School of Cognitive and Computing Sciences UNIVERSITY OF

SUSSEX

AT BRIGHTON

Formal Computational Skills
Course Notes

Autumn Term 2002

Andrew Philippides
(notes by David Young)



Contents

Some differential calculus .. .......... ... . . 1
The backpropagation algorithm . ... ......... ... .. .. ... ... ... ..... 7
MatriCeS . . . o 13
Vectors as geometrical objects. . . ... .. 19
Vector applications. . . ... 25
Numerical integration of differential equations. .. ................... 31

Some probability and statistics. . . ...... ... 34
Statistical analysis of experiments. .. ......... ... ... i 42

Chaoticsystemsandfractals ................. ... . ... 48



Section 1

Some differential calculus

This section provides some background information for sessions 2 and 3 of the course Formal Computational
Skills. These deal with the application of ideas from differential calculus to the analysis of neural networks in
which the signal can be represented by continuously varying quantities.
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1 Introduction

This cannot replace textbooks — or it would be one.

Rather, it's an outline intended to enable you to find

out something about a set of techniques that is useful
in analysing some kinds of neural nets (as well as
many other systems).

Some of you will find all this familiar already. You
can skim it in a few minutes and move on to some-
thing else.

Some of you will remember doing this once, but it's

now rusty. You should look through this file and see
whether you can still understand what is going on,
especially in the examples. You might have to check
the odd thing out in a textbook. You should ask about
anything that isn’t clear. You might have to spend an
hour or two brushing the dust off the material.

Some of you will find this either new, or thoroughly
lost in the mists of time. You may well need to go
over old notes, or look up textbooks, and you should
work through a few examples to make sure you do
have the ideas straight. You should ask for help if you
can't fathom something.

You are not expected to become fast and expert in all
this material — that takes more time than we have.
What you should aim for is to understand these tech-
nigques, so that you can follow an argument that
involves them in a paper or a book.

Textbooks

Schaum’s outline series is good on specific topics,
but beware information overload.

If parts 2, 3 and 4 of this file are difficult, then you

need to refer to an introductory textbook of about A-
level standard, though books explicitly for A-level

are often too closely tied to the examination syllabus.
“Foundation Mathematics” 2nd edition, by D.J.

Booth (Addison Wesley, 1994) looks useful, though
at present is not available in the University Library.

The best book for you is largely a matter of personal
taste — you should try to find something that suits
you.

For parts 5 onwards, you need to look at a more
advanced book. Books for mathematicians spend too
much time establishing a rigorous basis for every-
thing — you need a book of mathematics for engi-
neers or physicists. | use “Mathematical Methods in
the Physical Sciences” by M. L. Boas (Wiley, 1st edi-
tion 1966, 2nd edition 1983) — the library has multi-
ple copies (at QE 7000 Boa), as has the bookshop.
“Mathematical Techniques: an Introduction for the
Engineering, Physical and Mathematical Sciences”,
by D.W. Jordan & P. Smith, covers some similar
ground but seems to have more introductory material
than Boas. The library at present has a single copy at
QE 7000 Jor. You may already have a personal pref-
erence — if so, stick with it.

A dictionary of mathematics can be surprisingly
handy. It won't explain things in the way a textbook
will, but it is often very useful to remind oneself of
some particular bit of usage. They usually have some
useful tables (e.g. of derivatives). The Penguin Dic-
tionary of Mathematics is good, as is the Oxford Dic-
tionary.

2 Functions of a single variable

You should be familiar with the idea offanctionof



a variable. Roughly speaking, a function (sometimes
called a mapping) can be thought of as taking as
“input” one value and producing as “output” another
value. The general notationys= f(x), wherex is the
name of the “input” variable, oargument f is the
name of the function, angdis the name of the “out-
put” variable. Ofterx s called thendependentaria-

ble and y is called theependentariable.

Many of the functions we will need take eeal
number as an argument. (A real number is one that
can be written as a decimal value, like 3.2712 — but
possibly with an unlimited number of digits.) Exam-
ples include:

y = sin(x)
y = cos(x)
y = tan(x)
y = log(x)
y=¢

y = 3xx+2

y = 3xx°+2xx—333

Note that the last three do not use fi€) notation,

but still represent functions. (You should be familiar
with the convention that multiplication and division
are done before addition and subtraction, and expo-
nentiation is done first of all, by the way. Alse’

can be writtenexp(x) andx x is more often writ-
ten simply3x .)

It's also possible to have functions like
if X is greater then 13 thgre 1, otherwisg/= 0

Mathematicians use many tools to understand the
properties of functions, for example the series expan-
sion. We will not generally need this level of analy-
sis.

The first thing we usually need to know is how to
evaluatea function — that is, how to find a value of
f(x) for some specifix. You will nearly always do
this with the aid of a computer program in some form
— so knowing what functions you can evaluate
depends on knowing something about the libraries
available with your current programming language.
It is possible to evaluate the functions listed above in
almost every language. In fact, almost all computed
evaluations of functions ar@proximate and some-
times it is important to know how this affects the
result of a program.

It is also often important to be able tasualisethe
function, by drawing its graph. Again, it is now nor-
mal to use a computer-based method for this —
check out packages like Matlab. When you draw a
graph, think of each point on the paper (or screen) as

representing a pair of valuesandy. The curve that

is plotted represents the subset of values defined by
the function. The notatiorx(y) can be used to repre-
sent a pair of values, as well as the point in the plane
that represents that pair.

Finally, you may need to use someopertiesof the
function. For example, the trigonometric functions
mentioned above argeriodic — adding 2 x 1t
(about 6.283) to the value of for anyx, produces
the same result (check what this means visually by
drawing the graph). This property would be written
down as for sin, say, assin(x) = sin(2x 1+ x)
Another example is that the log function always
increases if its argument increases — you could write
this as log(u) >log(v) if u>v . Properties like
this are sometimes apparent from the graph, and are
worth picking up as you go along when you encoun-
ter a particular function.

These ideas should be familiar to most people. If you
are rusty, a good way to become familiar with them

again is to plot some graphs using a package, or
indeed by hand if you prefer. You should have a nod-
ding acquaintance with all the functions listed above.

3 Differentiation

The basic idea of the differential calculus is that of a
rate of changeConsider a function whose graph is a
straight line, suchag = 3xx+2 .Any changexn
produces a change 3 times as big.ifOn the graph,
this can be seen by drawing a right-angled triangle
below the line, with two of its sides parallel to the
axes.) Theslopeof the line is said to be 3 in this case,
for everyx (because it's a straight line, the slope is
the same everywhere).

When we have a curve instead of a straight line, the
amount of change ity produced by a change ix
may depend both on how big the change is, and what
value ofx we started from. However, for many func-
tions (and for most that are practically useful), the
idea of the change ipproduced by amallchange in

X turns out to be a consistent and valuable one. The
change iny divided by the change iR, as we con-
sider smaller and smaller changes, settles down to a
steady value called thderivativeof y with respect to

X. This is usually written @dx. It can still be visual-
ised as the slope of the curve; now though, it's a
property of a small section of the curve, and so
depends on the value xf

It is often important to know how a change in one
guantity affects another, and so to be able to work out
derivatives. To do this, there are various rules that
you should be aware of. Some of the more important
ones are:



Rules for specific functions:

For example,
. o dy _
if y = sin(x), then ax - cos(x)

It is possible to work these out from first principles,

but usually one would look them up in a table in a

textbook, or use a symbolic computing package, to
remind oneself of them. You should know where to
find the rules for the functions mentioned above.

Rules for classes of functions:
Sometimes a rule is more general. One of the most
useful is:

ify = x”,theng—i = nxx'-1

This applies to alassof functions; theparameter n
says which member of the class is being used; you
substitute the value for your application. For exam-
ple, ify = X*, then g/dx = 4 x x3.

A simple rule of this type is:

o

if y = nxx thend—i =n

which should be obvious by thinking about the graph
of the function. Hera is to be thought of as standing
for a constant, rather than as being itself a variable.

The rule for products:

If a function can be written down as two functions

multiplied together, and you can differentiate each of
the two functions separately, then you can differenti-
ate the function itself using the rule

ity = 1(0x909,
f(x) x 9920 4 g x AL

dy _
then =2 I

dx
(Note that @(x)/dx means @dx for y = f(x).)

For example, ify = 3x xx cos(x) , thenyldx =
—3xxxsin(x) + 3x cos(x) .

The chain rule:

If a function can be written as one function applied to
the result of another function, then the derivative of
the whole thing can be got using

ify = f(a(x),
dy _ df(2) ., dg(X
thendT( T Tdz T dx

evaluated forz = g( X

For example, if y = sin(x2) , then ydx =
2 x xx cog(x2) . You get to this result by writing
z= X,

Applying these last two rules, though harder, basi-
cally involves substituting one thing for another con-
sistently. If you can’'t make sense of the rules, then
the problem might well lie in the notation for func-
tions, and in remembering what each symbol stands
for. Although there is no need to be very fluent in this
area, you should be able to understand what is going
on (you should be able to see why the examples have
the answers they do) and to differentiate most func-
tions that you meet, even if you have to look up the
rules.

4 Functions of several variables

For many applications, the idea of a function outlined
above needs to be generalised to functions of more
than one real variable. A function of two variables
might be writtenz = f(x y) . You can think ok
andy as inputs and as the output. A very simple
example iz=x+Y.

Usually, such functions are built out of the 1-dimen-
sional functions described above. When there are two
inputs and one output, if is often useful to visualise
the function as aurfaceor landscape: the arguments
X andy represent position on a 2-D plane, and the
valuez represents height above that plane (or below
it if negative). Packages such as Matlab are very
good at displaying these surfaces.

For functions of more than two variables, there is no
simple way to visualise the whole function. Nonethe-
less, such functions are often discussed in a way that
is analogous with the two-variable case.

If a function has many arguments, it may not make
sense to give them all separate names. You might see
something like

y = f(Xp X5 . Xy)
meaning that f is a function dfl variables, which are
distinguished by subscripts rather than by having

completely different names. This kind of thing is
very common in neural network analysis.

5 Partial differentiation

It is often necessary to know something about how
the value of a function with several inputs is changed
by small changes to its arguments — that is, we need
to differentiate it. How can this be done?

The basic idea is quite simple. Consider the function
Z = xx Y. Suppose that instead of being a variable,



y simply stood for a fixed value — let’s say 5. Then
the function would bez = xx5 , and so it would
follow that in this particular casezitlx = 5 (it's the
straight line equation again). If we didn’'t know the
particular value ofy, but we did know that it was
fixed, we could still write d/dx =y, with the under-
standing thay was being treated as a fixed quantity
rather than a variable. This derivative, found by pre-
tending thaty is a fixed quantity, is called theartial
derivativeof the function with respect to

In order to distinguish this from an ordinary deriva-
tive, some special notation is used: a curly d instead
of a normal d, looking like thisd. Thus the expres-
sion

means “the partial derivative afwith respect tax’
— that is, the change i@ whenx is varied andall
other arguments are kept constant

It is generally quite easy to find partial derivatives,
once you have understood the principle of pretending
that everything except the variable in question
behaves just like a numerical constant. For example:

if
z = 3xy2+yxsin(x+10x V)
then
0z

y x cos(x+10x V)

0X

9z _ 6 x y+ sin(x+ 10xv)
oy

g—f/ = 10xyx cos(x+10x V)

If you can’t verify the results in this example, it's
probably because you need to check the rules for
basic differentiation, rather than because partial dif-
ferentiation is itself a problem.

Note that the partial derivative may be a function of
all or some of the arguments to the original function.

The partial derivative tells us how a function is
affected by a perturbation to one of its arguments.
This in itself can be very useful. Sometimes it is nec-
essary, though, to know how a function changes
when a change is made to many or all of its argu-
ments. This will only make sense if the changes to
the arguments are coordinated in some way; that is,
the arguments themselves are functions of some
other variable that is changing. (This is often the case
in neural networks.)

To be definite, supposedepends on (is a function
ofyuandyv,soz = f(y V) , anduandv both depend

on some other variablex, so u = g(x} and
v = h(X) . (Here,g andh are names of functions.)
The question is, how doesary if x changes?

