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Abstract

A recent measure of ‘integrated information’, WDM, quantifies the extent to which a system generates more information than
the sum of its parts as it transitions between states, possibly reflecting levels of consciousness generated by neural systems.
However, WDM is defined only for discrete Markov systems, which are unusual in biology; as a result, WDM can rarely be
measured in practice. Here, we describe two new measures, WE and WAR, that overcome these limitations and are easy to
apply to time-series data. We use simulations to demonstrate the in-practice applicability of our measures, and to explore
their properties. Our results provide new opportunities for examining information integration in real and model systems and
carry implications for relations between integrated information, consciousness, and other neurocognitive processes.
However, our findings pose challenges for theories that ascribe physical meaning to the measured quantities.
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Introduction

How can the complex dynamics exhibited by networks of
interconnected elements best be measured? Answering this question
promises to shed substantial new light on many complex systems,
biological and non-biological. Neural systems in particular are
characterized by richly interconnected elements exhibiting complex
dynamics at multiple spatiotemporal scales [1], which have been
associated with a variety of behavioral, cognitive, and phenomenal
properties [2,3,4]. Characterizing dynamical complexity for such
systems therefore presents a key challenge for developing new
theoretical accounts [5] and for designing and evaluating new
experiments. A common and attractive intuition is that dynamical
complexity consists in the coexistence of differentiation (subsets of a
system are dynamically distinct) and integration (the system as a whole
exhibits coherence) in a system’s dynamics. Applied to neural
systems, this intuition may underpin notions of cognitive and
behavioral flexibility. A system that is able to respond specifically
and selectively to a broad range of stimuli, in an integrated way,
may require conjoined functional integration and differentiation
[6,7]. More ambitiously, the intuition may also characterize basic
aspects of conscious experience [8]. At the phenomenal level, each
conscious scene is composed of many different parts and is different
from every other conscious scene ever experienced (differentiation),
yet each conscious scene is experienced as a coherent whole
(integration). Therefore, dynamical complexity in neural systems
may actually account for (and not merely correlate with) fundamental
aspects of consciousness [9].
Several measures now exist which operationalize the above

intuition under different assumptions and with varying practical
applicability [5]. In this paper, we critically evaluate ‘integrated
information’ (W) [10,11], a candidate measure that has received

significant recent attention, especially in the domain of conscious-
ness science [12,13,14,15]. We present new versions of this
measure that are both theoretically well-grounded and, in contrast
to previous versions, practically applicable given time-series data.
W has been proposed as a measure of the amount of information
that is integrated by a system, where ‘information’ reflects the
differentiated states of a system and ‘integration’ their global
cohesion. According to the ‘integrated information theory of
consciousness’ (IITC), this quantity is identical to the quantity of
consciousness generated by the system; in other words, on the
IITC, consciousness is integrated information [12,14]. This
dramatic claim invites a close examination of the in-principle
and in-practice properties of W.
A first version of W (which we call WC, ‘W-capacity’,) was

conceived as a measure of the capacity of a system to integrate
information, and did not take into account time or changing
dynamics [10,12]. Also, measuring WC requires flexible, repeated,
and reversible perturbation of arbitrary system subsets, which is
infeasible for non-trivial systems (except in simulation). We do not
discuss this measure any further. Recently, a new version of W has
been introduced in the context of the IITC, which we call WDM,
‘W-discrete/Markov’ [11]. In contrast to WC, WDM is defined for
systems of discrete elements that evolve through time with
Markovian transitions. Specifically, WDM measures the informa-
tion generated when a system transitions to one particular state out
of a repertoire of possible states, but only to the extent that this
information is generated by the whole system, over and above the
information generated independently by the parts [11]. Impor-
tantly, WDM measures information as reduction in entropy from a
prior maximum entropy distribution, which is taken to represent the
repertoire of possible states.
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It has been shown, using simulations, that WDM behaves
consistently with several intuitions about dynamical complexity
[11]. In particular, high values of WDM are generated by networks
that exhibit both differentiation and integration in their dynamics.
However, WDM is defined only for idealized discrete Markovian
systems (a Markovian system is one for which the future depends
only on the present, and not on the past). This in-principle
restriction severely limits its in-practice applicability because
complex biological systems are typically continuous (or are
measured as continuous) and are non-Markovian). This limitation
in turn imposes a serious obstacle for developing and evaluating
theories, such as the IITC, which depend on quantifying
integrated information.
In this paper we introduce an alternative measure of integrated

information, WE (‘W-empirical’), which is applicable to time-series
data, and to continuous or discrete stochastic systems, Markovian
or otherwise (and without perturbation of the studied system).
These key features arise because WE is based on the reduction in
Shannon entropy from the empirical, as opposed to the maximum
entropy, distribution. Our basic formulation of WE therefore
addresses the in-principle restrictions of WDM mentioned above.
WE is best suited for application to stationary systems, for which it
provides a single value for a given stationary epoch. However, its
in-practice applicability still faces the difficulty of accurately
estimating entropies from limited data. This is a problem that
scales poorly as the number of elements (variables) increases,
especially for continuous systems [16]. Confronting this problem,
we show that when states are Gaussian distributed, WE can be
computed directly from empirical covariance matrices, rendering
it extremely easy to apply in practice for these systems. Meanwhile,
for non-Gaussian systems, we introduce a second measure, WAR

(‘auto-regressive W’), which is based on auto-regressive prediction
error. WAR can be understood as measuring how well the present
state of a system predicts some previous state, but only to the
extent that predictions based on the whole outstrip predictions
based on the parts considered independently. WAR and WE are
constructed analogously, and indeed for Gaussian systems we are
able to show, using a connection between linear regression and
information theory [17,18], that they are precisely equivalent.
Recognizing this equivalence allows us to interpret WE in the same
way as WAR, i.e., in terms of predictive ability. Importantly,
although for non-Gaussian systems WAR and WE may differ, the

former remains easy to measure in practice from empirical
covariance matrices.
The difference between WE/WAR and WDM is not only a matter

of practical applicability. Using the empirical distribution as
opposed to the maximum entropy distribution substantially
changes possible interpretations of the measure. According to
WE, integrated information is a measure of a process, since the
empirical distribution is a characterization of the actual behavior
of the system. According to WDM integrated information is to some
extent a measure of capacity [14], since the maximum entropy
distribution is maximally agnostic about the behavior of the
system, representing instead its potential or capacity.
The above distinction carries implications for theories, such as

the IITC, that ascribe physical meaning to measures of integrated
information. Under the IITC, consciousness is explicitly charac-
terized in terms of the capacity of a system [14], and not, following
William James [19], as a process. Our new measures imply a
Jamesian modification of the IITC by considering consciousness as
a process; they also challenge the identity relation between
consciousness and integrated information assumed in the IITC.
More generally, many other brain-based phenomena are best
considered in terms of process rather than capacity, and may
admit useful interpretations in terms of integrated information. For
example, multi-modal binding and perceptual categorization [20]
could involve integrated information in the perceptual domain,
and action selection (decision making) [21] may require the
integration of sensory, cognitive and motor processes, while
retaining differentiation among competing alternatives. In these
and other cases, having a measure of integrated information
framed in terms of process, that is practically applicable to time-
series data, will permit the formulation of testable hypotheses and
synthetic models relating information integration to cognitive and
neural operations.

Results

The ‘Results’ section is organized as follows. In the ‘Notation,
conventions and preliminaries’ section we lay out our notation and
introduce some necessary mathematical concepts. In the section
‘The previous measure, WDM’ we review WDM using our current
notation, noting its limitations especially with respect to discrete
Markovian systems. The section ‘The new measure, WE’ describes
the new measure WE and provides practical recipes for its
computation either numerically from time-series or analytically,
given a generative model of the system, both under Gaussian
assumptions. We note that for non-Gaussian systems WE remains
well-defined even if it is more challenging to calculate. The section
‘WE for Markovian Gaussian systems’ presents the results of
various simulations, designed to illustrate the in-practice applica-
bility of WE and to explore its properties. We compute WE for some
canonical networks, optimize connectivity under simple dynamics,
and examine the numerical stability of the measure. We also
compare WE with a version of WDM modified to apply to
continuous systems, showing quantitative congruence in most
cases. The section ‘Extension to multiple lags and to MVAR pð Þ
processes’ describes some additional simulation results, showing
how WE can measure integrated information over arbitrary time-
steps (lags). In the section ‘Auto-regressive W (WAR)’ we describe
WAR and explain its derivation in terms of relations among
conditional entropy, covariance, and linear regression prediction
error. We demonstrate the utility of WAR by calculating integrated
information for representative systems animated by exponentially
distributed (i.e., non-Gaussian) dynamics.

