IS MSc Artificial Intelligence Programming II

Exercise 4 (Issued: week 4)

First try out a demo. Bring up a terminal window and type the following
to the Unix prompt:

% popll +gblocks
Follow the instructions of the program.

Read Chapters 3,4,5, and 6 of the Pop-11 Primer. Do not worry about not
understanding things I haven’t yet covered in lectures.

For these exercises you will need a telephone list in the following form:
[[mary jones] 479625 [fred smith] 249371 [mike fret] 567923]—>telephones;

Note Your code should work for any telephone list in the right format,
not just for the one above, or those of length 3!

You may find the procedures hd, tl, length useful.

1. Write four different versions of a procedure named print_phonelist that
takes a telephone list as argument and prints out on a separate line
each person’s name and their telephone number. The procedure should
not return a result. The four versions should make use of:

(a) repeat ...times...endrepeat
Hint: Use hd to get at the first element in a list, and tl to
shorten the list. Each time round the loop we need to get at two
elements (the name and the number), and to shorten the list by
two, ready for the next time round. How many times must this
be done?

(b) for ...in ...do ...endfor
Hint: You may find the procedures isinteger and/or islist use-
ful, since they enable you to easily tell lists from integers.

(c) until ...do ...enduntil
Hint: This is similar to (a), but you need to think about how to
tell when you have finished.

(d) while ...do ...endwhile
Hint: This is very similar to (c).

2. Write two different versions of a procedure get_name that given a tele-
phone number and telephone list as arguments returns the correspond-
ing name as its result e.g.
get_name(249371,telephones)=>
** [fred smith]

If the number is not in the telephone list then the procedure should
return a list [no luck].

One version should use the matcher, the other should use any looping
construct.

3. Write a procedure named get_first_name that expects the same argu-
ments as get_name (in Question 2) but simply returns the person’s first
name. The new procedure should call get_name as a sub-procedure.

4. Write a procedure named average that takes a single argument, a
telephone list, and returns the arithmetic average (to the nearest whole
number) of the telephone numbers it finds!

5. Write a procedure named find_average_person that takes a telephone
list as argument and returns either the name of the first person who
happens to have the same telephone number as the average, or if such
a person cannot be found returns the list [no luck] as its result.

6. Write a procedure named get_nums of no arguments that makes use
of readline to interactively build up a telephone list in the form above
and when complete return it as its result. When the user types ”"no
more” it should stop e.g.

get_nums()—>newlist;
** [name]
? mary haddock

s* [number]

7 12345

** [name]

? jack sprat

s% [number]

7 22222

** [name]

? no more

newlist=>

sk [[jack sprat] 22222 [mary haddock] 12345]