The answer is given by thehain rule for partial dif-
ferentiation which is the most advanced idea to be
mentioned in this file. It says that

dz _ azxdu+azxdv

dx du dx ov dx

Note that all the quantities on the right can be worked
out from the expressions fdyh andg. Putting them
together gives the result that is needed. Since nothing
is kept constant whexchanges, the result on the left
of the equation is an ordinary derivative.

This should make some kind of intuitive sense, along
these linesx controls each ofi andv, andu andv
together controlz So a change irx produces a
change irz by two different routes. The effect along
theu route is the effect ok onu times the effect on

on z Similarly for thev route. The two effects get
added together.

Sometimes, there are other variables which aftect
andy, in addition tox. In this case these other varia-
bles have to be held constant while we investigate the
effect ofx on z. Then the ordinary derivatives in the
formula become partial derivatives too, to indicate
that these other things are staying constant.

Textbooks will give a proof of this formula, and
sometimes a graphical way to think about it as well.

6 Some kinds of Ds

As light relief, it may be worth mentioning that dif-
ferential calculus abounds in variants of the letter D.
So far, we have only used 2 kinds, but you will
encounter others in the literature. To try to avoid con-
fusing them, here is a little table — although you do
not need to be familiar with the use any but the first
two at this stage, it is worth knowing that the others
exist.

Name Symbol Used for
small d d Derivative*
curly d 0 Partial derivative

small delta 0 A small change in a

variablé

capital delta A An arbitrary change in

a variable

A kind of vector deriv-
ative

del or nabld U

capital D D Differential operatdt




Notes:

1. Small d is almost always used in the fordg
The quantity d is called arnnfinitesimal and
means a change ¥which is smaller than any
finite change. Debate has raged about whether it
is proper to manipulate infinitesimals in their own
right rather than as top or bottom of a derivative.
There are hints that they are currently becoming
more respectable, but they won’t be used here.

2. Though smalldx is finite — i.e. not an infinitesi-
mal.

3. I'm not sure whether this is kind of “D”, but it's
easily confused with so I've put it in.

4. Df(x)is used to meanyttix wheny =f(x). It is
too concise for elementary use but comes into its
own in the study of differential equations.

7 Summation

Finally, you should be able to read the notation for
forming sums — that is, adding a set of things
together. This uses the capital Greek letter sigma,
which looks like thisZ.

Here is a simple example of how it is used:
5
Y (kxx)
k=1

and this expands into (is equal to)
X+2XX+3XxX+4xX+5%xX

In general, there is some variable (in this cdge
which takes a set of values (in this case 1,2,3,4 and
5). For each of these values, an expression involving
the variable (in this cask x x ) is evaluated, and the
results added together. In the form in which it is

being used here, the variable takes integer values,

starting from the one specified below the and
going up to the value specified above. (There are a
few alternative forms of the notation, but this is the
most common.) In this case, there is another variable,
X, in the expression, but there might be several other
variables, or none.

It is extremely common for the summation variable
to form a subscript in the expression, rather than
being an arithmetic element as above. For example

2 = x2 2 2 2
Xj X5+ Xz +X§ +X§

The name given to the summation variable (hgre
can be chosen arbitrarily but must then be used con-
sistently, as for all variable names.

There is a nice concrete way to think about the sum-

mation notation, if you are a programmer. A summa-
tion sign acts like a loop in a program, and indeed
programs that implement theories involving sums do
have corresponding loops. If you happen to know C,
for example, then it may help to know that the fol-
lowing line of code implements (with suitable decla-
rations of course) the first example above. It leaves
the variablesum set to the value of the whol&
expression, assuming thathas been given a value
beforehand:

for (sum = 0.0, k = 1; k <= 5; k++)

sum +=k * x;

whilst the second example would translate into
something like

for (sum = 0.0, j = 3; j <= 6; j++)
sum += x[j] * x{il;

Summation gets complicated when you encounter
nested summation signs — oBRéeing applied to an
expression containing anoth&: There is a fairly
safe way to make sure you understand what is going
on in cases like this: write out a few terms of the
whole expression. You should be able to understand
the following:

2
> (X1t %)

i=1
= (X1 + X Xp1 +X5))

gx

”M'\’

For those who feel this holds no mysteries, it is worth
mentioning that there is a convenient shorthand
which is sometimes used for sums, called the
repeated suffix conventipar tensor notationin this
convention, any suffix which appears twice in an
expression is taken to be summed over — an implicit
2 appears before the expression with the repeated
variable as the summation variable. This is only use-
ful when the range of summation is obvious. The
convention is often a very useful alternative to matrix
notation.

Finally, something fairly hard. Let’'s use the summa-
tion notation to generalise the chain rule for partial
differentiation. Suppose our output variableis
affected by a load of different intermediate variables
— sayN of them, which we will callu,, u,, ..., uy -
Suppose that affects eachu (possibly in a different
way for each). Now if we want to know the effect of
X onz, it's going to look like

z _ dui
Z au dx

(with partial instead of ordinary derivatives if there
are some other variables being held constant).

d

If this looks daunting the first thing to do is to write it



out in full with N equal to 2. Then the relationship to
the earlier formula for the chain rule should become
clear.



Section 2

The backpropagation algorithm

This section complements Section 1 by relating the mathematical ideas described there to an important applica-
tion: the analysis of a learning algorithm for feedforward neural networks.
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1 Introduction

This section is a complement to Section 1. It applies
the mathematics in it to a single problem: the training
of a multilayer feedforward nonlinear neural network
(sometimes called a multilayer perceptron).
Although this application is important in its own
right, the purpose here is to give you some feeling for
how ideas from calculus get applied to a real compu-
tational problem. In addition, you should get some
idea of how the formal mathematical notation relates
to the more concrete computational structures repre-
sented by neural networks.

You should not expect to be able to reproduce this
whole argument. You should, however, be able to see
in general terms what is going on. The idea of gradi-

ent descent is central to many computational sys-
tems, and the use of subscripts and summation to
manipulate arrays of quantities in a concise way is
well worth getting used to, since it translates readily

into practical computer programs.

Two relevant books are:

Rumlhard, D.E. & McClelland, J.L. “Parallel
Distribution Processing: Explorations in the
Microstructure of Cognition”, Vol. 1, MIT Press,

1986.

Hertz, J.A., Krogh, A. & Palmer, R.G. “Introduc-
tion to the Theory of Neural Computation”, Add-
ison Wesley, 1991.

Both of these carry out essentially the same develop-
ment as this file, though more concisely.

2 The response function for a sim-
ple model neuron

Artificial neural networks (NNs) are formed by con-
necting individual units which very approximately
correspond to neurons. Each unit receives some
inputs from other units, or from outside the network,
and produces an output which goes to other units or
to outside the network. In an important class of NNs,
the inputs and outputs are represented by real num-
bers, and each unit computes an output which is a
function of its inputs. A common form for the func-
tion is described here; for justification see books on
NNs, and remember that all sorts of other possibili-
ties (such as networks with binary values only, or
units with memory) exist.

In this section a single unit is considered. Suppose it
hasN inputs, which will be calledx,, x, etc. up to
Xy » the output of the unit will be callegi so we can
write y = f(Xq, X, ..., Xy) to express the fact that
the output is a function of the inputs. The form of the
response functiof determines the behaviour of the
network.

2.1 Linear units

A very simple response function would be to just add
up all the inputs. However, the unit may need to pay
more attention to some inputs than to others, and this
is achieved by first multiplying each input by a
weight, which is a number expressing how strongly
the input affects the unit. (I am regarding the weights
as being associated with the unit they directly affect.)



For each inpuk; there is a corresponding weigi.
The unit therefore combines its inputs by computing
aweighted sunaccording to the formula

N

D> X xw

i=1

a

where a is sometimes called the activation of the
unit. The idea of a weighted sum is extremely com-
mon in many branches of science.

The unit could simply pass this activation to its out-
put (i.e. it could sety = a ). Such a unit is called a
linear unit because if you ploy against any particu-
lar inputx;, keeping all the other inputs constant, you
get a straight line.

If the weights are fixed, it is convenient to regard
them as built-in to the response functibrHowever,

the way that neural networks are trained is to adjust
the weights to improve their performance. If we
regard the weights as things that can be varied, it
makes sense to regard the output as a function of the
inputs and of the weights, or in symbols

Yy = F(Xg Xo, ooey Xy Wq, W, ooy Wy)-

We will need to know later how a change in an input
affects the output. For a linear unit (i.e. output = acti-
vation, ory = a ), the relation is very simple:

That is, the change in the output is just the change in
the input multiplied by the corresponding weight. If
the mathematics is not obvious, try writing out the
formula fory explicitly for the case of two inputs (i.e.

Yy = X XW; +X,XW,). Then treating everying
excepty andx; as constants, use the ordinary rules
for differentiation to find the derivative o with
respect tox;. Generalise the result to any input.

For working out learning algorithms, it is also useful

to know how a change in a weight affects the output
if the inputs are fixed. The mathematics is identical,
and produces the result

i.e. for a particular input, the effect of changing a
weight depends on how strong the corresponding
input was.

2.2 Nonlinear units

It is the case that neural networks built from linear
units have a very limited range of responses (e.g.
they cannot produce an output that simply says

whether two inputs are different from or the same as
one another). However, one modification turns out to
give the networks enormously greater computational
power, and that is to make the relationship between
the activatiora and the outpuy nonlinear. Typically,
instead ofy = a, interesting neural networks use a
relationship such as

_ 1
l1+e2

This is sometimes called tHegistic function Note
thata is just the weighted sum of the inputs, as for
the linear unit.

It is not appropriate here to investigate why this is a
useful choice, and anyway it is by no means the only
possibility. We will take it as given, but we will have
a quick look at its properties. The first thing to do is
to look at its graph.

o=
-

==

If you look at the graph, you will see that it is
vaguely S-shaped. Functions with this shape are
called sigmoidal functions (nothing to do with the
sigma used to indicate summation). Note that the
logistic function is merely an example of a sigmoidal
function.

You can see thatis 1 if a is large and positive, and

is 0 if a is very negative. Thus if you ignore the bit in
the middle this is a little like a binary function. How-
ever,y's changeover from 0 to 1 occurs gradually as
a crosses 0 — one could describe this as a kind of
softened or smoothed step function. (A step function
would causey to jump from 0 to 1 as a crossed some
value called the threshold.)

Now we need to answer the same questions about
how changing the inputs and weights affects the out-



put of such a unit. This is done in two steps: first we
ask how a change in ator aw affectsa, then we ask
how a change ia affectsy.

The first step has already been done. From the analy-
sis for a linear unit, wher@=Yy, we know that

da _

aTg_Wi
and

da _

aw

The second step is to findyfdla. This requires the
application of the rules of ordinary differentiation to
the logistic function. | will not do this in detail here;

if you want to see the steps involved, please ask. You
have to know the rules for differentiatirgf and 1%

(x is just a general purpose variable here), and you
have to apply the chain rule. The answer comes out
as

dy . __e?
da (1+e9)?

(It is an ordinary derivative becauseis the only
thing that directly affectsyy — there’s nothing that
has to be held constant to do this calculation.)

You ought to be able to guess what the graph of this
function looks like without using the formula, simply
by looking at the graph of the logistic function and
seeing what its slope does. In fact, it's like this:

There is a computationally useful simplification of
the derivative formula. It is possible to use the origi-

nal formula for the logistic function to show that

dy _ _
gz - Y-y
If in some programy has already been calculated,
this gives a much faster way of finding the numerical
value of the derivative than the formula that uses

Finally, the two steps are put together. You need to
apply the chain rule, which says that

al = Qxaia

ox, da 0x
which gives

oy _

3 =YX (A=y)xw,

Similarly, one gets

oy _

v yx(1-y) xx;

This all looks fairly complex, but the final formulae
are not too bad. They say how changes to the inputs
or weights affect the output for this kind of nonlinear
unit. They are in a form which allows them to be
used in a program; such a program would haves
andy available to it, so computing the partial deriva-
tives would now be no problem.