Author Summary

A key feature of the human brain is its ability to represent
a vast amount of information, and to integrate this
information in order to produce specific and selective
behaviour, as well as a stream of unified conscious scenes.
Attempts have been made to quantify so-called ‘integrat-
ed information’ by formalizing in mathematics the extent
to which a system as a whole generates more information
than the sum of its parts. However, so far, the resulting
measures have turned out to be inapplicable to real neural
systems. In this paper we introduce two new measures
that can be applied to both realistic neural models and to
time-series data garnered from a broad range of neuro-
imaging and electrophysiological methods. Our work
provides new opportunities for examining the role of
integrated information in cognition and consciousness,
and indeed in the function of any complex biological
system. However, our results also pose challenges for
theories that ascribe a direct physical meaning to any
version of integrated information so far described.
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Notation, conventions and preliminaries
We use bold upper-case letters to denote multivariate random

variables, and corresponding bold lower-case letters to denote
actualizations of random variables. Matrices are denoted by
upper-case letters. The n-dimensional identity matrix is denoted
by In and the n-dimensional square matrix of zeros by On. The
transpose operator is denoted by ‘T’, and the determinant by ‘det’.
Our convention for logarithms is to take them to the natural base
e, and to denote them by ‘log’.
Let X~ X 1, . . . ,Xn

! "T
be a random variable that takes values

in the space VX . Then we denote the probability density function
by PX , the mean by !xx and the n|n matrix of covariances,
cov Xi,Xjð Þ, by S Xð Þ. Let Y~ Y 1,Y 2, . . . ,Ym

! "T
be a second

random variable. Then we denote the n|m matrix of cross-
covariances, cov Xi,Yjð Þ, by S X ,Yð Þ. The following quantity will
be useful:

S XjYð Þ~ : S Xð Þ{S X ,Yð ÞS Yð Þ{1S X ,Yð ÞT : ð0:1Þ

We call this the partial covariance of X given Y , and it is well-defined
when S Yð Þ is invertible. If X and Y are both multivariate Gaussian
variables then the partial covariance S X jYð Þ is precisely the
covariance matrix of the conditional variable X jY~y, for any y:

Xj Y~yð Þ*N my,S X jYð Þ
h i

, ð0:2Þ

where my~!xxzS X ,Yð ÞS Yð Þ{1 y{!yyð Þ.
Entropy H characterizes uncertainty, and is given by

H Xð Þ~ : {
X

x[VX

PX xð ÞlogPX xð Þ , ð0:3Þ

if X is a discrete random variable, or

H Xð Þ~ : {

ð

Rn
PX xð ÞlogPX xð Þdnx ð0:4Þ

if X is a continuous random variable. (Note, strictly, Eq. (0.4) is the
differential entropy, since entropy itself is infinite for continuous
variables. However, considering continuous variables as continu-
ous limits of discrete variable approximations, entropy differences
and hence information remain well-defined in the continuous limit
and may be consistently measured using Eq. (0.4) [16]. Moreover,
this equation assumes that X has a density with respect to the
Lebesgue measure dnx; this assumption is upheld whenever we
discuss continuous random variables.)
We write H X jY~yð Þ for the conditional entropy of X given

that Y~y, andH X jYð Þ for the expected conditional entropy of X
given Y , i.e.,

H X jYð Þ~ :
X

y[VY

H XjY~yð ÞPY yð Þ , ð0:5Þ

if Y is discrete; for continuous Y replace the summation by
integration. The mutual information I X ;Yð Þ between X and Y is
the average information, or reduction in uncertainty (entropy),
about X , knowing the outcome of Y :

I X ;Yð Þ~H Xð Þ{H X jYð Þ : ð0:6Þ

Mutual information can also be written in the useful form

I X ;Yð Þ~H Xð ÞzH Yð Þ{H X ,Yð Þ , ð0:7Þ

from which it follows that mutual information is symmetric in X
and Y [16]. If X and Y are both Gaussian,

H Xð Þ~ 1

2
log detS Xð Þ½ $z 1

2
nlog 2peð Þ , ð0:8Þ

H XjY~yð Þ~ 1

2
log detS X jYð Þ½ $z 1

2
nlog 2peð Þ , Vy[Rm, ð0:9Þ

I X;Yð Þ~ 1

2
log

detS Xð Þ
detS X jYð Þ

$ %
: ð0:10Þ

All these quantities are straightforward to compute empirically
from the empirical covariance matrices S Xð Þ and S X ,Yð Þ, and
the expression (0.1).
The Kullback-Leibler (KL) divergence DKL PX jjPYð Þ is a (non-

symmetric) measure of the difference between two probability
distributions PX and PY (well-defined when the variables take
values in the same space, VX~VY ). It is given by

DKL PX jjPYð Þ~ :
X

x[VX

PX xð Þlog PX xð Þ
PY xð Þ

$ %
, ð0:11Þ

if the variables are discrete, or

DKL PX jjPYð Þ~ :

ð

Rn
PX xð Þlog PX xð Þ

PY xð Þ

$ %
dnx , ð0:12Þ

if the variables are continuous.
We examine integrated information generated by systems of

interconnected dynamical elements. We use the letter X to denote
such a system, and the number of elements in the system is
denoted by Xj j. A partition P~ M1, . . . ,Mr

& '
divides the

elements of X into non-overlapping, non-trivial sub-systems,
X~M1|M2| % % %|Mr. The state of X at time t is a Xj j-
dimensional random vector denoted by X t, with entries corre-
sponding to states of individual elements of X . Time is discretized,
so t takes integer values. We denote the set of possible states of X
by SX , and the size of this set by SXj j. Analogous notation is used
for the states of sub-systems of X .
A stationary system is one for which the probability density

function for X t does not change with time t. For such systems
S Xð Þ denotes the stationary covariance matrix, and Ct Xð Þ the
auto-covariance matrix with time-lag t:

Ct Xð Þ~ : S X t{t,X tð Þ : ð0:13Þ

The previous measure, WDM

In this section we review, following Ref. [11], the most recent
version of W within integrated information theory, using our
current notation. This measure, which we call WDM (‘W-discrete/
Markovian’), was defined for discrete, Markovian systems, i.e.
systems with (i) a discrete set of possible states, and (ii) dynamics for
which the current state depends only on the state at the previous
time-step. After laying out the formal description of WDM, we
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briefly discuss these limitations, which motivate our new measures
WE and WAR.
Let X be a discrete, Markovian system. WDM compares the

information generated by the whole system to information
generated by its parts, when the system transitions to a particular
state X1~x from a preceding state X0 characterized by the
maximum entropy distribution for the system. This is performed
by use of KL divergence to compare (i) the conditional probability
distribution for the preceding state of the whole given the current
state; (ii) the joint distribution for the preceding states of parts
given their respective current states.
The effective information, QDM X ; x,P½ $, generated by X being in

state x, with respect to the partition P~ M1, . . . ,Mr
& '

, is given
by

QDM X ; x,P½ $~ : DKL PX0jX1~x jj P
r

k~1
P
Mk

0
jMk

1
~mk

( )
: ð0:14Þ

Here mk is the state of the kth sub-system of the partition when X
has state x.
To specify the probability distributions in (0.14), one must use

Bayes’ rule. For the distribution of the whole system the formula is

PX0jX1~x x’ð Þ~
PX1 jX0~x’ xð ÞPX0

x’ð Þ
PX1

xð Þ
: ð0:15Þ

Here PX0
x’ð Þ is the maximum entropy distribution, so

PX0
x’ð Þ~ 1

SXj j
, ð0:16Þ

for all possible initial states x’[SX . PX1jX0~x’ is the conditional

probability density for the state at time t~1 given that the state at
time t~0 is x’. Given a generative model of the system, this
distribution can be derived analytically by examining the
transitions allowed by the model. In the absence of a generative
model the distribution can be obtained by empirical measurement
of the equivalent distribution PXt jXt{1~x’. Note that in neither

case is perturbation of the system required, although in the latter
case the system must visit all possible states multiple times to allow
reasonable estimation of PXt jXt{1~x’. Finally, the denominator

PX1
xð Þ is computed from

PX1
xð Þ~

X

j[SX

PX1jX0~j xð ÞPX0
jð Þ : ð0:17Þ

For a part M the analogous Bayes’ rule formula is

PM0jM1~m m’ð Þ~
PM1jM0~m’ mð ÞPM0

m’ð Þ
PM1

mð Þ
: ð0:18Þ

Here PM0
is the maximum entropy distribution on SM . To

compute the conditional probability distribution PM1jM0~m’ for

the state at time 1 given the state at time 0 it is necessary to
average over states external M. Let N denote the complement of

M within X , so X t~ M t,N tð ÞT. Then we have

PM1jM0~m’,N0~n’ mð Þ~
X

n[SN

PX1jX0~ m’,n’ð Þ m,nð Þ , ð0:19Þ

PM1jM0~m’ mð Þ~
X

n’[SN

PM1jM0~m’,N0~n’ mð ÞPN0
n’ð Þ: ð0:20Þ

(Note that in Ref. [11] QDM is instead computed using a perturbed
version of the sub-system M, for which the joint distribution of the
noise in all the afferent connections (‘wires’) to M is taken to be
maximum entropy. Here we instead assign the maximum entropy
distribution to states external to the sub-system. By doing so, we
eliminate the step of perturbing sub-systems, and need only
perturb the whole system once, namely to impose the maximum
entropy distribution as the initial state of the whole system. This
choice enables simpler notation and description and does not
affect the qualitative behavior of the measure [11].) Finally,
PM1

mð Þ is given by

PM1
mð Þ~

X

m[SM

PM1 jM0~m mð ÞPM0
mð Þ: ð0:21Þ

Given the probability distributions PX0jX1~x and P
Mk

0
jMk

1
~mk ,

k~1, . . . ,r, the effective information is computed using the
formula (0.11) for the KL divergence.
The integrated information is defined as the effective information

with respect to the minimum information partition (MIP). The
MIP, PMIP xð Þ, is defined as the partition that minimizes the
effective information when it is normalized by

KM M1, . . . ,Mr
& '! "

~ : r{1ð Þ:mink H Mk
0

! "* +
: ð0:22Þ

Normalization is necessary because sub-systems that are almost as
large as the whole system typically generate almost as much
information as the whole system. Therefore, without normaliza-
tion, most systems would have a highly imbalanced MIP, (e.g.,
one element versus the remainder of the system) and a trivially
small value for integrated information. The normalization KM

ensures that integrated information is specified using a partition
defined using a weighted minimization of the effective informa-
tion, with a bias towards partitions into sub-systems of roughly
equal size. We will discuss the importance of normalization
further in the section ‘WE for Markovian Gaussian systems’. Thus,

PMIP xð Þ is given by

PMIP xð Þ~ : argP min
QDM X ; x,P½ $

KM Pð Þ

, -
: ð0:23Þ

Given the MIP, the integrated information WDM X ; xð Þ generated
by the system X entering state x is simply the non-normalized
effective information with respect to the MIP,

WDM X ; x½ $~ : QDM X ; x,PMIP xð Þ
* +

: ð0:24Þ

Importantly, the value of WDM X ; x½ $ is furnished by the non-
normalized effective information because it is supposed to
represent a physically meaningful property of the system in the
corresponding ‘integrated information theory’ [14].
For a state-independent alternative to WDM, one can replace the

effective information with its expectation with respect to the
current state x, and define the expected integrated information, !WWDM, as
the expected effective information across the partition that
minimizes the normalized expected effective information [11].
The expected effective information, !QQDM, is given by [11]

