matches student actions to correct and incor-
rect (buggy) plans. Plans are incorrect with respect to not achieving a particular
goal or achieving a goal inefficiently. The student model is updated based on stu-
dent actions as well as student inaction; belief that the student knows the next
step of the current plan decreases with the time it is taking him! to perform
this action. We are assuming a probabilistic student model such as the one pre-
sented in [7] where domain actions and concepts are connected in a Bayes net.
An example connection would be that knowing how to attach the leads suggests
knowing that a circuit must be complete for current to flow.

In the following paragraphs, we explain how our tutor could simulate the
human tutor in the dialogue of appendix A. In general the computer tutor will
have many decisions to make: should a student just be told a piece of information,
asked to provide this information, or shown this information through a multi-
turn teaching tactic. Here, we make the same decisions as the human tutor.

Our dialogue planner uses a data structure called an agenda to store goals. We
are investigating whether the agenda should be a stack or whether the planner
needs to modify and delete arbitrary goals from the agenda. One reason for
the planner to edit the agenda is to switch between goals. If the student is not
making progress on one goal then the tutor may want to address another goal
for a while.

The tutor’s curriculum contains a list of tutoring goals. When the tutor starts
up, the first unachieved tutoring goal for a particular student is placed on the di-
alogue planner’s agenda. In this case, the goal is (student-performs (measure
current)).? The dialogue planner constructs a plan for achieving this goal us-
ing operators from its domain independent plan library (the operators relevant
to utterances 1-19 are shown in Fig. 4). To simulate the high-level structure
of the dialogue in appendix A, we use the TEACH-STEP-BY-STEP operator.
This operator has both constraints and preconditions. Unlike preconditions, con-
straints cannot be made true through the application of other operators. The
preconditions state that to get the student to perform an action (measure cur-
rent), the tutor must get the student to perform all the substeps of this action.
Note this decomposition is provided by the problem solving manager. None of
the operators used by the dialogue planner are domain dependent. The actions
(conversational games) associated with TEACH-STEP-BY-STEP (in this case,
none) are pushed onto the agenda followed by the preconditions of the operator
(A-G in the agenda below). For presentation purposes, subgoals in the agenda
are listed under the goals they support. The arrow indicates the next goal to be
addressed.

! We refer to the student as he and the human tutor as she.
2 The curriculum can contain arbitrarily complex goals encoding not only concepts to
be taught but a preferred method of teaching of them.

TEACH-STEP-BY-STEP ?a

effects: (student-performs ?a)

constraints: (AND (step ?7a) (not (primitive 7a)))

preconditions: (foreach (?substep (PSM-ASK DECOMPOSITION 7a))
(student-performs ?substep))

TEACH-NEXT-STEP ?a

effects: (student-performs ?a)

constraints: (AND (step ?a) (not (primitive 7a)))

preconditions: (AND (student-knows (next 7a))
(student-knows (how-to-perform ?a)))

PRIME-NAME-NEXT ?a

effects: (primed (next 7a))
constraints: (AND (set instruction-list (PSM-ASK INSTRUCTIONS))
(set actions-performed-list (PSM-ASK ACTIONS))
(step ?a))
preconditions: (AND (salient (instructions instruction-list))
(salient (actions-performed actions-performed-list)))

ASK ?a

effects: (student-knows 7a) (student-states 7a) (salient 7a)
precondition: (primed ?a)
action: (ASK-GAME ?a)

INSTRUCT ?7a

effects: (student-performs ?a)
action: (INSTRUCT-GAME ?a)

INSTRUCT2 7a

effects: (student-performs ?a) (student-performs 7b)
action: (INSTRUCT-GAME ?a ?b)

Fig. 4. Dialogue Planning Operators

AGENDA: (student-performs (measure current))

-> A. (student-performs (de-energize circuit))
(student-performs (set-meter-to-dc-current))
(student-performs (select wire))
(student-performs (remove wire))
(student-performs (connect leads))
(student-performs (energize circuit))
(student-performs (read-amt-current))

QTEoow

To address goal A, the dialogue planner chooses the INSTRUCT operator
which has no preconditions and one action, running the INSTRUCT-GAME (see
Fig. 5, adapted from [14]). The game is a recursive transition network where the
links represent complex actions such as giving instructions or actions to the
GUI. The game is started at state TO (tutor’s first turn). The conversational
game engine performs the only action possible, giving instructions (utterances
1-2) using the text generator. The text generator produces natural language text
from logical forms. For example, (de-energize circuit) would be realized as
Set the switch (i.e. the circuit switch) to off. After producing the instructions, the
game engine waits for the student’s response. Interpreting the student’s response
is tricky because the student may do nothing (eventually the game engine must

concede failure) or the student may perform more than one action (the game
engine must decide when the student is done with his response). This example
is relatively simple as the student performs the correct response causing the
game engine to move to state T1. The game engine then decides to make an
acceptance (utterance 3) ending the game. Since the goal of getting the student
to de-energize the circuit was accomplished, the reactive planner pops goal A
from the agenda. Goals B and C are addressed successfully in the same manner.