These formulae imply that the unit's sensitivity to a
change in a weight or an an input depends on all the
other weights and inputs as well. If the unit’s activa-
tion is close to zero (so its output is close to 0.5), it
has its highest sensitivity. If the activation is strongly
positive or negative, then the output is close to O or 1,
yx (1-y) becomes very small, and so changes in
inputs and weights have relatively little effect on the
output. The unit is then said to Isaturated The pos-
sibility that some inputs can put a unit into satura-
tion, and so prevent other inputs affecting the output
of that unit, is an important aspect of the operation of
neural networks with nonlinear units.

3 Training a single unit

3.1 The error function for a single unit

Neural networks are often trained usisgpervised
learning In this kind of learning, the network’s out-
put for a given input is compared withtarget, which

is somehow known to be the “right answer”. The
weights are then adjusted to make the output closer
to the target. If the weights are adjusted after each
new example of an input/target pair, the mechanism



is called online learning; if the weights are only
adjusted after a set of input/target pairs theatch
learning is taking place. Here, online learning will be
considered, as it is slightly simpler to understand.

To decide how close the network’s output is to the
target, on any particular presentation, eror func-
tion is used. For our single unit, the target will be
called t, and the error is given by

E = (y-t)?

This function is chosen partly becaukeis always
positive, and the bigger the difference betwgend

t, the biggerE is. It is clear thaE is a function ofy
andt, and you will sometimes see this expresse#t as

= E(y, t). This is slightly loose usage, in that the same
symbol,E, is being used for the name of the variable
and the name of the function that computes it, but it
is quite common and in practice does not cause con-
fusion. You can readt = E(y, t) as ‘E depends oty
andt”.

SinceE depends oly andt, andy depends in turn on
the inputs and the weights, it is also true to say that
E = E(X), Xgy +ooy Xpyy Wy, Wo, wouy Wy, 1) .

It is sometimes convenient to think of this error as an
energy associated with the network. If this was a
mechanical system in whichrepresented the posi-
tion of a robot arm, say, andrepresented a target to
which it was supposed to move, thénwould be a
measure of the energy of a spring connecting the arm
to the target. The spring would pull the arm to the tar-
get, reducing its energy in the process. This kind of
physical analogy can be useful in analysing various
kinds of computational system.

If we single two weights or inputs for special consid-
eration, and keep all the rest at some fixed values,
then it is possible to draw a picture showikgas a
surface above a plane. Positions on the plane corre-
spond to values of the two variables under considera-
tion, and the height of the surface above the plane
corresponds to the value & This is a useful con-
ceptual tool, and it is often helpful to think of the
error surfaceor energy landscapeven when more
than two things can vary; it is no longer possible to
picture the surface then, as it exists in many dimen-
sions, but the ideas from the 2-variable picture are
still useful.

Now the standard question: how do changes in inputs
and weights affect the error? What we need gie¢

0x; andoE / ow;, with the partial derivatives indicat-
ing thatt is kept constant. Since we know how
depends on the inputs and weights, all that is needed
in addition is to know howE depends ory. This is

got by differentiating the expression above, which
gives
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0E _ _
a/ = 2x(y-t)

(using the chain rule for simple differentiation). Then
we can use (for inputs)

OE _ OE dy

%~ 9y 9%
= 2x(y=t)xyx(1-y)xw,

Both of the things multiplied together on the right are
already known, so the whole expression is easily
found. The effect of weight adjustments can be cal-
culated the same way to get

a£:2><

ow (Y-t xyx(1-y) xx

3.2 The learning rule for a single unit

How can the single unit be trained? A standard and
simple procedure is to select an input and a target,
present the input to the unit, compare its output with

the target, and then change the weights slightly to
make the output closer to the target. This is repeated
for a large number of input/target pairs. Because each
individual change made is small, the total effect over

a large number of trials is to make the unit's behav-

iour closer to the overall optimum (though the details

are beyond the present scope). At the very start, the
weights are given some random values.

One way of looking at this is to say that at some point
in the training, we want to change the weights so as
to take a step downhill on the error surface. This
method is calledgradient descentBasically, each
particular weight needs to be changed in the right
direction to reduceE; the bigger the effect of that
weight, the more it should be changed.

It might be helpful to think of this geometrically.
Consider the error surface for a unit with only two
weights, and some fixed inputs; this surface can be
pictured as some kind of smooth canopy above a
plane. The current weight values fix the position of a
point on the plane and the point vertically above it on
the error surface. Changing one of the weights means
moving in one direction on the plane; changing the
other weight means moving in a direction at right-
angles to this. Such moves will take the point on the
surface uphill or downhill, depending on how the
surface slopes. The change in height for a small
change in a weight is given mathematically by the
partial derivative, and geometrically by the slope of a
line on the surface vertically above the line of motion
in the weight plane. It should be possible to convince
yourself that if you make a change in each weight
proportional to the slope in the corresponding direc-



tion, the total movement is directly uphill or down-
hill.

For a definite example, consider the case where the
error does not depend at all on one of the weights
(the corresponding input is 0). Then the error surface
only slopes in the direction of the other weight, and it
is clearly only appropriate to change the latter.

This can be summed up in thgradient descent
learning rule which is a core rule in neural net-
works, and the starting point for many other more
sophisticated rules. It says (for online learning) that
on each presentation, the adjustment to each weight
should be proportional to minus the partial derivative
of the error with respect to that weight. In symbols:

oE

AW, = —Q X —
! ow;

This is just saying that we take a small step downhill

in the error surface.

Aw; stands for the change in (adjustment g)that

we are going to make. The minus sign means that we
go downhill, not uphill, when we make the adjust-
ment. The constard is used to keep the step small
(in some sense) — in fact it used to be typically set to
a value between 0.00001 and 0.2 by the experimenter
and adjusted by trial and error, though there are now
more principled and adaptive ways to determine a
good value. The significance of the final part, the par-
tial derivative or slope of the error surface, should be
clear from the discussion above.

Now you are in a position to train a single unit.
Putting everything together gives the adjustment to a
weight after the presentation of an input as

Aw;

i = ax2x(y-f)xyx(l-y)xx;

The outputy would be calculated once using the
basic formula for operation of the unit, then the
adjustment for each weight would be calculated and
applied in turn using the formula above.

4 From a unit to a network

4.1 A single layer of units

One unit can only do so much. For really interesting

behaviour, it's necessary to go to a network of inter-

connected units. Again there are many possibilities,
and questions surrounding network topology are the
subject of active research, but since the present pur-
pose is to look at techniques for analysing networks,
we will stick to one of the more amenable cases: the
layeredfeedforwardnetwork.

In such a network, information flows from inputs to
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outputs, without any loops. The output of unit can
never affect its inputs, which simplifies matters
greatly. The units are arranged in layers, and each
unit in any given layer gets its inputs from all the
units in the previous layer (though of course it can
ignore some of them by setting the corresponding
weights to 0). (Sometimes the data from the rest of
the world is thought of as coming through a layer of
“input units”, which simply pass their inputs on with-
out changing them.)

First, take the case of a network that has a single
layer (apart from any input layer). This will have one
output for each unit in the layer. To analyse and train
this network, the modifications to what we have done
for a single unit are quite small, since essentially this
is just like having a lot of units, all seeing the same
inputs, but each doing its own thing.

The first change is in notation. We need to distin-
guish between the units, and to do this we have to use
an extra subscript in some places. The output and
activation of unitj will be calledy; and & respec-
tively. There will have to be targets for all the units,
so the target for unitwill be calledt;. The weight for
input i going to unitj will be calledw;;. The inputs
are the same for all the units so they do not need an
extra subscript.

The convention for the order of the weight subscripts
might seem perverse (the destination comes before
the source). However, it is convenient in the end,
because it corresponds to the convention used for
matrix notation. You will find this ordering used in
the textbooks mentioned above, but other authors
sometimes use the opposite convention — look out
for which one is in operation.

You should draw yourself a diagram with the inputs,
outputs and weights for a single-layer network
marked.

It might seem that we need to have an error function
for each output unit. However, it is much more ele-

gant (and in the long run more general and useful) to
have a single error function for the whole network.

The nice thing about the error function for a single

unit defined above is that the error function for the

whole network can usefully be defined as the sum of
the errors for the separate output units. That is, we
write

E= ;(yj—tj)z

There is a slight shorthand for the summation here:
when the range dfis not specified, it is assumed that
j runs over all the appropriate units. This shorthand
will be used quite often.



This is called thesum of squareserror function.
Sometimes a factor of 0.5 is put in front; this makes
no real difference to anything, but reduces the
number of factors of 2 that occur later.

Having definedE, everything now proceeds as for the
single unit, except we have to keep track of which
unit we are talking about. First we work out how a
change in unif’s output affectsE, by taking every-
thing else as constant. By writing out the sum for the
case of just 2 or three units, you should be able to
persuade yourself that the result is just

oE
ay, = 2x(y;-t)

That is, it is the same as for a single unit, except with
aj subscript added as appropriate to indicate the unit.
This is an extremely handy result — it simplifies the
next stage, which is to find the derivative Bfwith
respect tow;. But the analysis is novexactly the
same as for a single unit, except for the extra sub-
scripts. Thus a single layer is not really any more
complex than a single unit, even though we have
used a global error function which sums up (literally)
the performance of the network as a whole.

4.2 Adding another layer

Adding a further layer makes, as it happens, a big
difference to the generality and power of this kind of
neural network. It also makes it harder to work out
how to adjust the weights; working out an algorithm
for doing so was one of the major breakthroughs of
neural network research.

The notation adopted here for the extra layer is non-
standard, but makes it easier to follow what is going
on. The new layer of units will go on the input side of
the layer we have already considered. (I will refer to
the original layer as the output layer.) Now will
stand for theoutputof thei’th unit in the new layer
andw; is the weight from the'th unit in the new
layer to thg’th unit in the output layer (so these sym-
bols mean the same as before in connection with the
output layer). The new inputs to the network as a
whole will be calledu,, and the weights from the
inputs to the first layer will be;,. Thus we have:

Targets
ErrorE

/

Output layer outputg

/'Weightsw

First layer outputs

Aei'g htsv

Inputsu
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This network is to be trained by gradient descent
using the same rule as before. For a particular input,
you can think of an error surface f&r over a plane
representing any of the weights in the system,uhe
as well as thavs. We need to adjust all of them to go
downhill on this error surface. The question is, what
additional calculation do we need to do in order to
carry this out?

Adjusting the weightsw is exactly the same as
before. The output layer doesn’t care whether it's
getting its inputs from the outside world or from a
previous layer, so nothing changes for adjustments to
w;i. To adjust the weightg, however, we will need to
know the slope of the error surface for these weights.
This is the partial derivative written ag8E / ovy,.
Finding an expression for this is the heart of the
backpropagation algorithm.

5 Backpropagation

A change in one of the weightswill affect the out-
put of the first layer of unitsx, which will in turn
affect the ouput of the second laygrwhich will in
turn affectE. We therefore look at this causal chain
to see if it helps us work out the influencevai E.

First, we calculate how a change in one of tke
affectsk. A change inx; will spread out to affect all
the units in the output layer, which in turn all affect
E. In terms of partial derivatives, this appears as

JE oE 9y

ax, ;ayJ 0x;

O

This is probably the most difficult equation in this
file, and involves the most advanced mathematics —
the chain rule for partial differentiation. Its value is
that if you can see how the structure of this equation
relates to the information flow in the neural network,
then you are in a good position to analyse similar
systems. The explanation of the chain rule in Section
1 might help here, as might textbooks that deal with
partial differentiation. Writing out the expression in
full (i.e. making the summation explicit) for a net-
work with only 2 or 3 output units might be helpful.

Note the different roles of thieandj subscriptsj is a
variable which is summed over, like a loop variable
in a program, whilsti says which particular first-
layer neuron’s output we are talking about, and is
more like an argument to a procedure.

Having written this down, we can evaluate it if we
want to, since we already know the formulae for the
bits of the right hand side — they both appear higher
up this file. The first part is



oE

ay,

- = 2x 0y )
J

(in section 4.1) and the second is

ay.
ax = Vi XAy xwg

1
which is modified from the equation in section 2.2 by
putting in thej subscript to specify which output unit
we are talking about. But in fact these details are not

very important right now.

BecauseE depends onx; andx; depends oy, we
have

ai = aiExai
v, X, 0V

There’s no summation becaugg directly affects the
unit whose output is — no other variables get in
the way.