Practical Measures of Integrated Information
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!QQDM X ; M1, . . . ,Mr
& '* +

:
Xr

k~1

H Mk
0 jM

k
1

! "
{H X0jX1ð Þ , ð0:25Þ

or equivalently

!QQDM X ; M1, . . . ,Mr
& '* +

:I X0;X1ð Þ{
Xr

k~1

I Mk
0 ;M

k
1

! "
: ð0:26Þ

Note that the second expression (0.26), but not the first (0.25),
requires that X0 have the maximum entropy distribution [11]. To
derive (0.26) from (0.25), one uses that the maximum entropy
distribution is uniform, so that

H X0ð Þ~
X

k

H Mk
0

! "
: ð0:27Þ

This ensures that one can add H X0ð Þ to the second term on the

RHS of (0.25) and subtract
P

k H Mk
0

! "
from the first term, and

then use Eq. (0.6) to obtain the expression (0.26).
We emphasize that WDM was defined only for systems that are

both discrete and Markovian. The measure can not be applied to
continuous systems (except those with a compact i.e. closed and
bounded set of states) because there is no uniquely defined
maximum entropy distribution for a continuous random variable
defined on the real number line [16]. (In fact, the measure is also
not applicable to discrete systems with an infinite set of states.)
WDM can only be applied to Markovian systems because for a non-
Markovian system it is not clear how to impose the maximum
entropy distribution as an initial condition, implying that the
conditional probability distribution PX1jX0~x’ cannot be uniquely
specified by any generative model. For instance three alternatives
are (i) to make all past states independent and maximum entropy;
(ii) to set all past states to zero except the most recent; (iii) to just set
one past state to maximum entropy and obtain the distribution for
other past states from the generative model. There is no
immediately apparent way to choose among these alternatives.
Taken together, these limitations are important because complex
(e.g. neural) systems are typically non-Markovian, and neural
signals are often recorded as continuous variables. In ‘Methods’ we
describe an extension to WDM that renders it well-defined for
stationary continuous, but still Markovian, systems by choosing a
maximum entropy distribution based on the stationary variances
of the states of individual elements. This enables us to compare
WDM with our new measure WE for some example cases.

The new measure, WE

The general case. In this section we introduce a new
measure of integrated information, WE, constructed analogously to
WDM, but with modifications to broaden its applicability, both in
theory and in practice. WE is designed for stochastic stationary
systems, for which it provides a single time- and state-independent
value (given a timescale of measurement, discussed below). The
measure is particularly easy to apply to stationary Gaussian
systems, either from time-series data or from a generative model.
The key modification is that rather than measuring information

generated by transitions from a hypothetical maximum entropy
past state, WE instead utilizes the actual distribution of the past
state; hence the name WE, ‘W-empirical’. This ensures that the
measure does not suffer from the in-principle restrictions that
pertain to WDM, and can be applied to both discrete and
continuous systems with either Markovian or non-Markovian

dynamics. (More specifically, WE will be well-defined as long as the
states X t of the system are either discrete or have continuous
probability densities with respect to a Lebesgue measure dnx.) A
second difference is that, in order to be state-independent, WE is
based on the average information generated by the current state
about the past state, as opposed to information generated by a
particular current state. Finally, WE is defined so as to enable a
choice of timescale (indicated by t) over which integrated
information is measured. Thus WE X ; t½ $ is the integrated
information generated by the current state of the system about
the state t time-steps in the past.
We now define WE for a stochastic system with stationary

dynamics. As for WDM, WE is defined via ‘effective information’.
For the new measure we define the effective information generated
by the current state X t about the state t time-steps ago, with
respect to bipartition B~ M1,M2

& '
, to be the mutual information

generated by the whole system minus the sum of the mutual
information generated by the parts within the bipartition. Thus

Q X ; t,B½ $~ : I X t{t;X tð Þ{
X2

k~1

I Mk
t{t;M

k
t

! "
: ð0:28Þ

The integrated information WE X ; t½ $ is then the non-normalized
effective information with respect to the minimum information
bipartition (MIB),

WE X ; t½ $~ : Q X ; t,BMIB X ; tð Þ
* +

, ð0:29Þ

where

BMIB X ; tð Þ~ : argB min
Q X ; t,B½ $
K Bð Þ

, -
, ð0:30Þ

and

K M1,M2
& '! "

~ : min H M1
t

! "
,H M2

t

! "* +
: ð0:31Þ

WE can either be computed analytically from a generative
model, or estimated numerically from time-series data. In either
case, one must first obtain estimates of the probability distributions
for the states X t{t and X t, and their joint distribution P X t{t,X tð ÞT ,
as well as the corresponding distributions for all sub-systems.
Then, given these distributions, the corresponding entropies can
be computed using Eq. (0.3), for a system with discrete states, or
Eq. (0.4) for a system with continuous states. Having obtained
these entropies, Eq. (0.7) can be used to obtain the mutual
information I X t{t;X tð Þ between the past and current state of the
system, and likewise for all sub-systems. Given these quantities, WE

can then be obtained directly from Eqs. (0.28)–(0.31).
For numerical computation, the required probability distribu-

tions can in principle be obtained directly from data, although in
practice it may be difficult to obtain sufficient data to enable
accurate estimation of all the relevant entropies. As we explain in
the section ‘Computing WE empirically under Gaussian assump-
tions’, this difficulty can be readily overcome if states are Gaussian
distributed.
For analytic computation of WE given a generative model, we

note that the probability distributions for X t{t and X t individually
are both simply equal to the stationary distribution for the state of
the system. Obtaining the joint distribution for X t{t and X t
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together will depend on the details of the generative model. Once
again the situation is much easier in practice for Gaussian systems,
in which case only the covariance matrix of each probability
distribution is needed (see equation (0.8)). As we show in the
section ‘Computing WE analytically for a Gaussian system’,
these matrices can be derived easily from a generative model
expressed as a generalized connectivity matrix, assuming Gaussian
dynamics.
A few further remarks about WE are worth making. First, that WE

remains well-defined as a time-dependent quantity for non-
stationary stochastic systems; we focus on the stationary case for
simplicity, and because of our interest in empirical measurement of
WE via sampling from time-series data. Second, unlike WDM, WE is
not defined for deterministic systems. This is because it does not
incorporate a perturbation through which to introduce probabilities
into a deterministic system. Third, we restrict attention to
bipartitions for computational efficiency. This is standard practice
for computingWDM [11,14]. Extension to general partitions is trivial,
albeit computationally expensive. Finally, since mutual information
is symmetric in its two arguments (0.7), effective information as given
by (0.28) can alternatively be read in terms of information generated
by the past state X t{t about the current state X t.
Our definition (0.28) for the effective information, Q, is based on

the expression (0.26) for the expected effective information, !QQDM in
the construction of WDM. A viable alternative would be to instead
use

~QQ X ; t, M1,M2
& '* +

~ :
X2

k~1

H Mk
t{tjM

k
t

! "
{H X t{tjX tð Þ , ð0:32Þ

the analogue of (0.25). This quantity has previously been defined
in Ref. [22] as ‘stochastic interaction. It is the average KL
divergence between (i) the past of the whole given the present of
the whole, and (ii) the product of this for parts [11]. Replacing Q

with ~QQ in the definition of WE leads to a second measure ~WWE. In
general, ~QQ will not be exactly equal to Q. (Equality of their
analogues for WDM relies on the past state being maximum
entropy, see section ‘The previous measure, WDM’.) However, we

show in Table 1 that ~WWE behaves very similarly to WE for the
examples we consider in this paper. We choose to focus on WE

because it explicitly operationalizes the concept of ‘information
generated by the whole minus the sum of information generated
by the parts’ (0.28).
In summary, we have defined a new measure of integrated

information WE that is broadly well-defined, and which is easy to
measure under Gaussian dynamics, either from time-series data or
given a generative model (see below). In contrast, the previous
measure WDM is only defined for discrete, Markovian systems. As a
consequence, WE but not WDM is applicable to realistic continuous
non-Markovian stochastic models of neural systems.

Computing WE empirically under Gaussian assump-
tions. Under Gaussian assumptions, equation (0.10) furnishes an
expression for WE simply in terms of covariance matrices, enabling
straightforward empirical computation. The effective information
is given by

Q X ; t, M1,M2
& '* +

~
1

2
log

detS Xð Þ
detS Xt{tjXtð Þ

, -
{

X2

k~1

1

2
log

detS Mk
! "

detS Mk
t{tjM

k
t

! "
( )

,

ð0:33Þ

and the normalization factor K by

K M1,M2
& '! "

~
1

2
logmink 2peð Þ Mk

.. ..
detS Mk
! ", -

: ð0:34Þ

In practice, the procedure for computing WE is as follows. First one
obtains empirically the covariance matrices S Xð Þ, S X t{t,X tð Þ
and analogues for all sub-systems. Then one uses Eq. (0.1) to
obtain the partial covariance S X t{tjX tð Þ and its sub-system
analogues. Given these quantities, equations (0.33) and (0.34)
furnish estimates for the effective information and normalized
effective information with respect to any given bipartition. These
estimates allow identification of the MIB and WE, via equations
(0.29) and (0.30).