The dialogue planner addresses goals D and E using the INSTRUCT?2 op-
erator.> The INSTRUCT-GAME is run producing utterance 8. After a certain
length of time, the conversational game engine must decide that the student is
not going to connect the leads. The student’s actions are classified as incorrect;
an explicit acknowledgment is made in utterance 9 (OK) and the game ends in
failure. The game was used to address goals D and E. D was achieved while E
was not. The reactive planner pops goal D from the agenda.

INSTRUCT-GAME

. . student
ﬂ) action(s T1 explicit acknowledgment O
implict acknowledgment
| didn’t understand acceptance

Fig.5. INSTRUCT-GAME

We simulate the teaching tactics displayed in utterances 9-20 by first ap-
plying the TEACH-NEXT-STEP operator which says the student must know
what step is next (goal El, in the agenda shown in Fig. 6) and how to per-
form it (goal E2) in order to execute the action. A precondition of asking the
student to identify the next step (goal E1.2) is priming the student through
PRIME-NAME-NEXT (goal E1.1). PRIME-NAME-NEXT involves making the
instructions salient (goal E1.1.1) and making the student’s actions salient (goal
E1.1.2). The idea is that the student will then be primed to answer the question:
what is the next step in the plan?. Note in applying the ASK operator to address
goal E1.1.1, we assume we do not need to prime the student in order to ask what
the instructions were. This assumption can later be retracted if it turns out to
be false. This is a fairly simple example of a directed line of reasoning where a
student is lead to a conclusion through a series of reasoning steps [13]. Also note,
none of the operators used are domain dependent. The problem solving manager
provides a list of the actions the student performed as well as the instructions
given by the tutor.

3 In this preliminary investigation we use a separate operator, INSTRUCT?2, to address
two goals at once. In future work, we plan to develop a more general INSTRUCT
operator that allows more than one goal to be addressed.

Some goals on the agenda are tied to the student model as suggested by
[3]. So if the model indicates that the student knows he must connect the leads,
then the tutor will not bother hinting and asking about what must be done next.
Some preconditions of the operators in Fig. 4 involve making certain information
salient. For example, even if the tutor thinks the student knows the instructions,
the tutor will re-iterate them ensuring a coherent discussion.

E) (student-performs (connect leads))
El) (student-knows (next (connect leads)))
E1.1) (primed (next (connect leads)))
E1.1.1) (salient (instructions instruction-list))
-> E1.1.1.1) (ASK-GAME (instructions instruction-list))
E1.1.2) (salient (actions-performed actions-performed-list))
E1.2) (ASK-GAME (next step-in-plan))
E2) (student-knows (how-to-perform (connect leads)))
F. (student-performs (energize circuit))
G. (student-performs (read-amt-current))

Fig. 6. Agenda Just before Utterance 10 Is Produced

To execute the ASK-GAME associated with E1.1.1.1 we start by asking
the question seen in utterances 10-11. The ASK-GAME is the same as the
INSTRUCT-GAME except that a question is asked instead of instructions given
and student actions consist of responses. The student makes the reply seen in
utterance 12 and the tutor utters an explicit acknowledgment, okay, completing
the game. E1.1.1.1 is popped off the agenda, and since the student answered
correctly, F1.1.1 is popped off the agenda as well. ASK-GAMEs are played for
utterances 14-16 and 17-19 and E1.1.2, E1.1, E1.2, and E1 are popped off the
agenda: the student knows he must connect the leads.

To address goal E2, the tutor uses the ASK operator and asks And how are
you going to do that?. There are three problems with the student’s answer, pick
one of the wires on the right of the picture: (1) the interpreter with the help of
the problem solving manager determines that one of the wires on the right of
the picture is vague and can refer to either the black lead or the red lead; (2)
the problem solving manager (after consulting the curriculum) knows that the
student should use the term lead instead of wires on the right of the picture;
and (3) the problem solving manager identifies the answer as incomplete (it
does not say where to attach the first lead or anything about the other lead).
The interpreter encodes these problems as dialogue planning goals: (1) student
states which lead to attach, (2) student learns the term lead, (3) student states
the remaining steps involved in connecting the leads. Goal 2 is tangential; we
later see the tutor ignores the incorrect use of wire for lead in utterances 25, 28,
31, and 40.