We have just worked out how to get the first part of
the right hand side. The second part is easy since it’s
just the same as working od;/ow; for an output
unit, which we have already done. That is,

0X;
vy,

X X (L=x) % up

So we have everything we need to evaluate the partial
derivative of the error with respect to one of the
and hence to decide how to adjust that

That completes the mathematics for the backpropa-
gation algorithm — we can now train a 2-layer neu-
ral net, by calculating the error gradients with respect
to all the weights, the's and thews, and then apply-
ing the gradient descent rule to adjust every weight.

Why is this computation called backpropagation?
The reason is the recursive nature of the central equa-
tion just above, marke. The derivative of the error
with respect to thex outputs is found by using the
derivative of the error with respect to tlyeoutputs,
together with a derivative which only depends on the
y units. It is the quantityE / do, whereo means the
output of any unit (arx or ay), which is backpropa-
gated across the layers. At each stage, the computa-
tion only involves one layer of units.

Suppose we put yet another layer of units into our
network, again on the input side. Then we’d need the
partial derivatives with respect to yet another layer of
weights. To get these, we’'d ne@H / du;,. And to get
that, we'd use
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oE _ 0%

X
ox; oduy,

oE

o 2
This is just the equation markeQ,, written for the
next layer down. We’'d have g@E / dx; when doing
the previous layer, andl; / duy, presents no problem
now (we've done the same thing twice before). It's
just the same computation again, and we could go on
repeating it for as many layers as we like, working
from the output to the input.

It was the realisation that this tractable computation
was possible that allowed training of multilayer non-

linear networks to be carried out, and this in turn was
one of the most important stimuli of their significant

renaissance in the 1980’s.

6 Conclusion

This rather long section has given an account of the
mathematics behind training a multilayer nonlinear
neural network. The essence of it is the equation
marked® — most of the rest is context for that: why
it is needed and how it is used.

What this kind of mathematics is really about is

keeping track of which variables depend on which
others. If that is done, the partial derivative formulae
should make some kind of sense, even if you could
not carry out a detailed derivation of them. Relating
the partial derivative formulae to the flow of informa-

tion through the network is largely the point of the

exercise.



Section 3 Matrices

This section extends Sections 1 and 2 by giving a basic introduction to the use of matrices.

Contents
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2. Matrix-vector multiplication as a neural network
operation. . . ... 14
3. Writing out matrices astables ............. 15
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6. Matrixinverses. ........... ... .. ... ... 16
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8. Conclusion . .......... ... 17

1 Introduction

In the first two teach files, every variable that was
used stood for a single real number. This included
subscripted variables: something like meant the
i'th value in a collection, not the whole collection.
This made it possible to interpret every equation
according to the normal rules of arithmetic; addition,
multiplication, differentiation and so on all had their
ordinary elementary meanings, even if the context in
which they were used involved, in principle, large
numbers of variables.

Sometimes it is useful to be able to manipulate sym-
bols that stand for structured collections of numbers.
Matrices are a case of this, and their use is common
in a wide variety of fields. Here, it will be illustrated
by referring back to the work on neural networks in
Section 2.

Discussion of this topic in textbooks crosses the A-
level/degree level boundary. Books such as that by
Boas (see Section 1) give a discussion, and also con-
tain much background and related material — not all
necessarily relevant at present. An outstanding refer-
ence book is “Matrix Analysis”, by R.A. Horn and
C.R. Johnson (Cambridge University Press 1985,
later reprints), but this gives an advanced treatment
that will only be useful if you already have a fairly
mathematical background.
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Matrix manipulation is,par excellencean area in
which high-quality software libraries and packages
have liberated ordinary users from the need to be
very familiar with a lot of algorithmic detail. Thus
you will find books such as “Numerical Recipes in
C”, by W.H. Press, B.P. Flannery, S.A. Teukolsky
and W.T. Vetterling (Cambridge University Press
1988, later reprints) contain summary discussions
and much practical information. The Matlab pack-
age, although wider in scope now than matrix manip-
ulation, has particular strength in this area.

The remainder of this file summarises some of the
central ideas. As usual, it does not purport to replace
the examples and discussion offered by textbooks.

A point about notation

The multiplication symbol is generally omitted in
textbooks — two symbols next to each other are mul-
tiplied together, sy means< x y.. In Sections 1 and

2 | put in all the multiplication symbols for clarity
and for consistency with the online teach files, but as
the “x” symbol is almost never used with matrices,
from now on | will omit it everywhere.

2 Matrix-vector multiplication as a
neural network operation

Part 2.1 of Section 2 introduced a linear neural net-
work unit with outputy, inputsx;...xy and weights
wy...wy. Since its output was simply equal to its acti-
vation, it computed the function

Section 4 part 1 introduced the idea of a layer of
units, in which the units were distinguished by add-
ing an extra subscript to eaghandw (but not tox
because the inputs are the same for each unit). Thus,
if the units in the layer are linear, this equation



becomes

N
Vi = 2 Wik
i=1
where | just specifies which unit we are talking
about.

This can be rewritten as matrix-vector multiplica-
tion. What is done is to represent each set of quanti-
ties by a single symbol; each such collection is called
a matrix or a vector. If the individual quantities have
two subscripts, then their collection is a matrix; if the
individual quantities have one subscript, then they
form a vector. For example, the bold characyer
stands foryy, y, up toyy, all put together into a single
vector. Likewisew stands for all the weights put
together into a matrix ana for all the inputs put
together into a vector.

It is important to realise thaw, which stands for a
matrix, is a completely different kind of object g,
which stands for a number. The number is said to be
anelemenbf the matrix.

A vector, in this sense, is really just a particular kind
of matrix — it's a matrix for which the second sub-
script is always 1, and so there’s no point in writing
it.

There is a rule for multiplying matrices and vectors.
Conveniently, it is just the rule used by a single layer
linear network to compute its outputs. That is, we can
write

y = wx

to meanexactlythe same as the last equation above.
The X formuladefineghe operation of multiplying a
matrix and a vector; and the single layer linear net-
work provides a paradigm of the operation.

Part of the convention is that it is the second sub-
script of thew;; variables that becomes the summa-
tion variable when a matrix multiplication is written
as a computation of individual values. That is the rea-
son for making the second subscript tin the text-
books and in the earlier teach files: it fits in with the
standard convention for matrices.

In summary, the computation performed by a single
layer linear network is to multiply the weight matrix
by the input vector. This is probably one of the easi-
est ways to give meaning to the idea of matrix multi-
plication.

3 Writing out matrices as tables

It is sometimes useful to have a convention for writ-
ing out the elements of a matrix. In the case of a net-
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work with 3 output units and 4 inputs, one might
draw up a table of weights like this:

Input1 | Input2| Input3| Input4
Unit 1 3.2 2.0 -0.5 2.3
Unit 2 -0.4 6.7 11 -4.2
Unit 3 1.2 -2.5 0.3 -0.8

Here, for example, -0.4 is the weight on the connec-
tion from input 1 to unit 2. (I have just made up some
arbitrary numbers.) Therefore for this network, we
would havew,, = -0.4, using our standard conven-

tion for ordering subscripts.

The convention for writing down the elements of a
matrix in a table is the one adopted here. That is, the
first subscript says whictow of the table an element

is in, and the second subscript says whichumnit

is in. That is,wj; meanswyqy, column Which in this

case rnearWunit_number, input_number
To display a matrix, the elements are written out in a
table as above, but without the row and column

labels, and the whole thing is enclosed in square
brackets (or in a few books, round brackets).

We can summarise this convention by writing, for
our 3-unit 4-input network

Wy Wip Wiz Wiy
W= Way Wop Wog Woy
W3q Wgp W3z W3y
The vectors< andy are written as if they were matri-

ces with a singlecolumn (and for this reason are
sometimes called column vectors). That is, for exam-

ple

Y1
Y2
Y3

y:

and likewise forx, except it has 4 elements in this
example.

If you write out the matrix multiplication
y = WX

using the display notation, you get



X
1
Y1 Wqq Wyp Wig Woy «
2
Yo Wyq Wop Wog Woy «
3
Y3 W31 W3y W3z W3y «
4

If you look at the original formula for the neural net-
work, you should be able to see that the rule for
working outy; is to take the elements of thi¢h row

of w and multiply each one by the corresponding ele-
ment of the onlycolumnof x, and add them up. This
“row into column” idea is one of the standard ways
of presenting matrix multiplication. You should real-
ise, though, that it is merely a result of the convention
that is usually adopted for writing down matrices as
tables — there is nothing fundamental about it.

You should be able draw a diagram of the 3-unit 4-
input network, write the weights in the table above in
the right places, invent some input values, and work
out some output values (a) by looking at the diagram,
(b) by using theXz formula and (c) by using the
matrix display method. And you should get the same
results each time. Ideally you might also do it (d)
using Matlab and (e) using your own program writ-
ten in the language of your choice — but that'’s
hardly necessary if you understand what is going on.

4 Matrix-matrix multiplication

Now suppose the single-layer network can be applied
to a lot of different input vectors, and we want to
specify which one we are dealing with. The obvious
thing to do is to add yet another subscript to the orig-
inal equation to specify a particular input.

N

Yik = D WiiXik

i=1

The subscripk is used to specify which of the set of
inputs we are referring to. Here thes don't get
another subscript because they're going to stay the
same all the time (we're ignoring learning now), but
they does get another subscript because it will be dif-
ferent for each different input vector.

Matrix notation handles this extension very easily.
The objectsx andy must now be proper matrices
rather than vectors, because their individual elements
have two subscripts. Given that, the equation above
defines matrix-matrix multiplication just as the ear-
lier equation defined matrix-vector multiplication;
we can still write

y = WX

In terms of the display convention, eachlumnof
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the x matrix refers to a different input example,
whilst eachrow of x refers to a different input line
into the network. Eacleolumnof y refers to the out-
put from a particular input example, whilst eaciw
refers to a different output line from the network.

It should be reasonably obvious from this that a
matrix-matrix multiplication is just like treating each
column of the rightmost matrix as a separate vector,
doing a matrix-vector multiplication on it, and
assembling the results into the output matrix. This is
like saying that our neural network treats each differ-
ent input vector separately from all the others.

Matrix multiplication does not get any more complex
than this.

5 Some simple matrix operations

There are some simple operations on matrices that
you should know the conventions fdvlatrix addi-

tion just means adding each element in one matrix to
the corresponding element in another; obviously they
must be the same shape. In symbols:

if z=x +y, thenz; =Xx; +y;
Matrix subtractionis similar.

Scalar multiplicationof a matrix just means multi-
plying each element by the same number. In sym-
bols:

if z=kx, thenz; =k x;
wherek is an ordinary number (calledsaalar).

Sometimes it's useful to swap the order of the sub-
scripts in a matrix. This is callettansposingit. In
terms of the display convention, one writes the rows
as columns, and vice versa. A “T” superscript is used
to indicate the operation. In symbols:

if z=x, thenz; =x;

Remember what these symbolic statements repre-
sent: the bit before the “then” refers to operations
regarded as somehow happening to the matrices as
entire objects, whilst the bit after the “then” refers to
what happens to individual elements when this oper-
ation occurs.

6 Matrix inverses

Given that we can do matrix addition, subtraction
and multiplication, what about matrix division? That
is, if we can write

y = wx

to find the outputs given the inputs to our network,



can we write
X =y/w

to express a computation that finds out what inputs
caused a given output, as we could for ordinary num-
bers?

The answer is no, for two reasons. The trivial one is
that the “division” notation just isn’t used (or at least
it's almost never used) to mean what we want it to
mean here. The more serious one is that the computa-
tion might not be possible: there might just not be
enough information iy andw to say whak is.

First the notation bit. When this computation can be
done, what is actually written is

x = wly
wherew! is called theinverseof w, and is itself a
matrix. It is used to finck by doing a matrix multipli-
cation ony.

Second, the problem with whether the computation is
possible. It is easy to find an example of when it is
not: if there are more inputs than outputs, then the
inverse problem (going from outputs to inputs) is
said to beunderdetermined— there’s (usually) not a
unigue solution. As a very simple example, say the
net has two inputs and one output and both weights
are 2. Then inputs of;=2 andx,=2 will give an out-
puty,=8. But so willx;=4 andx,=0, and so will any
number of other input combinations, so there’s not a
single solution to the problem of finding the inputs.