Computing WE analytically for a Gaussian system. In
this section we describe analytical computation of WE for Gaussian
systems, assuming that the generative model is known. We first
recognize that a generative model for a Gaussian stationary system
is always equivalent to anMVAR pð Þ (multivariate auto-regressive)
process [18]

X t~A1
:X t{1zA2

:X t{2z % % %zAp
:X t{pzEt , ð0:35Þ

where the Ai, i~1, . . . ,p, can be understood as generalized
connectivity matrices acting at different time-lags, and Et is a
stationary multivariate Gaussian ‘white noise’ source with zero
mean and vanishing auto-covariance function, Ct Eð Þ~0, t=0.
(Technically, there also exists the case p~?, but we do not
consider this here, because in practical application there will always
be an optimal range of finite p for model fitting.) Below, we show
how to calculate WE for an MVAR(1) system at timescale t~1.
Extension to the general p, general t case is given in the ‘Methods’
section. Consider the generative model

X t~A:X t{1zEt: ð0:36Þ

Taking the covariance of both sides of (0.36) gives

S Xð Þ~AS Xð ÞATzS Eð Þ : ð0:37Þ

Noticing that this equation is the discrete-time Lyapunov equation,
S Xð Þ can be computed numerically, given A, for example, in
Matlab via use of the ‘dlyap’ command. To compute the partial
covariance S X t{1jX tð Þ we need the single time-step auto-
covariance matrix

C1 Xð Þ:S X t{1,X tð Þ~SX t{1 AX t{1zEtð ÞTT~S Xð ÞAT: ð0:38Þ

We can then use equation (0.1) to obtain the partial covariance as

S X t{1jX tð Þ~S Xð Þ{C1 Xð ÞS Xð Þ{1C1 Xð ÞT : ð0:39Þ

Having values for S Xð Þ and S X t{1jX tð Þ allows calculation of the
first term in the RHS of (0.33). Calculation of the second term, and
of the normalization factor, requires consideration of sub-systems.
For a sub-system M, we consider the bipartition M,Nf g, and the
block decomposition of vectors and matrices according to

X t~ M t,N tð ÞT. The matrices S Xð Þ and C1 Xð Þ can then be
written in the form
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S Xð Þ~
S Xð ÞMM S Xð ÞMN

S Xð ÞNM S Xð ÞNN

 !
,

C1 Xð Þ~
C1 Xð ÞMM C1 Xð ÞMN

C1 Xð ÞNM C1 Xð ÞNN

 !

,

ð0:40Þ

and we can use that

S Mð Þ~S Xð Þ , C1 Mð Þ~C1 Xð ÞMM : ð0:41Þ

Then, again from (0.1), the partial covariance is given by

S Mt{1jMtð Þ~S Xð ÞMM{

C1 Xð ÞMM S Xð ÞMM

* +{1
C1 Xð ÞTMM :

ð0:42Þ

Equations (0.37)–(0.42) together furnish the covariance matrices
needed to compute the effective information and normalized
effective information from the formulae (0.33) and (0.34) valid for
Gaussian systems. Finally, the MIB and WE are obtained from Eqs.
(0.29) and (0.30).

WE for Markovian Gaussian systems
Canonical examples. We present results from computing

WE, for timescale t~1, for some example Markovian Gaussian
systems. Results are given for analytical computation given the
generative model, and for numerical computation given simulated
time-series data. The example systems are characterized by the
MVAR(1) dynamics

X t~A:X t{1zEt , ð0:43Þ

where X t contains 8 variables, A is the connectivity matrix, and
each component of Et is an independent Gaussian random
variable of mean 0 and variance 1. We considered seven systems,
with connectivity as shown in Fig. 1(a)–(g); we refer to these

systems ‘1(a)’, ‘1(b)’, and so on. The corresponding values of WE

are given in Fig. 1(h) and Table 1. For analytic computation, we
performed the procedure described in the section ‘Computing WE

analytically for a Gaussian system’. For simulated measurements,
we first obtained time-series data from equation (0.43), and then
computed WE using the recipe described in the section ‘Computing
WE empirically under Gaussian assumptions’. To examine
numerical stability of simulation measurements, we performed
10 trials for each network with 3000 post-equilibrium data points
and a separate set of 10 trials with 10,000 post-equilibrium data
points.
For all systems, except 1(g) (which we discuss below), the

analytically derived (true) value of WE lay within &1 standard
deviation of the mean value obtained via the simulations, both for
3000 and 10,000 data points (see Fig. 1(h) and Table 1). This
correspondence confirms the consistency of the numerical and
analytical approaches described above.
The values of integrated information mostly correspond with

expectations. For example, a ring of reciprocal connections (1(c))
integrates approximately twice as much information as a ring of
unidirectional connections (1(b)), which itself integrates approxi-
mately twice as much information as a (non-closed) chain of
unidirectional connections (1(a)). Also as expected, the homoge-
nous system 1(d) has a low WE value. Perhaps in contrast to
expectations, adding sparse long-range ‘short-cut’ connections to a
reciprocal ring (1(e)–1(g)), in the style of a so-called ‘small world’
network [23,24,25], does not increase WE (compare with network
1(c)).
For values of WE to be meaningful it is essential that they are

stable with respect to numerical computation. To assess numerical
stability, we calculated the coefficient of variation (the standard
deviation divided by mean) across each set of 10 trials. For all
networks other than 1(g), and for trial sets of both 3,000 and
10,000 data points, the coefficient of variation was less than 0.11,
confirming that empirical calculation of WE from time-series data
is stable for these networks.
Network 1(g) exhibited instability when measuring WE from

simulation. As shown in Fig. 1(h), the corresponding values of WE

fell close to one of two values, one of which was the true

Table 1. Integrated information computed in various ways for the networks shown in Figs. 1 and 2.

Network (i) WE
iið Þ WE

3000 datað Þ
iiið Þ WE

10, 000 datað Þ (iv) ~WWE (v) !WWDM
við Þ WAR

3000 datað Þ
1(a) 0.0323 0:037+0:004 10ð Þ 0:034+0:003 10ð Þ 0.0323 0.0323 0:038+0:002 9ð Þ

0:031 1ð Þ

1(b) 0.0645 0:063+0:004 10ð Þ 0:063+0:003 10ð Þ 0.0645 0.0645 0:061+0:005 10ð Þ

1(c) 0.1283 0:122+0:008 10ð Þ 0:124+0:003 10ð Þ 0.1387 0.1313 0:125+0:004 10ð Þ

1(d) 0.0795 0:072+0:006 10ð Þ 0:075+0:004 10ð Þ 0.0894 0.0755 0:073+0:006 10ð Þ

1(e) 0.1285 0:136+0:012 10ð Þ 0:129+0:002 10ð Þ 0.1376 0.1303 0:135+0:013 10ð Þ

1(f) 0.1294 0:132+0:008 10ð Þ 0:133+0:004 10ð Þ 0.1383 0.1307 0:131+0:012 10ð Þ

1(g) 0.1266 0:128+0:010 6ð Þ
0:093+0:005 4ð Þ

0:098+0:004 6ð Þ
0:129+0:006 4ð Þ

0.1362 0.1288 0:129+0:013 7ð Þ
0:101+0:009 3ð Þ

2(a) 0.2502 0:244+0:010 10ð Þ 0:246+0:004 9ð Þ
0:125 1ð Þ

0.2652 0.1254 0:245+0:009 9ð Þ
0:128 1ð Þ

2(b) 0.2965 0:291+0:013 10ð Þ 0:2902+0:004 10ð Þ 0.3012 0.2647 0:287+0:010 7ð Þ
0:142+0:005 3ð Þ

Methods of computation are (i) WE computed analytically; (ii) WE computed numerically from 10 trials of 3000 data points each; (iii) WE computed numerically from 10
trials of 10,000 data points each; (iv) ~WWE computed analytically; (v) (extended) !WWDM computed analytically, and (vi) WAR computed numerically from 10 trials of 3000
data points each, with the noise exponentially distributed. For numerical computation, means and standard deviations are given; the number of trials resulting in each
value is given in parentheses. In all cases t~1.
doi:10.1371/journal.pcbi.1001052.t001
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(analytically derived) value. For simulations of 3,000 data points 6/
10 trials produced WE estimates close to the true value; for 10,000
data points 4/10 trials provided such estimates. This instability
arises from the use of normalized effective information (Q) in
identifying the MIB, but non-normalized Q in specifying the
corresponding value of WE. Given finite data, estimates of Q
cannot be guaranteed to be accurate. As a result, inter-trial
variation in measuring WE from data can arise when (i) there are

two (or more) partitions with similar values of normalized Q close
to the true minimum (used to identify the MIB), and (ii) these
partitions have substantially different values for non-normalized Q.
The latter condition will typically hold when partitions with similar
normalized Q have significantly different sub-system sizes (see the
section ‘The previous measure, WDM’). Network 1(g) illustrates this
difficulty. For this network, the true MIB is the bipartition
1,6,7,8f g, 2,3,4,5f gf g, for which the normalized Q is 0.0213.

Figure 1. Integrated information in Markovian Gaussian systems. (a)–(g) Connectivity diagrams for seven systems as specified by the
corresponding connectivity matrices A. Arrow widths reflect connection strengths: for (a)–(c) and (e)–(g), all connection strengths are 0.25; for system
(d) each connection strength is 1/14, thus the total afferent connection to each element is 0.5. (h) Integrated information, as measured by WE (t~1)
for each of the systems (a)–(g), via simulated data (bars) and analytically via the generative model (asterisks). For simulated data, 10 trials were
performed, with each trial generating 3000 data points. Bars show mean values; error bars show plus/minus one standard deviation. For system 1(g),
sizes of sub-systems in the MIB varied across trials, falling into two distinct groups which are shown separately (the top bar reflects a group of 6 trials;
the bottom bar, 4 trials).
doi:10.1371/journal.pcbi.1001052.g001
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However, there is an uneven bipartition, 1,2,3,4,5f g, 6,7,8f gf g for
which the normalized Q is 0.0218, i.e., very similar to the value of
Q for the true MIB. However, the non-normalized Q for the MIB
(i.e. WE) is 0.1266, whereas the value for the uneven bipartition is
0.0966. Fig. 1(h) and Table 1 show that empirical measurements of
WE cluster around these two values.
One may consider that this problem of instability could be

avoided by using non-normalized Q to identify the MIB. However,
as discussed in the section ‘The previous measure, WDM’, in this
case WE would always be trivially small because, for any non-trivial
system X , a bipartition of the form 1f g, 2,3, . . . , Xj jf gf g would
generate almost as much information as the whole system. A
second solution would be to specify WE in terms of normalized Q.
However, in this case the meaning of WE would be substantially
altered inasmuch as it could no longer be considered a measure of
the quantity of information generated (or integrated) by a system.