Due to space constraints, we can only give high-level details about the rest
of the dialogue. Goal 2 is addressed indirectly by utterance 22, You mean the
leads of the multimeter? Goal 3 is split into two parts: (a) specifying the missing
parameter, the attachment point of the first lead and (b) describing the second
step of connecting the leads, connecting the second lead. Utterance 24 addresses
goal 1 and part (a) of goal 3. The goal behind utterances 27-32 is to bring the

reading-amount-of-current step (the last step of the requested action) into focus
and then to ask about unsatisfied preconditions of this action (utterances 35 and
37) resulting in the student describing the missing action in the plan. Utterances
27-32 are notable because the tutor must switch tactics at utterance 32 because
the previous teaching tactic was not working. Notice the techniques used here
apply to any complex action to be performed by a student not just connecting
leads.

4 Discussion

Our overall goal is to build a computer tutor that supports constructive learning;
our focus here is (1) building a dialogue planner that is quick and flexible enough
to support dialogue that unfolds over multiple turns, and (2) developing a library
for this planner including the human teaching tactics in our corpus. The two level
architecture of the Autoroute dialogue system [14] is promising because the lower
level abstracts communication management details from the higher level, content
planning.

Using a reactive planner for the second level of our dialogue planner we
have analyzed how this planner would handle the sample dialogue shown in
appendix A. The sample dialogue contains examples where the student does not
give the expected response (utterances 21, 28, and 30-31). We discussed how
the tutor successfully dealt with utterance 21 in some detail. In utterance 28,
the interpreter again has to generate a dialogue planner goal to try and get the
student back on track. In this case, since the student has rephrased the question
instead of answering it, an obvious solution is to repeat the question. When the
student rephrases the question again (utterances 30-31), we must be careful not
to repeat this strategy. The dialogue planner decides to try a new teaching tactic
in utterance 32 and succeeds in getting the student to identify the reason for his
actions.

In other dialogues, we have observed that the human tutor is careful not
to perform steps of a teaching tactic that are unnecessary. When the dialogue
begins, the tutor may ask the student to define an electrical source and load,
and then ask them if the leads span a source or load. Later in the dialogue, the
tutor generally only asks if the leads span a source or load and does not ask for
any definitions.

As we continue to annotate our corpus of human-human dialogues, we will
likely uncover more difficult examples requiring the dialogue planner to mod-
ify its teaching tactic as it executes it. Consider the following case: the tutor’s
teaching tactic is to (i) make the instructions salient, (ii) make the student’s
actions salient, and (iii) ask the student what steps remain. The tutor addresses
goal i by asking what are the instructions?. The student replies remove the wire
and connect the leads. I still need to connect the leads. At this point, the tutor
should not perform steps ii and iii. By allowing the dialogue planner’s agenda
to be arbitrarily examined and modified, our architecture allows such examples
to be handled. These types of examples are inevitable if the tutor allows un-

constrained natural language responses to questions in its multi-turn discourse
plans; at any point, a student can jump ahead or request clarification. How-
ever, unconstrained natural language input and multi-turn teaching strategies
are necessary for the most effective type of teaching, having students construct
their own knowledge.

References

1.

10.

11.

12.

13.

14.

15.

16.

B. S. Bloom. The 2 Sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring. In Educational Researcher, volume 13, pages
4-16, 1984.

. R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G.

Slack. Experiences with an architecture for intelligent, reactive agents. Journal of
Ezperimental Theoretical Artificial Intelligence, 9:237-256, 1997.

. A. Cawsey. Explanatory dialogues. Interacting with Computers, 1(1):69-92, 1989.
. M. T. H. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser. Self-

explanations: How students study and use examples in learning to solve problems.
Cognitive Science, 13(2):145-182, 1989.

. M. T. H. Chi, N. De Leeuw, M. H. Chiu, and C. Lavancher. Eliciting self-

explanations improves understanding. Cognitive Science, 18(3):439-477, 1994.

. P. A. Cohen, J. A. Kulik, and C. C. Kulik. Educational outcomes of tutoring:

A meta-analysis of findings. American Educational Research Journal, 19:237-248,
1982.

. C. Conati, A. Gertner, K. VanLehn, and M. Druzdzel. On-line student modeling

for coaching problem solving using bayesian networks. In A. Jameson, C. Paris,
and C. Tasso, editors, User Modeling: Proceedings of the Sizth International Con-
ference, UM97, pages 231-242. Springer Wien, 1997.