The computation may also be impossible if there are
more outputs than inputs. Then, the inverse problem
is said to beoverconstraine@nd there’s (usually) no
solution at all. Again, a trivial example will illustrate
this. Suppose there is one input feeding two output
units, and again both weights are 2yifis different
from ys,, then there’s no possible value for the input
— we can only solve the problem if we assume that
the outputs are compatible with the weights, which in
this case means that they are both the same, and we
can ignore one of them.

Sometimes, however, it is possible to firdjiveny
andw: in other words the matriw™® exists. Given
what has just been said, it clearly helps if there are
the same number of inputs as outputs; thatids
square In addition, w must in some sense transmit
all the information inx through toy in order for us to

be able to go backwards. For square weight matrices
the inverse exists unless one network output effec-
tively duplicates the information available in some
other outputs. Matrices where the inverse exists are
callednonsingular

Computing the inverse of a matrix is an important
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computational operation. Although we do not often
want to literally work out the inputs to a linear net-
work layer from its outputs, there are, for example,
training methods based on the inverse of a matrix of
partial derivatives (which is beyond our present
scope).

What is useful to know is that if the inverse of a
matrix exists, then it can be computed for particular
numerical values, and that almost all numerical pack-
ages devote considerable effort to providing routines
for this purpose. What you probably do not need to
know are the algorithms such routines use — though
any textbook on numerical analysis will give a great
deal of detail to this topic.

7 Matrix analysis

Matrices play such an important role in many sys-
tems, especially simulations of various kinds, that
there is a large literature concerned with analysing
their properties. In particular, the decomposition of a
square symmetrical matrix inteigenvaluesand
eigenvectords an important tool both theoretically
and computationally. This is not the place to embark
on a discussion of these ideas, though you might
meet them in mathematics text books.

It is worth mentioning that there is one particularly
useful way of tackling underdetermined and overcon-
strained inverse problems. This is thiagular value
decompositionof a matrix. When applied to an
underdetermined problem (i.e. short fat matrix), it
allows us to pick out one of the many solutions. (In
fact, the solution it picks out is the one with the
smallest sum of squares of the elements ofxhec-
tor.) When applied to an overconstrained problem
(i.e. tall thin matrix) it finds an approximate result, in
that it finds an input that when fed into the network
will produce an output that is as close as possible to
the y that we started with. (As close as possible
means that the sum of squares error is the minimum.)
The SVD is useful in other ways also; it is worth
being aware of the existence of this technique so that
you can look it up if you want it.

In general, the analysis of matrices is closely tied in
to a geometrical view of mathematics, and in particu-
lar the idea of transformations in a vector space. Such
increasingly abstract ideas lead to increasing power
and generality, but require considerable time and
study.

8 Conclusion

This file has introduced the idea of the matrix (and
vector) as an object that can be manipulated mathe-
matically in various ways. The central idea is that a
collection of quantities can be given a single symbol



and manipulated as a single entity, but that what is
“really” going on is a set of more elementary opera-
tions on the individual elements. It is essential to see
the relation between these levels of description.

Matrices are useful both as a notational shorthand,
and also in a more fundamental way when properties
such as the inverse are exploited. The shorthand
aspect has a programming metaphor: writing down a
matrix equation is like calling a procedure that takes
an array as an argument and carries out an operation
on it. If the operation is well defined, the procedure
can be treated as a black box, and we do not need to
know what happens in detail to the individual ele-
ments.

In practice, too much use of matrix shorthand can get
in the way. It is often clearer to write down what hap-
pens to individual elements, as was done throughout
Section 2, and it is easier to keep track of what is
meant, especially when calculus is involved. How-
ever, as soon as you want to do something equivalent
to propagating information backwards through a sin-
gle-layer network, then matrix analysis is the area
you need to look at.

18



Section 4

Vectors as geometrical objects

This section provides an introduction to vectors as geometrical objects.

Contents

1. Introduction. . ......... .. ... . . 19

2. Positionvectors. .......... ... 19

3. The geometry of simple vector operations . .. .20
3.1 Adding and subtracting vectors. . ....... 20

3.2 Multiplying a vector by a scalar
3.3 The length of a vector
3.4 The distance between two points

objects in general, before outlining two significant
applications in perception and motor control in the
next teach file. As with Sections 1 and 2, those
already familiar with the main ideas of vectors might
skip straight away to Section 5.

2 Position vectors

The idea of representing a point in space usiagr-

4. Multiplying a vector by a matrix. . .......... 21  dinatesis probably a familiar one. The coordinates of
4.1 Diagonal matrices . .................. 22 3 point can be assembled into a single computational
4.2 Rotationmatrices. . .................. 22 structure, which is then aector Using the matrix
4.3 Linear transformations ............... 23 notation of Section 3, the Correspondence between
4.4 Coordinate transformations. .. ......... 23 some points in the 2-D p|ane and their vector repre-

5. The dot product and basis vectors. .......... 23 sentation works like this:

5.1 Thedotproduct..................... 23
5.2 Basisvectors . .............. . 24
2+ + 1
. =a
1 Introduction +M . u
1

In Section 3, the ternvectorwas used to mean, in
effect, a matrix with a single column. In other words,
a vector was a collection of numbers in a definite
order. A vectorx was said to have elements, X,
etc., up toxy, and the general element was denoted
by x;. That teach file set out the conventions for add-
ing vectors together, multiplying a vector by a scalar,
and multiplying a vector by a matrix. One significant
application of the last of these operations was given:
matrix-vector multiplication is another way of writ-
ing down what a single-layer linear neural network

=

does. Vectors were used to represent the inputs and The points themselves are marked with the “+” sym-

outputs of the network by single symbols.

Vectors have, however, many other uses. One partic-
ularly important class of uses is meometry when

bol, with the corresponding vectors written using
matrix notation beside them. | have also given two of
them namesa andb.

vectors are used to represent spatial relationships and It is straightforward to extend this idea to 3 dimen-

operations. Applications of this can be found in many

areas, but analysis of the perceptual and motor sys-

tems of autonomous agents benefits particularly
strongly from vector geometry.

Here, we look at the idea of vectors as geometrical
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sions.

| have not given names to the axes in the diagram.
The convention generally used is that the first com-
ponent of the vector represents the coordinate along



the horizontal axis, which in turn is often called the ing their components individually.
x-axis. The second component represents the coordi-
nate along the vertical oy-axis. With these names
for axes, the components of the veceomight be
calleda, anday instead ofa; anda, as we have been
doing so far. If we wish to retain numerical sub-
scripts, it might be more sensible to refer to the axes

There is a simple geometrical interpretation of the
operation. First draw the diagram above with arrows
or lines from the origin to each of the points:

as the 1-axis and the 2-axis. 2T fa

In fact, both conventions are in use. For geometrical 1+

work in 2 and 3 dimensions, y andz subscripts are

common, and the axes are labelled with these letters. 0 | | |
However, for more abstract uses of vectors (such as 3 4 5
to represent quantities in a neural network), numeri- -1

cal subscripts tend to be used, and if pictures are

needed the axes might be designated by numbers too. -2

Here, | am going to stick to numerical subscripts

because it makes generalisation to abstract uses eas- -3

ier, fits in with the notation of the earlier teach file,

and corresponds to what happens in practice when -4 b

you represent vectors by data structures in a compu-

ter program. Then move a copy of one of the lines so that it starts

from the end of the other line, without changing its
length or orientation. Here we move a copy of b so
that it starts from the end of a:

Sometimes a vector is drawn using an arrow. For
position vectors likea andb above, the arrow would

be drawn starting from the origin (the intersection of
the axes), with its tip at the point in question. This is

simply an alternative convention for indicating a oL a
position. A vector does not intrinsically have a
“start” and a “finish”. 14 shifted copy of line from

origin tob
This use of vectors to represent positions in space is a
paradigm for all their other applications. However,

vectors are used to represent many other kinds of 1 2y 3 4 5

things — both physical quantities such as velocities, 1T
which are measured in ordinary space-time, and
more abstract things such as the state of a network, 27T ¢
which are measured in a higher dimensional space.
-3 c=a+b

The fundamental mathematical concept of a vector is
actually more general and abstract than this. In prac- -4 b
tice, however, the crucial ideas are that position in

space is exactly the kind of thi_ng that vectors can  Tpe new position, marked obtained by this graphi-
represent, and that a vector can in turn be represented operation, is represented by the arithmetical oper-

by a column of numbers. ation of adding the vectors by components. The same
_ result would have been obtained if a copy @$
3 The geometry of simple vector arrow had been tacked onto the endvisf This result

is general: the formal operation of vector addition
corresponds to composing the 2-D position vectors
together.

operations

3.1 Adding and subtracting vectors
A classical application of this is in navigation. Add-
ing a plane’s velocity through the air to the wind
velocity gives the plane’s velocity over the ground.
Velocities are not position vectors; but they do add

a+b = H + {2} - {3} like position vectors and so the calculation, done

2| |4 - either numerically on the components or graphically,

gives the right answer. A more esoteric application is

because adding the vectors means, by definition, add- in the superposition of wave functions in quantum

From Section 3, part 5, you should be able to see that
for the two named vectors in the diagram,
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mechanics; later we will see an application to robot
navigation.

Subtracting one vector from another is done by com-
ponents, like addition. You should be able to figure
out its geometrical meaning; bear in mind that in the
diagram abova =c-b.

3.2 Multiplying a vector by a scalar

In Section 3 | said that multiplying a vector by a sca-
lar (an ordinary number) meant multiplying each ele-
ment by that number. Multiplying a vector by a
positive scalak corresponds in geometrical terms to
making the arrowk times as long but giving it the
same direction. If you think abouta2= a + a, and
draw a diagram like that above, this should become
reasonably obvious.

Multiplying a vector by -1 makes the arrow point in
the opposite direction (or puts the point it represents
on the opposite side of the origin).

3.3 The length of a vector

How far is the point indicated by the vectarfrom
the origin? This is easy to answer from the diagram
in whicha was first defined:

2 + a
1
0

1 2

which contains a triangle with this shape and dimen-
sions:

1

Applying Pythagoras’ theorem to the triangle gives
the length of the hypoteneuse (the sloping side) the
value of V(1%+2?) or v5 (wherev means taking the
square root). This is the distance required. In terms of
the components @&, the formula for the distance is

[q2 2
ar+aj

If ais thought of as representing the line from the
origin to the point, then this formula gives the length
of that line, and so it is called the length of vector.
The formula generalises to many dimensionsy i$
anN-dimensional vector, then its length is given by
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This is more precisely called tHeuclidean normof
the vector. It is sometimes written 3% ¢r |}||; occa-
sionally alsoy (in light type) is used to stand for the
norm of the vectoy (in bold type).

3.4 The distance between two points

How far apart are the points markadandb in the
diagram above? Again, one can draw a right-angled
triangle and apply Pythagoras’ theorem. In this case,
the picture is:

2+ +a

L+ p

where | have drawn on two sides of the triangle —
the hypoteneuse is the line from poito pointb.
The distance between them is thi(d? + 6°) = v37.
The general formula for 2-D vectors is

«/(bl_al)z +(by—ay)?

Note that the components are subtracted first, then
the differences are squared.

This is a particular case for the distance between two
points represented by vectors. The general formula
for the distance betweer andy is just |k - V]|
Putting the definition of the norm together with the
procedure for subtraction should allow this to make
sense. Nowx andy can be in a space with any
number of dimensions.

The Euclidean norm has a nice geometrical meaning
in 2-D and 3-D, but you have already met it in a dif-
ferent context. Look at the error function for a neural
network in part 4.1 of Section 2. The errBris the
square of the Euclidean distance between the output
vectory and the target vector



4 Multiplying a vector by a matrix

In Section 3 we looked at what matrix-vector multi-
plication meant in terms of computations on the com-
ponents, and we noted the relationship of this to the
operation of a linear neural network. There is also a
geometrical way to look at this, though it does not
yield a single simple picture. The general idea is that
the multiplication leads to a geometrical transforma-
tion of one vector into another, and the nature of the
transformation can be related to properties of the
matrix.

| will not give a comprehensive treatment of this, but
will give examples of two important special cases
that illustrate the idea.