Optimization of networks for generating high WE. To
examine whether network structures other than reciprocally
connected rings could generate high levels of WE, we performed
numerical optimizations using a genetic algorithm (GA).
Specifically, we used WE (t~1) as an objective function for
evolving populations of networks with dynamics governed by
MVAR(1) processes (see Eq. (0.43)). We performed two sets of
optimizations under different constraints on the connectivity
matrix A. In the first set, all connection strengths were fixed
(‘fixed’ condition; two afferents per element each with strength
0.25). In the second set, connection strengths were allowed to vary
(‘vary’ condition; total afferent to each element equal to 0.5, all
afferents to a given element equal and positive). Each condition
consisted of 20 separate GAs, each with 30 randomly initialized
networks in the population; (in the ‘vary’ condition networks were
initialized with elements having on average 2 afferent
connections). Each GA ran for 200 generations, allowing fitness
to asymptote. Within each generation, the fitness of each network
was determined by analytical computation of WE; networks were
then ranked by fitness and a new population was formed by rank-
based selection and mutation. In the ‘fixed’ condition, each
network was mutated by rearranging 2 connections; in the ‘vary’
condition each network was mutated by (with equal probability)

adding, removing, or swapping 2 connections, followed by
renormalization of total afference to each element to 0.5.
The results of the optimizations are shown in Fig. 2 and Table 1.

Network 2(a) is the fittest (highest WE) across all 20 GAs in the
‘fixed’ condition; this network topology was discovered by 6 out of
the 20 GAs in this condition. The network has WE~0:2502,
approximately twice the value of the reciprocal ring networks
shown in Fig. 1. Network 2(b) is the fittest across all 20 GAs in the
‘vary’ condition, exhibiting WE~0:2965, i.e., substantially higher
again. This particular topology was discovered by only 2/20 GAs,
perhaps due to the larger search-space in this condition. It is
noteworthy that both of these ‘fittest’ networks show highly
heterogeneous connectivity patterns, consistent with the intuition
that integrated information is characterized by the coexistence of
differentiated and integrated dynamics.
The observation that the fittest network found in each condition

was only reached by a minority of GAs suggests that the WE

landscape across MVAR(1) systems has local maxima and may
exhibit ruggedness and discontinuities. To characterize this
landscape, we first plotted the distribution of fitness values across
all networks in the final populations from GAs that yielded the
(fittest) networks 2(a) and 2(b). Figs. 3(a,b) show that in both cases
the modal value of WE was substantially less than the maximum
value, indicating a lack of convergence suggestive of local maxima
and/or ruggedness [26]. We next examined the sensitivity of WE to
single mutations. Figs. 3(c) and 3(d) show the percentage decrease
in WE following 200 separate mutations of networks 2(a) and 2(b)
respectively (the corresponding mutation type was used in each
case, i.e., ‘fixed’ for 2(a) and ‘vary’ for 2(b)). For network 2(a), post-
mutation fitness decreases cluster in the range 10–20%, with a few
instances of &60%. For network 2(b), more than 20% of
mutations resulted in a fitness decrease of 50% or more. Together,
these observations show that the value of WE generated by a
network is highly sensitive to small changes in topology and
connection strength, further pointing to the ruggedness of the WE

landscape.
The instability arising from using normalized effective informa-

tion to find the MIB, (see ‘Canonical examples’), suggests that
there may be discontinuities, as well as ruggedness, in the WE

Figure 2. Networks optimized for high integrated information. (a) Optimal network for 2 afferents of 0.25 to each node. This has WE~0:2502.
(b) Optimal network for total afferent of 0.5 to each node, and all connections to a given node equal. This has WE~0:2965.
doi:10.1371/journal.pcbi.1001052.g002
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landscape. We were able to confirm the existence of such
discontinuities by incrementally perturbing a specific connection
in the example network 2(a). The MIB for this network is the
bipartition 1,4,5,6f g, 2,3,7,8f gf g, for which the normalized
effective information is 0.0421. However, there is an uneven
bipartition, 1,2,3,5,7,8f g, 4,6f gf g with the very similar normal-
ized effective information of 0.0424. We incrementally weakened
the connection between the two sub-systems in this uneven
bipartition, finding that there is a discontinuous change in WE at
the point at which the uneven bipartition becomes the MIB (see
Fig. 3(e)).

Comparison with WDM, ~WWE, and full table of MVAR(1)
results. It is instructive to compare results obtained using WE

with those obtained from the version of !WWDM extended to apply to
stationary continuous (but still Markovian) systems (see sections
‘The previous measure, WDM’ and ‘Methods’). Table 1 shows
(extended) !WWDM values for the various networks discussed above,
as well as the corresponding WE values. For networks 1(a) and 1(b)
the two measures are exactly equivalent, which is explained by the
stationary and maximum entropy distributions coinciding. For the
remaining networks, (except network 2(a), discussed below), the
two measures remain very similar, confirming WE as a valid and
useful measure of integrated information.
The network 2(a) has a value for WE that is approximately

double that of the corresponding !WWDM. This discrepancy can also
be attributed to the instability arising from normalization.
Specifically, the difference between the stationary and maximum
entropy distributions in this case is sufficient to lead to two
different MIBs, with constituent sub-systems of different sizes. In
fact, use of !WWDM leads to the MIB 1,2,3,5,7,8f g, 4,6f gf g of the
perturbed version of this network discussed in ‘Optimization of
networks for generating high WE’.

We also compared results obtained using WE with those
obtained using ~WWE, the measure constructed using the alternative
expression (0.32) for the effective information (Table 1). We found
that the two measures behave in qualitatively the same way across
all examples.

Extension to multiple lags and to MVAR pð Þ processes
The analyses in the previous section were concerned with

integrated information measured across a single time-step for
MVAR(1) processes. However, WE is well-defined for general
MVAR pð Þ processes and can measure integrated information
over any number of time-steps (lags). Here we illustrate this
property using three simple examples in which WE was computed
analytically, via the method outlined in ‘Computing WE analyt-
ically for a Gaussian system’ and ‘Methods’. Fig. 4(a) shows WE

measured for various values of t, (where t specifies the lag), for the
network 1(c). Fig. 4(b) shows the same analysis conducted for
network 2(b). Note that both of these networks are animated by
MVAR(1) processes, which explains why WE peaks at t~1 in both
cases, (in other words, for these networks, most of the integrated
information generated about past states by the current state is
generated about the most recent past state (i.e. t~1)).
Fig. 4(c) shows WE as a function of t for the MVAR(3) process

X t~A1
:X t{1zA2

:X t{2zA3
:X t{3zEt , ð0:44Þ

where A1, A2 and A3 are respectively the connectivity matrices of
networks 1(c), 2(b) and 2(a), each divided by 2. Note that this
generalized connectivity matrix was chosen purely to provide an
example of an MVAR(3) process. For this system, WE peaks at
t~2, indicating that most information is integrated about the state
two time-steps previous to the current state. These examples verify

Figure 3. Examination of the WE landscape with respect to network connectivity. (a) Histogram of WE for the 30 networks in the final
population of a GA that yielded optimal network 2(a). (b) Histogram of WE for the 30 networks in the final population of a GA that yielded optimal
network 2(b). (c) Histogram of percentage decrease in WE following single mutations of network 2(a) (200 evaluations). (d) Histogram of percentage
decrease in WE following single mutations of network 2(b) (200 evaluations). (e) Discontinuity in WE as connection strength from element 6 to
element 1 continuously changes (network 2(a); (all other connections fixed at 0.25)).
doi:10.1371/journal.pcbi.1001052.g003
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that WE can be applied at arbitrary lags to MVAR pð Þ processes,
and that it does detect integrated information at time-scales
corresponding to a system’s underlying generative mechanism.

Auto-regressive W (WAR)
We have presented a measure of integrated information, WE,

that is practical to measure from time-series data under Gaussian
assumptions. However, in the case of stationary, non-Gaussian
distributed time-series, WE can no longer be obtained directly from
empirical covariance matrices, and the required entropies must be
obtained via estimation of the corresponding probability distribu-
tions. For non-trivial systems accurate entropy estimation may
typically require the collection of more data than is practical.
We now describe how, even for the non-Gaussian case, the

recipe used to calculate WE under Gaussian assumptions can
nonetheless lead to a meaningful quantity reflecting integrated
information. We call this quantity WAR (‘auto-regressive W’). By
construction, WAR is equivalent to WE for Gaussian systems,
however, for non-Gaussian systems it may differ. In all cases,
because it is based on empirical covariance matrices, it remains
easy to measure in practice. The motivation for considering WAR

as a useful measure of integrated information rests on relations
between conditional entropy, partial covariance and linear
regression prediction error, explained below [17].
First we rehearse the concept of linear regression. Let X and Y

be two multivariate random variables. Then the linear regression
of X on Y is the expression

X~azA:YzE , ð0:45Þ

where A is termed the regression matrix, a is a vector of constants,
and E is the prediction error (or ‘residual’) [27,28,29,17]. The
residual is a random vector uncorrelated with Y . This represen-
tation is unique given the distributions of X and Y , with A and a
given by

A~S X,Yð ÞS Yð Þ{1 , ð0:46Þ

a~!xx{A:!yy : ð0:47Þ

The residual has zero mean and, importantly, its covariance
matrix is precisely the partial covariance of X given Y [17], thus

S Eð Þ~S XjYð Þ : ð0:48Þ

Note that this identity holds for any X and Y , Gaussian or
otherwise. For the case that X and Y are Gaussian, we can use Eq.
(0.9) to obtain, for all y,

H X jY~yð Þ~ 1

2
log detS Eð Þ½ $z 1

2
nlog 2peð Þ , ð0:49Þ

where n is the dimension of X . This relation between conditional
entropy and linear regression prediction error implies that, for
Gaussian systems, WE can be re-expressed in terms of linear
regression prediction errors. Thus, the formula (0.33) for effective
information can be re-written as
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where EMk
, k~1,2, and EX are the residuals in the regressions