. G. Ferguson and J. F. Allen. TRIPS: An intelligent integrated problem-solving

assistant. In Proc. of the National Conference on Artificial Intelligence (AAAI-
98), pages 26-30, Madison, WI, July 1998.

. B. A. Fox. The Human Tutorial Dialogue Project: Issues in the design of instruc-

tional systems. Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

R. Freedman. Interaction of Discourse Planning, Instructional Planning and Dia-
logue Management in an Interactive Tutoring System. PhD thesis, Northwestern
University, 1996.

R. Freedman. Using a reactive planner as the basis for a dialogue agent. In
Proceedings of the Thirteenth Florida Artificial Intelligence Symposium (FLAIRS
’00), Orlando, 2000.

A. C. Graesser, N. K. Person, and J. P. Magliano. Collaborative dialogue patterns
in naturalistic one-to-one tutoring. Applied Cognitive Psychology, 9:495-522, 1995.
G. Hume, J. Michael, A. Rovick, and M. Evens. Hinting as a tactic in one-on-one
tutoring. The Journal of the Learning Sciences, 5(1):23-47, 1996.

I. Lewin. Autoroute dialogue demonstrator. Technical Report CRC-073, SRI Cam-
bridge, 1998.

D. C. Merrill, B. J. Reiser, and S. Landes. Human tutoring: Pedagogical strategies
and learning outcomes. Paper presented at the annual meeting of the American
Educational Research Association, 1992.

D. C. Merrill, B. J. Reiser, M. Ranney, and J. G. Trafton. Effective tutoring
techniques: Comparison of human tutors and intelligent tutoring systems. Journal
of the Learning Sciences, 2(3):277-305, 1992.

17. A. Munro. Authoring interactive graphical models. In T. de Jong, D. M. Towne,
and H. Spada, editors, The Use of Computer Models for Explication, Analysis and
Ezperimental Learning. Springer Verlag, 1994.

18. S. Pulman. Conversational games, belief revision and bayesian networks. Technical
Report CRC-071, SRI Cambridge, 1996.

19. C. P. Rosé, J. D. Moore, K. VanLehn, and D. Allbritton. A comparative evaluation
of socratic versus didactic tutoring. Submitted for publication.

Appendix A: A BE&E Dialogue on Measuring Current

GUI: 1. In this exercise, you will get practice measuring current with
a multimeter. This lab will lead you through the steps.
Remember that when measuring current, you must power down the
equipment first and then connect the meter in series with the circuit.

GUI: 2. Set the switch (i.e. the circuit switch) to off.

Student: <turns off switch>

GUI: 3. Correct.

GUI: 4. Set the Multimeter to adc.

Student: <sets the meter correctly>

GUI: 5. Correct.

GUI: 6. Choose the wire spanning the first position in the circuit where

you want to measure current.
Student: <selects wire 2>
GUI: 7. Correct.
GUI: 8. Remove the appropriate wire and commnect the leads of the
multimeter to the circuit.
Student: <only removes wire 2 from the circuit>
Tutor: 9. 0K,
10. let’s break this down into steps.
11. What did the instructions ask you to do?
Student: 12. remove the appropriate wire and connect the leads
Tutor: 13. 0K,
14. and how much of this did you do?
Student: 15. i only removed the wire
Tutor: 16. Right.
Tutor: 17. So what do you still need to do?
Student: 18. connect the leads
Tutor: 19. Right.
20. And how are you going to do that?
Student: 21. pick one of the wires on the right of the picture

Tutor: 22. You mean the leads of the multimter?
Student: 23. yes
Tutor: 24. Which one will you pick and where will you attach it?

Student: 25. i believe that I’1l pick the red wire and
attach to where I removed the beginning of the wire
Tutor: 26. 0K,
27. do you understand why you are doing that?
Student: 28. because you need to connect the red wire to the beginning of the wire
Tutor: 29. Why?
Student: 30. i’m not exactly sure.
31. i just thought that you connect the red wire to the beginning
Tutor: 32. Do you understand what the goal of this lab is?
Student: 33. to be able to connect the multimeter to the light
and read the number of amps are flowing
Tutor: 34. 0K,
35. in order for any amps to be flowing, what has to be true about the circuit?
Student: 36. it has to be complete
Tutor: 37. If you do only what you said you were going to do,
will the circuit be complete?
38. (with the exception f the switch being open)?
Student: 39. no.
40. i will also have to connect the red wire to the number 3 on
the picture(above the lightbulb) i meant black wire not red
Tutor: 41. Good. You are absolutely correct.
42. You need to do both of those things before you press continue.