4.1 Diagonal matrices

First, consider multiplyinga by a matrix that only
has non-zero elements on its top-left to bottom-right
diagonal (called a@iagonal matrij. Sincea has only
two components, and we want the result to be
another vector likea, the matrix has to have 2 rows
and 2 columns. It looks like this:

kNl
0q |a, qa,
(You should be able to verify this equation by apply-

ing the matrix-vector multiplication rule from Sec-
tion 3.) Herep andq are ordinary numbers.

What does this do ta? For a start, putting = g is

the same as multiplying by a scalar, so this just
stretchesa out by a factomp. If p andq are different,
then, roughly speakingis stretched out along the 1-
axis by a factop and along the 2-axis by a factqr

If it is not clear what this means, try plotting the
result for the vectoa (with components (1, 2)) and
various different values fop andg. The numbergp
andq are sometimes called expansion factors, though
if they are less than 1 they cause contraction rather
than expansion.

Suppose a shape is represented by a number of points
on its periphery, and each of these is represented by a
vector. Multiplying each vector by the same matrix
will produce a new shape. For a diagonal matrix, the
shape may be expanded or contracted, and it might
be squeezed up or stretched out more along one axis
or another. Thus diagonal matrices can make trans-
formations with effects like this:

O -

> (]
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If p=qthe shape is simply expanded or contracted,
but otherwise it@aspect ratio(the ratio of its width to
its height) changes.

Above, | wrote the components afas (1,2). Strictly,

| should have written them in a column with square
brackets, but it gets tedious laying those out. | will
sometimes therefore write the components in the text
line in round brackets; this should not cause any con-
fusion, and in any case the convention is often used
in books.

4.2 Rotation matrices

Now consider multiplying the vector a by the follow-
ing specific matrix:

{0.7 —o?

0.7 0.7

For a with components (1, 2), you should be able to
verify that the multiplication gives a vector with
components (-0.7, 2.1). Multiplying this matrix with
the other vectors in the initial diagram gives the fol-
lowing transformations when the multiplication is

done (remember, these ought to be written as column
vectors, but I'm being lazy):

(-4,1) - (-3.5-2.]
(-3,-2) - (-0.7,-3.5)
(3,-1) - (2.8 1.9
(2,-4) - (4.2-1.9
Plotting these transformations on the original dia-
gram has this effect, marking the original points by

lower case letters and the new points by the corre-
sponding upper case letters:

Ao

ow +
w T

If you join the corresponding points, you will see that
they have all been approximately rotated about the
origin by about 45°. This suggests that a matrix can
effectively act torotate vectors. If the set of vectors
defined a shape amongst them, then this shape would



get rotated by the matrix multiplication.

In fact the matrix | have used to demonstrate this is
only approximately a pure rotation matrix; if you
plotted out the results really accurately you'd detect a
little contraction as well. To construct a pure rotation
matrix for 2 dimensions, you choose an angle you
want to rotate through, (call 8), then get the matrix
element values using

{cose —sine}

sin@ cosB

This produces an anticlockwise rotation of the vec-
tors if 8 is positive. If® = 45°, then co8 = sing =
approximately 0.7, which is why the example above
gave the results that it did. A matrix like this pro-
duces no expansion or contraction or change in
aspect ratio. Such matrices are useful in many areas;
one currently very important use is in computer
graphics, where objects represented by sets of posi-
tion vectors must often be rotated for display from
different viewpoints.

Rotation matrices generalise to 3-D and higher
dimensions.

In general, a transformation produced by a matrix
multiplication can be broken down into a rotation
through some angle, followed by multiplication by a
diagonal matrix, followed by another rotation. This
turns out to be the geometrical interpretation of the
singular value decomposition mentioned at the end
of Section 3. And if a matrix cannot be inverted, it
means that it transforms more than one input vector
into the same output vector, so that there is no way of
going backwards unambiguously.

4.3 Linear transformations

The multiplication of a vector by a matrix islemear
transformation What this means is that if you trans-
form two vectors separately, and add the results
together, you get the same answer as if you add the
two vectors together first, and then transform the
sum. In symbols:

M(x +y) = Mx + My

The mathematics of transformations that have this
property is fundamentally far simpler than that of
transformations that do not. Conversely, using non-
linear transformations can yield richer behaviour
(e.g. in the context of neural networks) than linear
transforms can.

4.4 Coordinate transformations

There is another way of looking at the effect of a
matrix multiplication. Instead of thinking of it as
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moving a position vector around in a coordinate sys-
tem, you can think of the vector as being fixed and
the axes as changing. The matrix multiplication is a
way of expressing what the vector is in a different
coordinate system. This interpretation can be very
useful; whether it is appropriate depends on the
application, but you need to be clear about which
interpretation you are using at any time.

The effects of the matrices described above on the
coordinate system are the opposite of their effects on
the vectors. For instance, the diagonal matrix shrinks
the 1-axis by a factor gb and the 2-axis by a factor
of g, whilst the rotation matrix turns the axes clock-
wise through an anglé. The numerical calculations
are of course identical whichever interpretation is in
use.

5 The dot product and basis vectors

5.1 The dot product

Suppose we take two vectors and multiply the trans-
pose of one by the other. Taking the transpose means
swapping rows and columns, so an ordinary column
vector becomes a row vector. It looks like this:

il

which, if you apply the normal multiplication rule
and write out what you get, comes to

a;b; +ayb,

The generalisation of this td-dimensional vectors
andy is

N

> XY

i=1

This is called thedot productof the vectors. It is an
example of a kind of relationship between vectors
called annner product

You have met the dot product already in a different
guise. A single linear unit in a neural network forms
the dot product of its weights vector and its input
vector (part 2.1 of Section 2).

Does this have a geometrical significance? It does,
but first we need to explain what is meant by project-
ing one vector onto another. Suppose we have two
position vectors, sag andb, and we draw the arrows
from the origin to the points they represent. Then we
draw a line from the tip of tha arrow, at right angles

to the b arrow, and mark where this perpendicular
meets theb arrow. This point is theprojection of a



ontob. In a picture:

a

-

(( b
Projection ofa ontob is

at this intersection

Origin

The dot product o andb is the length ob times the
length of the projection od ontob. If the intersection
occurs on the opposite side of the origin to the point
b (i.e. ais moved to the left in the diagram above so
that you have to projedt’'s arrow backwards to get
an intersection), then the dot product is negative. The
relationship is symmetrical — you can swap the
andb and get the same result.

If a andb point in the same direction, then their dot
product is just the product of their lengths. If they
point in exactly opposite directions, the dot product
is minus the product of their lengths. If they are at
right angles, the dot product is zero.

Another formula you might see for the dot product is
alb = ||a| ||b| cos(angle betweeraandb)

Textbooks give the proof that this is the same as the
definition above in terms of the components. For
high-dimensional vectors, this formula is used to
definewhat is meant by the angle between two vec-
tors.

The dot product is biggest for two vectors of fixed
length if the angle between the two vectors is zero —
that is, one of the vectors is just a scalar constant
times the other. For example, if a linear unit in a neu-
ral network has only a fixed amount of weight to dis-
tribute (in the sense that the sum of the squares of its
weights is fixed), it can optimise its response to a
given input by making the weights match the inputs
— if the weights are proportional to the given inputs,
then the unit will be giving as big an output as possi-
ble.

5.2 Basis vectors

The dot product gives another way of thinking about
linear transformations. Each row of a matrix can the
treated as the transpose of a column vector. Then
when we multiply that matrix by a vector, what we
do is to form a set of dot products. The first compo-
nent of the output vector is the dot product of the
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input vector with the first row of the matrix, and so
on.

The rows of the matrix are sometimes calleasis
vectors(though the matrix must be invertible for this
to make proper sense). The elements of the new vec-
tor are the projections of the old vector onto each of
the basis vectors in turn, multiplied by the lengths of
the basis vectors. The coordinate transformation pro-
duced by the matrix can thus be seen as a set of pro-
jection operations onto a set of basis vectors.

In fact, this allows us to give abstract definitions of
vectors that do not depend on how they are repre-
sented. The ordinary components of the vectors, that
we have used so far to represent them, are actually
just the dot products of the vectors with the standard
basis vectors, which have components (in 3-D) of
(1,0,0), (0,1,0) and (0,0,1).

This idea will not be pursued further here, but it pro-
vides important tools for analysing some systems. To
go on in this direction requires an analysis of the
abstract ideas ofector spaces— Horn & Johnson
(see Section 3) gives information.



Section 5

Vector applications

This section complements Section 4. It provides two examples of the application of ideas in vector analysis.

Contents
1. Introduction. . ........... ... .. ... .. ... 25
2. Avectorvelocityfield. . .................. 25

2.1 The idea of a velocity field

2.2 An optical velocity field . ............. 26
2.3 Matrix multiplication as a field
operation . . ......... .. 26
2.4 Flow patterns illustrated .............. 27
3. Coordinate transformations for control. . .. ... 27

3.1 Simple robot arm kinematics. . ......... 28
3.2 Alternative coordinate systems, especially
polar coordinates

1 Introduction

The most immediate and obvious application of vec-
tors is the representation of geometrical relationships
in ordinary 3-dimensional space. This is not surpris-
ing, since the prototype vector is a position vector.
This file concentrates on this kind of use for vectors,
but it is worth bearing in mind that much more
abstract entities also lend themselves to vector repre-
sentation, as we have already seen in the case of
input and weight vectors for neural networks.

The need to represent geometrical relationships
arises particularly often in those parts of robotic or a-
life systems which have to interact with the physical
world (or a simulation of it). Perceptual and motor
control systems frequently use vector representations
of space (and sometimes of space-time).

Here, | focus on matrix-vector multiplication, since
this linear operation is one of the most important in
applied mathematics.

2 A vector velocity field

2.1 The idea of a velocity field

The common functions, such as sin and log, take a
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number as argument and produce (or “map onto”)
another number. There is nothing to stop us extend-
ing the idea of a function to include vector functions,
which take one or more vectors (and maybe numbers
as well) as arguments and which produce vectors as
their result.

If the input to such a function is a position vector,
and the result is another vector, then we haveaor
field For example, if the wind speed and direction at
each point at ground level in Sussex is represented by
a vector, the set of vectors forms a 2-D vector field.
Graphically, the wind over Sussex might be dis-
played as arrows drawn on a map, and this provides a
way to visualise the vector field idea.

The wind velocity vector at a point has two compo-
nents (one might represent it using northerly and
easterly components for example). It's not absolutely
obvious that velocities should be manipulated in the
same sort of way as positions, but in fact it's the case
that the same vector rules are appropriate for veloci-
ties, and the rules have straightforward physical
meanings (at least as long as the speeds are small
compared to that of light). In other words, if posi-
tions are appropriately represented by vectors, then
so are velocities.

If the wind velocity was represented by a vector
and position on the ground by a vectigrthen we
could write

v=f()

where f is the name of the vector function that
assigns a wind velocity to each point on the ground.
Of course in this example the function would not be a
simple thing to write down — the best you could
probably do would be to tabulate an approximation
to it — but the idea that you can associate a velocity
vector with each position vector in tltwmainof the
function (here Sussex) is what matters. Often the
shorthand notationv(r) is used to indicate thav
depends om, without giving the function a separate



name.

If the vertical component of the wind velocity was
represented as well, and the position included height
above the ground, then we would have a function
from 3-D position vectors to 3-D velocity vectors.
(The manipulation of large arrays representing
approximations to such functions is one of the main
tasks of the Meteorological Office’s supercomput-
ers.)

2.2 An optical velocity field

Now | give a specific example of a velocity field that
is useful for studies of perception in the control of
robot and animal locomotion.

Suppose a camera attached to a robot is moving
through the world. The image formed by the camera
will be changing. If all the visible objects in the envi-
ronment had closely textured high-contrast pattern
on them, we could track the images of features of the
pattern across the image plane of the camera. We can
imagine drawing arrows on the image representing
the speed and direction of motion of features at a
given moment. If this set of arrows could be made
very dense, so that an arrow could be associated with
any point on the image plane, then we would have a
2-D vector field.