Mk
t{t~AMk :Mk

tzEMk

t , ð0:51Þ

X t{t~AX :X tzEX
t : ð0:52Þ

For a non-Gaussian system, although Eq. (0.50) does not hold, its
RHS nonetheless constitutes a quantity that is easy to measure
empirically. This quantity forms the basis of the alternative
measure WAR, which we now define. Let X be a stationary, not

necessarily Gaussian, system, and let QAR X ; t, M1,M2
& '* +

be the

RHS of Eq. (0.50), i.e.
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ð0:53Þ

where EMk
, k~1,2, and EX are the residuals in the regressions

(0.51) and (0.52). Then WAR is simply QAR for the bipartition that
minimizes QAR divided by the normalization factor

Figure 4. Integrated information,WE measured for states multiple time-steps in the past, i.e. for varying t. (a) Network 1(c). (b) Network
2(b). (c) Example MVAR(3) process, see Eq. (0.44).
doi:10.1371/journal.pcbi.1001052.g004
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& '! "

~ :
1

2
logmink 2peð Þ Mk

.. ..
detS Mk
! ", -

: ð0:54Þ

Thus,

WAR X ; t½ $~ : QAR X ; t,Bmin tð Þ
* +

, ð0:55Þ

Bmin tð Þ~ : argB min
QAR X ; t,B½ $

L Bð Þ

, -
: ð0:56Þ

For Gaussian systems, WE and WAR are exactly equal. For non-
Gaussian systems the two measures differ, because the relation
(0.49) between conditional entropy and linear regression prediction
error no longer holds. However the equivalence (0.48) between
partial covariance and prediction error does still hold. Hence, for
any stationary system, the recipe for computing WE under Gaussian
assumptions (as laid out in ‘Computing WE empirically under
Gaussian assumptions’) yields precisely WAR. Notably, this recipe
implies that it is not necessary to explicitly carry out the linear
regressions; rather, the equivalence (0.48) shows that WAR can be
calculated using empirical covariance matrices.
WAR is meaningful as a measure of integrated information

because of its formulation in terms of linear regression prediction
error. WAR compares the whole system to the sum of its parts in
terms of the log-ratio of the variance of the past state to the
variance of the residual of a linear regression of the past on the
present. In other words, WAR can be understood as a measure of
the extent to which the present global state of the system predicts the
past global state of the system, as compared to predictions based on
the most informative decomposition of the system into its
component parts. When Gaussian conditions are satisfied, the
interpretation of WAR in terms of (backwards) prediction becomes
exactly equivalent to the interpretation of WE in terms of Shannon
information. Note that in fact, by the symmetry of mutual
information (0.7), (0.28), WAR could also be expressed in terms of
entirely analogous linear regressions in which the present is used to
predict the future. Understood this way, WAR provides an
interesting complement to complexity measures based on Granger
causality, such as causal density [5], which are also based on linear
regression models [30,5,18] (see ‘Comparison with causal density
and neural complexity’).
To demonstrate the use of WAR as distinct from WE, we re-

animated the networks 1(a)–1(g), 2(a) and 2(b) with non-Gaussian
dynamics. Specifically, we replaced the Gaussian noise sources Et

in Eq. (0.43) with independent random variables drawn from
exponential distributions with mean (and variance) 1. This
selection was motivated by the observation that aggregate
assemblies of Poissonian spiking neurons typically follow an
exponential distribution [31]. Fig. 5 shows representative examples
of single-element empirical stationary distributions resulting from
this modified dynamics; all show a large deviation from the
Gaussian. For each network we computed WAR empirically from
10 trials of 3000 data points each. The results, shown in Table 1,
suggest that in each case WAR for the non-Gaussian dynamics is
approximately equal to WE (~WAR) for the Gaussian dynamics.
This finding provides support for WAR as a useful alternative to
WE, applicable to non-Gaussian dynamics.

Discussion

In this paper we have presented two new measures of integrated
information, WE and WAR. As with a previous measure, WDM, our
measures quantify the information generated by a system over and
above that which can be accounted for by its parts acting
independently [11]. However, whereas WDM is defined only for
discrete Markovian systems, and is therefore difficult to measure in
practice, our quantities are well defined much more generally, and
are easily applicable to stationary time-series data. Our key
innovations are (i) to treat information in terms of reduction in
uncertainty from the empirical as opposed to the maximum entropy
distribution (WE), and (ii) to interpret integrated information in
terms of predictive ability of the present of a system with respect to
its past (WAR). Simulations showed that our measures conform to
intuitions regarding conjoined dynamical integration and segrega-
tion; where comparisons could be made, in most cases our measures
quantitatively aligned with WDM. By showing how to measure
integrated information from time-series data and for non-trivial
non-Markovian systems, our results provide new opportunities for
examining the role of integrated information in complex biological
systems of all kinds, and carry implications for integrated
information theories of consciousness. In the following discussion,
we use the symbol W to refer to integrated information
independently of its method of measurement.

Empirical and maximum entropy distributions
As mentioned, many of the restrictions in applicability of WDM

arise from the use of the maximum entropy distribution to
measure information. The maximum entropy distribution is
maximally agnostic with respect to the behavior of a system, and
represents, in some sense, its potential, or ‘capacity’ (see
‘Integrated information as a measure of consciousness’ and

Figure 5. Stationary distributions for elements in networks animated with exponentially distributed noise. Each panel shows an
empirical probability distribution as a histogram taken from 3000 data points from element 1 in (a) network 1(b), (b) network 1(d), and (c) network
2(b).
doi:10.1371/journal.pcbi.1001052.g005
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‘Comparison with causal density and neural complexity’).
However, since the maximum entropy distribution typically does
not arise spontaneously, it must be introduced as the distribution
of a hypothetical initial state [11]. To compute WDM one therefore
has to characterize evolution from all possible initial states of the
system. However, for most practical purposes, especially in
biology, it is only possible to experimentally examine systems in
the context of their ongoing evolution as a sequence of states.
Unless the system is Markovian, evolution from a state with history
is not the same as evolution from a hypothetical initial state,
implying that WDM cannot be applied to non-Markovian systems
(with the exception of idealized simulated systems for which a
separate generative model can be written down for evolution from
the initial state). Equally important, but easier to appreciate, is that
it is not possible to apply WDM to continuous systems (except those
with a compact, i.e. closed and bounded, set of states) because
there is no uniquely defined maximum entropy distribution for a
continuous random variable defined on the real number line [16].
Our new measure WE eliminates the need to consider the

maximum entropy distribution by being based instead on the
information generated by the current state of the system about the
actual state of the system some number of time-steps in the past.
This approach lifts the conditions that the system be discrete and
Markovian. (Note however that WDM but not WE is applicable to
deterministic systems, by virtue of introducing probabilities via the
maximum entropy initial state.)
In principle, use of the empirical distribution de-emphasizes the

notion of ‘capacity’ because the generation of information is
measured with respect to what the system has done rather than what
it could do. However, over large samples and for ergodic systems, this
distinction becomes increasingly blurred. In practice, computingWE

via sampling from time-series requires the data to be stationary. We
recognize that not all complex biological systems generate stationary
dynamics (see, e.g., Ref. [32]). However, stationarity is a common
pre-requisite for statistical analysis of time-series data [33], and
neural data can often be brought into this form, for example by
detrending, taking first-differences and/or binning observations into
short time windows [34]. Furthermore, neural dynamics are often
characterized as a series of ‘metastable’ states [35,36,37], each of
which may be locally stationary. Stationarity can also depend on the
spatiotemporal granularity of observation. Dynamics that appear
non-stationary at one time scale may exhibit stationarity when
sampled over different time scales, underlining the principle that
data acquisition should be guided by the constraints of subsequent
analysis methods.
Use of the empirical, rather than maximum entropy distribution

also changes the means by whichW is computed. To computeWDM,
one requires the conditional probability distributions for the past
state given the present state, but with an a priori maximum entropy
distribution on the past state. Because of the maximum entropy
condition (which represents ‘perturbation’ of the system), these
distributions cannot be obtained empirically, but they can be
obtained by applying Bayes’ rule given a forward dynamical model
estimated from the data (i.e. conditional probability distributions for
the present state, given the past state). By contrast, computation of
WE does not require Bayes’ rule because, in the absence of
(maximum entropy) perturbation, one can obtain the full joint
distribution for the past and present directly from the data.

Practical applicability and Gaussian dynamics
WE is particularly easy to apply to data under Gaussian

assumptions. This is because the relevant entropies can be
estimated directly from empirical covariance matrices. It is also
possible to compute WE analytically from a generative model for a

Gaussian system, (i.e., to any desired level of accuracy, without
explicitly simulating or observing its dynamics); in that case, one
obtains the necessary covariance matrices analytically. This means
that WE can be evaluated in practice for a broad range of
biological systems.
While Gaussian dynamics are common in biology (and the

assumption of Gaussianity even more so), many systems depart
from this assumption. For example, the spiking activity of
populations of neurons typically exhibit exponentially distributed
dynamics. For the non-Gaussian case, one can still in principle
calculate WE by obtaining the necessary entropies directly from
data. However, in practice, accurately obtaining all of the
underlying probability distributions may typically require the
collection of more data than is practical. To overcome this, we
introduced the second measure WAR. This is constructed
analogously to WE, but with information replaced by the reduction
in the generalized covariance of the past state under prediction via
linear regression on the current state. WAR is interpreted as
measuring how well the present state of a system predicts some
previous state, but only to the extent that predictions based on the
whole outstrip predictions based on parts independently. WAR and
WE are equivalent for Gaussian systems, but otherwise differ;
(recall however that WAR can be obtained for any system by using
the recipe for computing WE for a Gaussian system). In our
examples, WAR was in fact insensitive to a change from Gaussian
noise to exponentially distributed noise, supporting its use as an
alternative to WE.

