IS MSc Artificial Intelligence Programming II

Exercise 6
[ssued: week 6

February 5, 2002

Everyone should attempt problems 1-5. The remaining problems are harder and are op-

tional.

1.

(a) Write a recursive procedure count_down which given an integer as argument

counts down to 0 from that integer e.g.

count_down(5);
)
% 4
% 3
** 2
% 1
% 0

By adding one statement to count_down make a new procedure count_down_up

which first counts down from the given number to 0 and then counts back up
again to the number.

Write both iterative and recursive procedures (named bottlel and bottle2)
that take one argument, an integer, and print out the corresponding number of
verses of the song about ”green bottles” e.g.

bottle(5);

x [b green bottles hanging on a wall

x [b green bottles hanging on a wall

#% [if 1 green bottle should accidently fall]

+* [there would be 4 green bottles hanging on a wall]

% [4 green bottles hanging on a wall]

etc etc.
Write a recursive procedure called called bottle_count that takes a single integer
as argument, corresponding to a number of bottles in question 2 and adds up
the total number of bottles mentioned e.g in the example above there would be
G+5+14+4)+(4+4+1+3)+B+3+1+2)+2+2+1+1)+(1
+1+1+40)

bottle_count(5)=>
x* 45

. Write a recursive procedure named intersect that takes two lists as arguments and
returns another list which contains only those elements which occur in both the input
lists. If there are no such elements the procedure should return [] . e.g.

intefr]sect([tom dick harry],[mary susan jane])=>
**

intersect(fa b c d e f],[e f g a])=>
sk [a e f]

. Use your intersect procedure to write a procedure called set_difference which given
two lists as arguments returns a list of all those elements which are in one or other of
the lists but not in both.

Hint: You may find the built-in procedure delete useful.

. Write a recursive procedure named check that takes an arbitrarily deeply nested list
and a predicate as its two arguments. The procedure should return true if there is
an item anywhere in any of the lists or sub-lists which satisfies the predicate and
otherwise return <false>. e.g.

check([a [b ¢ [[e f]]g] h i],isinteger)=>

x+ <false>

check([a [b ¢ [[e f]]5] h i],isinteger)=>

k. <true>

What should happen if the predicate is islist?

. Adjust your answer to the previous question to produce a recursive procedure named
censor. It should take the same kind of arguments as check but rather than return
simply <true> or <false>, it should return the nested list that it was given with any
items satisfying the predicate replaced by the word ”censored”. e.g.

censor([a [b ¢ [[e f]]g] h i],isinteger)=>

#% [a [bc[lef]] g hi]
censor([a [b ¢ [[99 f]]5] h i],isinteger)=>
x* [a [b c [[censored f]] censored] h 1]

What should happen if the predicate is islist?

. Write a procedure substring_position(stringl,string2) which returns an integer
n as its result if the string string2 contains a substring starting at position n equal
to stringl, and <false> if no such position exists e.g.

substring_position(’abc’,’xabdabcbd’)=>
x* b

substring_position(’abc’,’xabdacbab’)=>
xx <false>

Hint: Use two nested loops.

. Modify your substring_position procedure so that it returns a list of all the positions
in string2 where stringl occurs as a substring,.

PTO

9.

10.

11.

Write a recursive procedure list_palindromewhich takes a list as argument and
returns<true> if the string is a palindrome (i.e is the same backwards as forwards),
and <false> otherwise e.g.

list_palindrome([hello there there hello])=>

k. <true>

string_palindrome([I was gone gone I])=>

*x <false>
Hint: You may find the built-in procedures last and allbutlast useful. Alternatively
you can use the matcher.

Write an iterative procedure string_palindrome which takes a string as argument
and returns <true> if the string is a palindrome (i.e is the same backwards as for-
wards), and <false> otherwise e.g.

string_palindrome(’abcba’)=>

ok <true>

string_palindrome(’ababbaba’)=>
*k <true>

string_palindrome(’abcca’)=>
<false>

Do not use the built-in procedures last and allbutlast!

(Hard) Suppose there are ten people in a town, their names being:
” a”’ ”b”’ 7 C”, ” d”’ R e”’ ”f” ” h”’ R i”’ and ”j”
You are told that the following pairs of people talk to each other:
[[a f] [fe] [gi] [hb] [ch][jd][gj] [bh][di]
Clearly 7a”, 7€’ and ”f” form a ‘sub-culture’ whose members talk to each other but
not to the members of any other sub-culture in town. How many sub-cultures are

there? Define a procedure called subculture which when given a list of two element
lists (like that above) groups the pairs together into larger lists, thus:

subculturef[[a lﬂ] [bc] [d €] [ef]])=>

**b[[alb . (d y] [b 1] [c g] [d g]])
subculture(||a e C =
e g ey e