This field is closely related to what is known as the
optic flow field for the moving camera.

In practice, an approximation to the image velocity
field is easy to obtain by hand. You simply get two
images from different positions of a camera (not too
far apart), superimpose them, and join corresponding
features with arrows. Each arrow effectively repre-
sents an image velocity vector.

In general, this velocity field will be a complex func-
tion like the wind field over Sussex — there is not a
simple formula for it. However, under certain cir-
cumstances there is a good approximation which
does obey a simple rule. If the following apply:

(a) the camera is viewing a smooth surface;
(b) the field of view is reasonably small;

(c) the camera is panned and tilted so that it
tracks a feature at the centre of the image, which
is taken as the origin for position;

then the image velocity field is approximately a lin-
ear function of image position. What this means is
that if position in the image is represented tbgnd
image velocity by, the relationship is just a matrix
multiplication:

vV = Mr
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whereM is a 2x2 matrix. The 4 components bf
depend on the direction the camera is moving and the
slant and tilt of the surface. To write down this rela-
tionship is not trivial and will not be done here (refer-
ences are available on request).

2.3 Matrix multiplication as a field operation

This example gives us another opportunity to look at
the geometrical use of matrix multiplication. Particu-
lar combinations of components of tMematrix pro-
duce very different and distinctive image velocity
fields.

Suppose, for example, tht is

05 0

0 O.
Then it is easy to work out some examples of map-
pings fromr tov:

r \Y
(1,0) - (0.5 0)
(1,2) - (0.5, 1)

(0,-1) - (0,-0.5)
etc.

Given such a table, it is easy to plot out some sam-
ples of the image velocity field as an arrow diagram.
One naturally draws the arrow representingt the
position given byr, just as one would for the wind
arrows on a meteorological map. If you do this for
the table above and some more examples, you should
get a picture looking roughly like

where the arrows get longer the further out from the
origin you go. In other words, the diagonal matrix
produces d@ilating flow pattern.

This kind of flow pattern is generated by motion



towards a surface.

Note the difference between this and matrix multipli-
cation viewed as a transformation, as in Section 4

used in a variety of ways, either to help build a 3-D
representation of the environment, or more directly
in a motor program.

part 4. There, the idea was that a shape was mapped 2.4 Flow patterns illustrated

into another shape, or that a different coordinates

system was used to represent the same shape. Here, aYou may be able to generate representations of flow

function from the position vectors maps onto a differ-
ent kind of thing: a velocity. The actual matrix
manipulations are, of course, the same, but their
interpretation is different.

The effects of other forms dfl are easy to calculate.
You should be able to check, by calculating one or
two vectors in each case, that

0 -0. produces something lik =
05 0 v+
>

This rotational flow field can be produced by spin-
ning the camera about its axis. Note that the matrix is
just 0.5 times the matrix for a rotation of 90° (see
Section 4, part 4.2), so it is not surprising that it has
this effect.

The matrix
U |
produces something likg, + >

{0.5 OJ
0 —0.

A
which is one component ofshearfield, and

00 produces something lik >
05 0 v+
-+

which is the other component of shear. Shear flow
fields are produced when a camera moves sideways
in front of a slanted surface. For instance, the image
of the ground in front of a mobile robot has the first
component of shear combined with dilational flow,
whilst the image of the ground to the side has the sec-
ond component combined with rotational flow.

The details are not important; the point here is to
illustrate the idea that a vector field, in this case gen-
erated by one of the simplest vector functions (multi-
plication by a matrix), can represent a rich variety of
patterns — in this case patterns related to an impor-
tant part of the perceptual process of a mobile agent.

In practice, the elements of the matrix have to be esti-

mated from an image sequence. This can be done in a

variety of ways, but typically a model, represented by
the linear equation above, is fitted to the partial deriv-
atives of image intensity with respect to space and
time coordinates. The matrix elements can then be
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patterns using a package such as Matlab, or the
Poplog system. For example, using such a program
the matrix

o

generates the flow field representation shown here:

Lo b M e mem et = v om o= w o=

The program used does not draw the arrow heads, but
puts a dot at thévaseof each arrow. The dots mark
the positions corresponding to theectors.

A more complex example generated by the matrix

0.1 -0.

0.05 0.0
which produces a mixture of shear, dilation and rota-
tion, appears as

aaaaa

3 Coordinate transformations for
control

A second application is to the control of robot arms.



This will merely be outlined here to give the general
idea; robot control textbooks give details and exam-
ples. | will also mention the use of alternatives to the
Euclidean coordinate system.

3.1 Simple robot arm kinematics

Suppose a robot’s gripper is operated from some

base, and designed so that it can be moved on com-
mand to a given position above a plane, expressed in
(x, y) coordinates, relative to that base. (Some piece

of electronics on the base converts these coordinates
to the signals which are actually sent to some motors

to move the arm.)

Gripper

vg

Base

Provided there is a program that can work out the
positions to send the arm to, there’s no problem with
this. However, the arm might not be able to reach
everything that is needed, so it is mounted on a
mobile base. The controller for this can turn it to face
in any direction and can move it around the lab. Its
position in the lab is also expressed in Euclidean
coordinates, relative to some axes fixed to the floor,
which will be denoted byX, Y). The orientation of
the base is indicated by an an@lewhich is the angle
anticlockwise from the X-axis on the floor to tixe
axis on the base. Thus we have something like

Y

Gripper

ve

Mobile base

Target

X

Here® is about 30°. Note that it is independent of the
base’s position in the room.

The question is: if the position of an object in the
room is specified in terms of itsX( Y) coordinates
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(i.e. its position on the floor), how do we move the
gripper to it? Since the gripper control works in
terms of &, y), we need to work out where the target
is relative to these coordinates. Although you could
probably work out the answer using elementary
geometry and trigonometry, the formula is very sim-
ple when expressed in terms of vector transforma-
tions. Suppose the robot's base (to be precise, the
origin of its (x,y) coordinates) is at positioR relative

to the floor coordinate system, and the target is at
positionT in this coordinate system. What we need is
the target’s position in thbase’scoordinates, which
we will denote byt. Then we can move the gripper
directly to it, provided it is in range.

The formula to get fronT andB to t is much simpler
than the one you might work out using elementary
mathematics. It is

t = R(-06)(T -B)

HereR(-8) means the 2x2 matrix that rotates a vector
anticlockwise through an anglé®,-or equivalently
clockwise through an angi The multiplication is a
matrix-vector multiplication. From Section 4, part
4.2, we know that

R(-6) = cos9 sin6
—sin@ cosb

(changing the signs, and remembering that @os(
cos(9) and sin@) = -sin(B)). The formula is easy
enough to evaluate in a computer program, possibly
using library routines for the matrix operations.

You should be able to see why the formula is correct:
T-B is the vector from the base to the target in the
floor coordinate frame, and to express it in the base
coordinate frame, which has been rotated anticlock-
wise by, the vector is in effect rotated clockwise by
0.

Why is this more useful than elementary geometry to
do the same task? First, it is quicker and easier to
write down and implement; provided you know what
a rotation matrix looks like, or you know where to
find out, you can have a procedure for the conversion
set up in a few minutes.

Second, it is easier to manipulate. For example, we
might want to go in the other direction. The robot
might have a sensor on its base that detects the target
and produces the components tofWe might then
want to knowT in order to plot the position of the
object in a map that is being built of the lab. The
equation can easily be reversed to yield

T = RO)t+R

(by default, multiplications are always done before



additions). This equation could be got either by rea-
soning about the situation, or simply by solving the
first equation forT. SinceR(8) clearly reverses the
effect of R(-6), we can note in passing th&(-6) is
both the inverse and the transpos&(f).

Third, the method generalises better, in a variety of
ways. The most obvious is to 3-D: the equations stay
the same, though the rotation matrix become3.3t

is also easy to incorporate additional links into the
chain. For simplicity, we assumed that the gripper
controller could simply move the gripper to given
coordinates; in practice, this would be achieved by
having several separate links in the arm. For each of
these there is a coordinate transformation so that the
target positition could be expressed in terms of that
particular link’s controller. For a chain of links, the
equation for the target position can be applied recur-
sively as information is passed along the chain —
each link knows its own orientation relative to the
previous one, and so can work out the target position
in its coordinate system. And indeed, the coordinate
systems that are used do not even have to have the
same units, or have right-angles between their axes:
these differences can be taken into account by using
transformation matrices that are not pure rotation
matrices. Then, the matrix inverse really comes into
its own if the equations have to be solved to find the
reverse transformations.

There are some tricks that are commonly used in this
kind of computation. One important one is the use of
homogeneous coordinatewhich allow the opera-
tions in the equations above (a vector addition and
matrix multiplication) to be carried out in a single
multiplication step. This is done at the expense of
including an extra element in the representation of
each vector, and an extra row and column in each
matrix. The extra vector elements are in fact redun-
dant, but allow the vector to be added to be specified
in the additional matrix elements. The technique will
not be elaborated here, though it is not particularly
difficult; it can speed up the algebraic manipulations
needed for complex systems.

The central idea in this section is that oframe of
reference Any physical vector must be expressed rel-
ative to such a frame but a given frame may not be
suitable for all the operations that need to be carried
out. Transformations between frames are therefore
an essential operation.

3.2 Alternative coordinate systems, especially
polar coordinates

So far, vectors have been represented using Eucli-
dean ky) coordinates. It is often useful to represent
them in other ways; one of the most commopaar
coordinates In 2-D polar coordinates, a position is
represented by its distance from the origin (often
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denoted by) and the angle a line joining it to the ori-
gin makes with thex-axis (often calledd). Such a
coordinate system might be used because it corre-
sponded better to the physical setup of a sensory or
motor system; wherever there is a natural centre
(such as the eye position in a visual system), polar
coordinates merit consideration.

y A

angled

The relationships between polar and Euclidean coor-
dinates are:

JXx2+y2
atan(y/ x) if xis positive
—atan(—-y/ x) if xis negative

r
0
6

assuming that atan (also called arctan) returns a
result in the range -90° to +90° (om0 +mtradians).

In the maths libraries provided with almost all com-
puter languages there is a function, often called
atan2 , which does thé calculation givery andx.
This should always be used in preference to doing
the division and callingtan orarctan explicitly.

To go in the opposite direction, use

rcosd
rsin®

X
y

Note that if a vector is expressed in terms @nd®,

the rules for addition and multiplication no longer
apply. Essentially, you have to translate it to Eucli-
dean coordinates before adding it to another vector
by components or transforming it using matrix multi-
plication.

The transformation between polar and Euclidean
coordinates isonlinearbecause, for example, multi-
plying bothx andy components by a constant multi-
pliesr by that constant but does not chafige

Often, however, it is necessary to transform small
changesdn a vector, represented in polar coordinates
(or some other system), between coordinate frames.
This might arise in the robot arm control system if
we wanted to know what direction and speed the
gripper will have relative to the floor if a motor



somewhere in the middle of the arm is actuated at a
given rate. A transformation of changes or velocities,
can be carried out by a matrix multiplication without
calculating the Euclidean coordinates. The elements
of the matrix are derived from the coordinate rela-
tionships (they are actually partial derivatives), and
such a matrix is known as dacobianmatrix. Books
such as that by Boas (reference in Section 1) go into
considerable detail about this. Note that the inverse
of the Jacobian (if it has one) may indicate how to
activate the motors to produce a desired motion.

You may encounter the idea fiearisinga problem

by considering small changes in a quantity rather
than the quantity itself. The use of the Jacobian
matrix to calculate gripper velocities is a good exam-
ple of this.

Polar coordinates can be extended to 3-D. Other
forms of non-linear coordinate transformations can
be found — for example log-polar coordinates are
useful in some areas of vision.
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Section 6
equations

Numerical integration of differential

This section provides an elementary introduction to the ideas behind the numerical integration of differential

equations.

Contents

1. Introduction. . ......... .. ... . . 31
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1 Introduction

Often, the physics of a situation — or of a simulation
— tells us how variablesary with one another, but
does not directly tell us what values the variables
have. The rule for how the variables co-vary might be
expressed as differential equation(that is, an equa-
tion involving derivatives), or it might be that we are
simply have some method of obtaining values of
derivatives. In either case, what we often want to do
is to work out the values of the variables themselves.