Normalization and instability
All versions of W require a normalization step. Specifically, W is

determined by the non-normalized effective information (Q) across a
minimum information bipartition (MIB) which is specified as the
bipartition which minimizes the normalized Q (the informational
‘weakest link’). Normalization enforces a bias towards bipartitions
consisting of sub-systems of roughly equal size. Without normal-
ization, MIBs would typically divide systems into single elements
versus the remainder of the system, leading to trivially small values
of W. On the other hand, it remains important to determine the
value of W using the non-normalized Q in order to allow W to be
interpreted as a quantity of information.
The use of normalization, as just described, leads to instabilities.

Our simulations have shown that WE can be (i) discontinuous
under a continuous perturbation of dynamics, and (ii) highly
sensitive to the accuracy of entropy estimation from finite data. In
our examples, these instabilities arose precisely when there were
multiple partitions with similar values of normalized Q close to the
true minimum and these partitions had substantially different
values of non-normalized Q. This instability does not arise for all
systems, and indeed for most of our examples WE is numerically
stable. Nonetheless, the embedding of normalization within the
definition of W challenges ascription of physical meaning to any
measured value of W. This is because the value of W is in all cases
dependent to some arbitrary degree on the normalization process
involved in determining the MIB.

Integrated information as a measure of consciousness
Previous measures of integrated information (WC and WDM)

were formulated in the context of a theory of consciousness, the
‘integrated information theory of consciousness’ (IITC). According
to the IITC, consciousness is integrated information, and has the
status of a fundamental property of the universe, equivalent to
mass, charge, and the like [14]. On this theory a low value of
integrated information would correspond to a low conscious ‘level’
(e.g., coma, general anesthesia, deep dreamless sleep) and a high
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value to normal conscious wakefulness. If one subscribes to the
theory using WDM, then one must interpret consciousness
(integrated information) as a function of state transitions [11];
accordingly, one cannot ask about the conscious level of a system
per se. By contrast, if one applies WE or WAR to a stationary system
then they are state-independent and so, subscribing to the IITC
with these measures involves viewing integrated information as a
property of the system’s dynamics. This in turn would imply that
(i) conscious level is constant during each stationary epoch in brain
activity, and (ii) conscious level changes when functional
connectivity changes, modifying the stationary statistics. This view
recalls William James’ notion of consciousness as a process [19]
and is consistent with a large amount of empirical evidence
showing correlations between conscious level and plausibly
stationary epochs of brain activity. For example, normal conscious
wakefulness is characterized by low-amplitude high-frequency
oscillations in the cortical EEG [38], whereas epileptic absence
seizures are characterized instead by increased synchrony in
thalamocortical systems [39]. As mentioned in the section
‘Empirical and maximum entropy distributions’, neural dynamics
may be metastable [35,36,37], with locally stationary periods
corresponding to a conscious state with a particular level and
content. Our results now make it possible to measure the
integrated information corresponding to these various states and
to compare these values with other indices of consciousness, both
subjective (e.g., verbal reports, confidence ratings, etc.) and
objective (e.g., EEG synchrony, widespread brain activity, etc.)
[40]. Importantly, it is now possible to quantitatively compare
integrated information with other measures of neural dynamics
that operationalize in different ways the notion that consciousness
conjoins dynamical integration and differentiation, such as ‘causal
density’ [41] and ‘neural complexity’ [8] (see ‘Comparison with
causal density and neural complexity’).
An important feature of the IITC as previously expressed is that

consciousness qua W is best considered as a capacity (equivalently a
potential, or disposition), and not as an ‘object’ or a process [14].
The original WC operationalized the notion of capacity by
subjecting a system to all possible perturbations and examining
its responses. The recent WDM measures information as a
reduction in entropy from the maximum entropy distribution,
which can be taken to correspond to the capacity of a system.
However, because WDM is specified by state transitions it is not a
‘pure’ measure of capacity; rather, it is a measure of capacity
modulated by a system’s dynamics. By measuring W with reference
to the stationary distribution, our measures depart from the notion
of consciousness as a capacity. The stationary distribution
characterizes the capacity of a system only to the extent that it is
realized in the system’s behaviour. WE and WAR can therefore be
construed as measures of a process modulated by capacity,
aligning more closely with the Jamesian intuition.
The notion that W exists as a ‘fundamental property’ deserves

comment. As described in the section ‘Normalization and
instability’, our results challenge the ascription of physical meaning
to W, in virtue of its exquisite sensitivity to the normalization
process involved in specifying the MIB: this challenge pertains
equally to the notion of W as a ‘fundamental quantity’. A further
challenge to the ascription of physical meaning to W is the fact that
it is not invariant under a change of coordinates, since this leads to
a different set of sub-systems over which to minimize the effective
information. An interesting question for future work is to examine
whether, under certain conditions, the set of coordinates that
maximizes W could be taken to define ‘natural’ coordinates, or
macroscopic variables, for the system. In any case, it does not seem
necessary to consider W as a strict physical quantity in order to

measure the integrated information corresponding to a system’s
state transitions or stationary dynamics, nor to relate these
measurements to conscious level and content. In other words,
one can depart from the IITC by interpreting W as accounting for
particular aspects of consciousness without the further step of
claiming identity [9].

Integrated information in other neurocognitive
processes
Although W was originally developed in the context of a theory

of consciousness, it is plausible that integrated information, and
(more generally) conjoined functional integration and differentia-
tion, play key roles in other cognitive and neural processes.
Previous formulations (WDM, WC) are poorly suited to investigating
these roles, not only because of practical inapplicability, but also
because they characterize integrated information in terms of
capacity rather than process. Whereas consciousness under some
theories may be considered as a capacity (see above), neurocog-
nitive properties in general are best considered as processes.
Having a measure of W that is framed in terms of process, and that
is easy to apply in practice, therefore permits the framing of
testable hypotheses, and the specification of synthetic models,
aimed at examining the role of integrated information in
neurocognitive processes broadly construed. For example, multi-
modal binding and perceptual categorization [20], and action
selection (decision making) [21] plausibly involve integrated
information and could be profitably analyzed using our methods.
Already, related measures of dynamical complexity (neural
complexity and causal density, see below) have been correlated
with the ability of simulated agents to deploy flexible behavior,
suggesting a role for such dynamics in sensorimotor coordination
in rich environments [6,41]. Our results now allow integrated
information to be applied in similar situations, facilitating
comparative analyses.

Comparison with causal density and neural complexity
W is one among a family of recent measures that aim to

characterize, in different ways, the coexistence of integration and
differentiation in a system’s dynamics. Two alternative measures
are ‘causal density’ [41] and ‘neural complexity’ [42]. Here, we
briefly summarize the similarities and differences among these
measures, in order to set W into a broader context.
Causal density, like WAR and WE (but in contrast to WDM and

WC), is a measure of process rather than capacity. In virtue of
being based on ‘Granger causality’, it also shares with W a
sensitivity to causal interactions within a system. A key difference,
however, is that causal density is based on all causal interactions,
and not just those across a particular partition; thus causal density
avoids the normalization problems described above (‘Normaliza-
tion and instability’). Briefly, Granger causality is a statistical
measure of causal influence which asserts that a variable X 1

‘Granger causes’ another variable X 2 if information in the past of
X 1 helps predict the future of X 2, above and beyond information
already in the past of X 2 (and, optionally, in the past of a set of
conditioning variables X 3...N ) [30,43]. Causal density is then the
(weighted) fraction of causal interactions among all elements that
are statistically significant. High causal density indicates that
elements within a system are both globally coordinated in their
activity (to be useful for predicting each others’ activity) and at the
same time dynamically distinct (so that different elements
contribute in different ways to these predictions). Granger
causality (and causal density) is typically calculated using linear
auto-regressive models, which brings about an interesting
comparison with WAR. In a loose sense, integrated information,
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as measured by WAR or WE, can be thought of as a variety of
‘causal density’, that quantifies the strength of the weakest
bidirectional causal link between any two halves of the system.
Forthcoming work will investigate further the links between WAR

and causal density.
Neural complexity is calculated as the sum of the average

mutual information across all bipartitions of a system [42]. Unlike
W and causal density, it does not reflect causal interactions within a
system, however, like causal density, it is a measure of process
rather than capacity. Neural complexity is maximal in a system
that is globally integrated at the level of large subsystems, while
exhibiting a high degree of segregation between smaller subsys-
tems. (Note: The original papers describing neural complexity
contained an error in calculating the covariance matrix from a
generative model, which has been subsequently corrected in [44].
However, it appears that this error may still affect extant
calculations of WC.) A recent result [17] showing an equivalence
between Granger causality and ‘transfer entropy’ (a time-directed
version of mutual information) allows causal density to be related
directly to neural complexity. Specifically, one can define a
‘bipartition causal density’ as a weighted average Granger
causality (transfer entropy) across all bipartitions of a system (this
definition also requires extension of Granger causality to
multivariate variables) [18]. This measure furnishes a ‘time-
directed’ version of neural complexity based on transfer entropy
rather than mutual information.
These relations together suggest common foundations for

measures of coexisting integration and differentiation. However,
further work is needed to fully establish their theoretical
interdependencies and their empirical convergences and diver-
gences.

Comparison with other measures
Characterizing complexity is a diverse field, and there are other

measures that capture complex properties other than conjoined
differentiation and integration. For example, ‘thermodynamic
depth’ [45] can be interpreted as a measure of how hard it is to put
a system together, and is based on the joint entropy of all past
states, given the current state. W by contrast considers only one
past state. An interesting further modification to W could involve
information between the present and the whole past trajectory of
the system. Another measure of statistical interdependence,
‘informational coherence’, considers the optimal predictive state
for each time-series, and then measures mutual information
between these [46]. In related work by Ay et al., the whole system
is compared to the sum of individual elements [22,47,48], and the
analysis goes beyond examination of conditional entropies to a
more thorough mathematical treatment in terms of information
geometry. While it is beyond the present scope to examine the
formal correspondences among these measures, other related
measures, and the measures described above, the growing interest
in quantitative measures of complexity further emphasizes the
need to formulate theoretically principled measures that are also
simple to apply in practice.

Limitations and extensions
Although our measures represent substantial improvements in

practical applicability of measures of integrated information,
several limitations remain. Most prominently, the normalization
procedure leads to instabilities in the measurement process and
undercuts ascription of physical meaning to W. Addressing this
problem stands as a key theoretical challenge. We have only
considered application of our measures to stationary dynamics.
Future work may extend consideration to non-stationary (but still

continuous and non-Markovian) processes, potentially capturing
important non-stationary aspects of neural dynamics. In addition,
our measures are applicable only to stochastic systems. While
extension to closed deterministic systems may be of some value,
most complex biological systems have stochastic components,
especially when considered in interaction with a (stochastic)
environment [49,50]. Finally, our measures share with previous
measures the computational challenge posed by the combinatorial
explosion in partitions of a system as the number of elements
increases. Possibly, imposing priors on the search for the minimum
information partition may mitigate this challenge.
We have only considered a first-order, linear approximation for

computing entropies/information from data. While this is useful
for drawing comparison with Granger causality and causal density,
there now exist more advanced approximation techniques that
could be used in future work, for example additive regression [51]
or kernel regression [52]. Regarding estimation of entropy and
mutual information without employing a regression model, we
have only considered this via the intermediate step of density
estimation. Again, future work could investigate the applicability
of more advanced techniques [53,54] that avoid this step.
As well as addressing the above challenges, future work will (i)

empirically examine integrated information for time-series data
acquired from neuroimaging and other biological datasets, in
order to test intuitions regarding consciousness and other
neurocognitive processes; (ii) investigate in models how integrated
information is modulated by input and output relations of a system
embedded in, and interacting with, a surrounding environment,
and (iii) determine theoretically the relations between integrated
information and alternative measures of dynamical complexity
and metastability.

Methods

Text S1 in ‘Supporting Information’ contains software enabling
calculation of WE and WAR, as well as functions which allow
regeneration of some of the simulations we describe.

Extension and computation of WDM for an MVAR(1)
process
To extend WDM to stationary continuous Markovian systems,

we have to address the problem that there is no well-defined
maximum entropy distribution for such systems. We do this by
replacing the ‘maximum entropy distribution’ with the distribution
for which the state of each element is independent of the states of
all other elements, is Gaussian distributed, and has mean and
variance equal to those of its corresponding stationary distribution.
Thus, we take X0*N !xx,SD Xð Þ

! "
, where

SD Xð Þij~
S Xð Þij , i~j ,

0 , i=j :

,
ð0:57Þ

Having defined a distribution for the initial state X0, we explain
how to compute the expected integrated information, !WWDM, for
MVAR(1) processes (0.36). The computation proceeds analytical-
ly, given the generative model, which is specified by the
connectivity matrix A and the covariance matrix of the noise,
V~ : S Eð Þ. Alternatively, an estimate of !WWDM from time-series
data can be obtained by using estimates of A and V. The linear-
regression formulae (0.46) and (0.48) yield the estimates

ÂA~ŜS X t,X t{1ð ÞŜS Xð Þ{1 , ð0:58Þ
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V̂V~ŜS X tjX t{1ð Þ, ð0:59Þ

where the symbol V̂V denotes empirical quantities.
Given A and V, (or their estimates ÂA and V̂V), the covariance

matrix S Xð Þ can be obtained via the discrete-time Lyapunov
equation (0.37),

S Xð Þ~AS Xð ÞATzV , ð0:60Þ

and SD from Eq. (0.57).
To compute the conditional probability PX0jX1~x we first use

the MVAR(1) dynamics (0.36) to obtain the distribution of
X1jX0~x’ as

X1j X0~x’ð Þ*N Ax’,Vð Þ : ð0:61Þ

Then we use Bayes’ rule (0.15) to obtain

PX0jX1~x x’ð Þ!PX1jX0~x’ xð Þ:PX0
x’ð Þ ð0:62Þ

!exp {
1

2
x{Ax’ð ÞTV{1 x{Ax’ð Þzx’T SD

! "{1
x’

h i, -
: ð0:63Þ

From the term quadratic in x’ we can obtain the inverse of the
covariance matrix of (the Gaussian distributed) conditional
variable X0jX1~x as

S X0jX1~xð Þ{1~ATV{1Az SD
! "{1

, ð0:64Þ

and hence express the conditional entropy H X0jX1~xð Þ in terms
of the connectivity and stationary covariance matrices:

H X0jX1~xð Þ~1

2
jX jlog 2peð Þ{1

2
log det ATV{1Az SD

! "{1
h in o

:

ð0:65Þ

For a given a sub-system M, we have to consider the bipartition
X~ M,Nf g, and the block decomposition of vectors and matrices

according to X t~ M t,N tð ÞT so that

SD~
SD
M 0

0 SD
N

 !

, A~
AMM AMN

ANM ANN

( )
, ð0:66Þ

and similarly for V and Et. To obtain the distribution for the
conditional random variable M1jM0~m’, we express M1 in
terms of M0 as

M1~AMMM0zAMNN0zEM1 , ð0:67Þ

and note that N0*N 0,SD
N

! "
. Hence

M1j M0~m’ð Þ*N AMMm’,VMMzAMNS
D
NA

T
MN

! "
: ð0:68Þ

From Bayes’ rule, we can then calculate the inverse of the
covariance matrix of (the Gaussian distributed) conditional
variable M0jM1~m as

S M0jM1~mð Þ{1~AT
MM VMMzAMNS

D
NA

T
MN

! "{1
AMM

z SD
MM

! "{1
,

ð0:69Þ

and hence

H M0jM1~mð Þ~ 1

2
jMjlog 2peð Þ{

1

2
log det AT

MM VMMzAMNS
D
NA

T
MN

! "{1
AMMz SD

MM

! "{1
h in o

:

ð0:70Þ

The entropy formulae (0.65) and (0.70) furnish the sufficient

quantities for computing !WWDM as described in the section ‘The
previous measure, WDM’, using the expression (0.25) for the
expected effective information. For present purposes, as with WE,
we restrict attention to bipartitions only.

Analytical computation of WE for a general Gaussian case
Here we show how to compute WE analytically, for a general

stationary Gaussian system, for any timescale t. Importantly, the
generative model for such a system X is always equivalent to an
MVAR pð Þ process [18]:

X t~A1
:X t{1zA2

:X t{2z % % %zAp
:X t{pzEt , ð0:71Þ

where the Ai, i~1, . . . ,p, can be thought of as generalized
connectivity matrices acting at different time-lags, and Et is a
stationary multivariate Gaussian ‘white noise’ source with zero
mean and vanishing auto-covariance function, Ct Eð Þ~0, t=0.
(We ignore the case p~? corresponding to an MA(1), i.e. moving
average, process.) This system is stationary if and only if the roots
of the equation

det IjX j{
Xp

i~1

ziAi

 !

~0 ð0:72Þ

lie outside the unit circle [33].
The method outlined in ‘Computing WE analytically for a

Gaussian system’ for computing WE with t~1 for an MVAR(1)
process is easy to extend to the more general MVAR pð Þ, any t,
case given by equation (0.71). Suppose we wish to compute WE for
any value of t up to t~q, where qwp. We first use the fact [33]
that the MVAR pð Þ process is equivalent to the MVAR(1) process

Jt~F :Jt{1zV t , ð0:73Þ

involving the block quantities Jt~ : X t,X t{1, . . . ,X t{q

! "T
,

V t~ : Et,0,0, . . . ,0ð ÞT and

F~:

A1 A2 A3 % % % Ap OjX j % % % OjX j OjX j

IjX j OjX j OjX j % % % OjX j OjX j % % % OjX j OjX j

OjX j IjX j OjX j % % % OjX j OjX j % % % OjX j OjX j

..

. ..
. ..

.
% % % ..

. ..
.

% % % ..
. ..

.

OjX j OjX j OjX j % % % OjX j OjX j % % % IjX j OjX j

0

BBBBBBB@

1

CCCCCCCA

:

ð0:74Þ

The stationary covariance matrix S Jð Þ for this process can be
obtained from the Lyapunov equation, by analogy with S Xð Þ for
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the MVAR(1) case (0.37):

S Jð Þ~FS Jð ÞFTzS Vð Þ, ð0:75Þ

where S Vð Þ~diag S Eð Þ,OjX j,OjX j, . . . ,OjX j
* +

. Then the station-

ary covariance S Xð Þ and auto-covariance Ct Xð Þ are obtained
respectively as the 1,1ð Þ and tz1,1ð Þ component blocks of S Jð Þ.
We can then proceed as for the MVAR(1), t~1 case:

S X t{tjX tð Þ~S Xð Þ{Ct Xð ÞS Xð Þ{1Ct Xð ÞT , ð0:76Þ

S Xð Þ~
S Xð ÞMM S Xð ÞMN

S Xð ÞNM S Xð ÞNN

 !
,

Ct Xð Þ~
Ct Xð ÞMM Ct Xð ÞMN

Ct Xð ÞNM Ct Xð ÞNN

 !

,

ð0:77Þ

S Mð Þ~S Xð ÞMM , Ct Mð Þ~Ct Xð ÞMM , ð0:78Þ

S Mt{tjMtð Þ~

S Xð ÞMM{Ct Xð ÞMM S Xð ÞMM

* +{1
Ct Xð ÞTMM :

ð0:79Þ

The above expressions furnish the quantities needed to compute
WE from equations (0.29), (0.30), (0.33) and (0.34).

Supporting Information

Text S1 Toolbox for computing integrated information as WE or
WAR. ‘phiemvarp.m’ computes WE from an MVAR(p) generative
model. ‘ARphidata.m’ computes WAR ( =WE if Gaussian), from
stationary time-series data. ‘statdata.m’ creates time-series data
from an MVAR(p) generative model. ‘A2b.mat’ contains the
connectivity matrix for the optimal network, Fig. 2(b). ‘time-
reverse.m’ is an m-file for time-reversing the data (required to run
ARphidata.m).
Found at: doi:10.1371/journal.pcbi.1001052.s001 (0.01 MB ZIP)
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