For example, a mobile robot might be able to meas-
ure its velocity — it knows how position varies with
time — but it might need to know its actual position
in order to determine when it has reached its target,
or which way to turn towards it. To estimate its posi-
tion, it could use a kind of dead reckoning: it could
add up the distance covered in successive steps,
assuming each step is made at a constant velocity.
Adding up small steps is known astegratiorn in
mathematics it is carried out on infinitesimal steps,
and is formally the inverse process to differentiation.

Sometimes, differential equations can be integrated
symbolically, so that we obtain a straightforward for-
mula for the variables in question. Here, though, we
look at the case where this is not possible, either
because the equation is too difficult to integrate sym-
bolically, or because the derivatives are not given by
a formula at all, but are tabulated or measured.

Textbooks on numerical analysis deal with the tech-
niques needed in detail. A good example is “Numeri-
cal Analysis”, by R.L. Burden & J.D. Faires (3rd
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Edition, PWS Publishers, 1985) — see chapter 5. A
summary and practical advice can be found in
“Numerical Recipes in C”, by W.H. Press, B.P. Flan-
nery, S.A. Teukolsky and W.T. \etterling (Cam-
bridge University Press 1988, later reprints). Anyone
needing to seriously use these techniques will need to
spend time with at least one such book; in this file the
aim is only to illustrate the underlying principle —
which is in fact very simple.

2 Euler's method for initial value
problems

A mobile robot moves down a corridor (a 1-D space),
measuring its speed at successive time steps. We
need to know how far down the corridor it is at any
given time, perhaps so that its position can be dis-
played on a monitor, or so that we can stop it when it
has gone far enough.

If the robot’s position isx(t) at timet, then its speed
v(t) is given by the simple differential equation

We assume that we know where the robot starts from.
This is called aninitial value problembecause the
differential information is used to work out how the
state evolves from a specified initial state.

There is an obvious way to integrate the equation to
get values o given values ol. Supposer is sam-
pled regularly at = 0,t = 1,t = 2, etc., and thav
changes slowly enough that we can assume that it is
constant during the time between samples. In fact,
we will just assume thatkeeps the value it has when
one sample is taken until the next sample is taken.
Then the distance travelled between titne 0 and
timet =1 is justv(0), and so on. If the robot starts at
x =0 at timet = 0, we can just compute the distance
travelled in the first time step, then in the second, and



so on, and add them up to get the current position.
Negative speeds mean going backwards.

For example, if the speed is given by the middle col-
umn below, then this method gives the positions in
the right hand column

t v X
0 2 0
1 4 2
2 3 6
3 2 9
4 0 11
5 -1 11
6 -2 10
7 -3 8

and so on. The calculation is trivial and generalises to
X(t) = x(t=21) +v(t-1)

If the interval between samples is not 1 unit of time,
then the velocity must be multiplied by the interval to
get the distance covered. We would write

X)) = X(t=T) +TUt=T)
whereT means the interval between samples.

This is Euler's method for integrating the differential
equation. It is evident that the shorter the time step
that is used, the more accurate the results will be.
Also, errors will accumulate, so the overall error will

A second example of the application of Euler's
method occurs in recent work in computer vision.
One of the major difficulties of image analysis is to
find meaningful structures in an image. A very prom-
ising technique is to simulate a physical system
which responds to “forces” generated by the image
data. For instance, a string which is elastic and stiff,
and which is attracted to local changes in image
intensity, can be used to find connected smooth con-
tours. Such a simulated string is let loose in the
image, and allowed to attach itself to any structure it
can find. The behaviour of these computational
objects, known as active contours, is described by
differential equations, and their evolution in time is
simulated out using Euler's method.

3 More complex one-step methods

One-step methods are those which, like Euler’s, try
to make a prediction for time+T using information
only from timet or later, whereT is the interval
between times for which the function is estimated.

The limitation of Euler's method is that it assumes
that the value of the derivative (the speed in the
example above) is constant over each successive
interval. More sophisticated methods attempt greater
accuracy by weakening this assumption.

For example, in thenidpoint methodthe derivative
(the speed in the robot example) is estimated at the
centre of the interval rather than at its beginning,
which clearly makes more sense. The problem with
this that the speed might depend not only on elapsed

increase as time goes on. It shares these characteris-time, put also on the position the robot has reached

tics with all other numerical integration methods, but
is extremely easy to implement. In a sense, it is the
model for all the more sophisticated algorithms that
you will encounter. Although numerical analysis

books describe many more complex methods for
integrating differential equations, Euler's method and
simple variations on it are the workhorse of many
physical simulations.

Euler's method extends to higher-order differential
equations (those with multiple derivatives). For
example, we might know the acceleration of the
robot, not its speed (though we would need to know
the initial speed). Euler's method can be applied
twice, first to integrate the acceleration to get the

by the middle of the time interval. In a simulation,
we do not have a direct measurement of the speed, so
we need to know the robot’s position to find the mid-
point speed estimate. This seems circular. The way
out is to use Euler's method to estimate the position
the robot will have reached half-way into the time
interval, then get a midpoint estimate of speed from
that, and use that to get the position at the end of the
interval.

This kind of thing can be elaborated further: a second
mid-point estimate of the speed might be made, and
combined with start-point and end-point estimates to
get an overall speed for the final prediction. A class
of methods based on this general idea, but carefully

speed, and then to integrate the speed to get the posi- gesigned using an analysis of the errors that will

tion.

Euler's method also applies to vector equations. If

occur, is theRunge-Kuttamethods, one particular
case of which forms a kind of standard in the area.

vectors are represented using rectangular coordi- A different kind of refinement is to vary the step size
nates, then each component can be integrated inde- T gccording to how rapidly the function seems to be
pendently of the others. Thus a robot that measures fiyctuating. The result obtained by taking two half-

its speed and direction can integrate them to find its
position in 2-D or 3-D space.
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size steps can be compared with that from one full
step to see whether significant accuracy is being lost



on the full step, and the step size adjusted accord-
ingly.

The main point to realise is that all these methods
involve trade-offs amongst accuracy, computation
time, and ease of implementation. There is no simple
rule for choosing an algorithm, since this depends on
the details of the problem — every methods exploits
assumptions about the smoothness of the functions
concerned in some way. The books mentioned above
give considerable guidance, and give formal analyses
of the errors: but the error expressions are in terms of
higher-order derivatives, so the assumption of
smoothness is still present. In the end the consistency
of the results when parameters are varied across trials
is probably the best check on whether a simulation is
using sensible methods.

4 Multistep methods

The one-step methods discard information from
before time t when they are calculating the prediction
for time t+T. It seems reasonable to suppose that for
smooth functions, this information should be
retained and used. In general, some weighted sum of
the previous estimates of the function and previous
values of its derivative is going to be a good start.
Methods which use this information are called multi-
step methods; a common example is firedictor-
correctormethod, which involves a weighted sum of
the previous values and their derivatives to make a
prediction, and then uses the derivative at this pre-
dicted point to improve the prediction further.

5 A generalisation

The weights for the weighted sums are calculated by
considering the theoretical errors, and assuming that
higher order derivatives of the functions are rela-
tively small. However, the use of a weighted sum
inevitably suggests that there might be something to
be gained by making the weights adaptive, if it is the
case that we find out what the true value of the func-
tion is at some point. For example, in financial fore-
casting, one might supply a set of recent values of a
share price as inputs to a neural network, together
with the values of other variables which might be
expected to affect the price (and so might be related
to its derivative with respect to time). The network’s
output could be taken as a prediction of the next
day’s price, and then when the true value came along,
the network could be trained using any supervised
learning technique. Such a network could learn to
simulate at least the predictor step of the predictor-
corrector method; since the network would be data
adaptive, it should be capable of outperforming other
methods for at least some classes of input. For a rela-
tively simple signal, such as the level of the tide
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measured each hour, a simple weighted sum with
adaptive weights can produce good predictions over
surprisingly long periods.



Section 7

Some probability and statistics

The area of probability and statistics is an enormous one with vast applicability. This section summarises, in
sketchy outline, a few of the more basic and useful topics in this field.
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1 Introduction

Mathematically, a probability is a number between 0
and 1, which is manipulated according to certain
rules, and these are well established and well under-
stood. The interpretation of probabilities remains,
however, a matter for debate. Very roughly, there are
two schools of thought. For the frequentist school,
the probability of an event is the fraction of times
that the event will occur if the situation leading up to
the event is replicated as exactly as possible. For the
subjectivist school, the probability of an event is a
measure of the strength of belief of a rational being
that the event will occur. Whilst these differences are
important both at a philosophical and practical level,
they will be left to one side here.

In classical physics, probabilities reflect ignorance on
the part of an observer (we express the fall of a coin
in terms of a probability because we do not know
enough about the exact spin, lift etc. imparted when
it is tossed), whilst in quantum physics the uncer-
tainty entailed in the use of probabilities is a funda-
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mental property of nature (the future state of an
atomic particle cannot, even in principle, be pre-
dicted exactly). In Artificial Intelligence, probabili-
ties are generally used to deal with the ignorance of a
reasoning system about the exact details of a situa-
tion. In simulation studies, probabilistic reason is
used both to set up initial conditions and to interpret
the outcomes of repeated trials.

Textbooks such as that by Boas (see Section 1) give
an introduction to probability. The use of probabili-
ties will be encountered in almost every branch of the
study of evolutionary and adaptive systems.

2 Probability fundamentals

2.1 Basics

The probability of an evenkE is written PE), or
sometimes as HEj. For example, ifH is the event
that a tossed coin turns up heads, and the coin is fair,
then we might write B{) = 0.5.

A fundamental property of probabilities is that if two
eventsA andB aremutually exclusivéi.e. they can-
not both occur), then

PAorB) = PQ) + PB)

(Notation: where | have used the word “or”, books
often use the symbdll, which also means set union,
or the symbolJas in predicate calculus.)

For example, if Afl) = 0.5 and P{) = 0.5, andH and

T cannot both occur (perhaps because they stand for
heads or tails in a single coin toss), thetR{ T) =

1.

This last example illustrates another fundamental
property: if a set of events mompletqi.e. one of the
events in the set must occur) and all the events are
mutually exclusive, then their probabilities add up to
1. Itis occasionally helpful to think of probability as

a limited resource which has to be distributed over



the possible events in a way which reflects how likely
each one is.

More formally, if eventsX; ... Xy are complete and
mutually exclusive (i.e. exactly one of them must
occur), then

SPX) = 1

In fact, what | have said so far is sufficient to estab-
lish the formal basis of probability theory. One con-
sequence of these properties is tha &ndB are two
events that are not necessarily mutually exclusive,
then

PAorB) = PA) + PB) - PA andB)

where A and B” means that both events happen.
(This is often writtenA & B, or using the symboh
(set intersection) ofl. You may also see RB) and
P(A,B), meaning the same thing.) The formula makes
sense, in that if the two events are mutually exclu-
sive, then P& andB) = 0, giving the previous for-
mula.

2.2 Estimating probabilities

Textbooks (e.g. Boas — see Section 1) devote a large
amount of space to the matter of estimating the prob-
abilities of different kinds of event. Such questions as
“What is the probability that you and a friend have
different birthdays?” are the grist to this mill, which
also involves a lot of throwing of dice and drawing of
cards.

Questions like this generally involve summing prob-
abilities for mutually exclusive events. Aample
spaceof all possible mutually exclusive primitive
events is set up; usually there is some symmetry
argument that makes the probabilities for all these
events equal. Then primitive events have to be com-
bined to create the set of circumstances that allows
the question to be answered; the probabilities for the
primitive events are summed. Although this sounds
simple, subtle and complex arguments are often
needed to get it right.

As this is standard textbook material, | will not dwell
on it. Here is a simple example, just to give the gen-
eral idea. Suppose that in some genetic code strings
of length 5 are generated by randomly selecting from
the characters A, B, C and D with equal probability.
What is the probability of finding the combination
AAAA somewhere in a given string? First, the sam-
ple space is the space of all possible strings
(AAAAA, AAAAB, AAAAC etc.,, to BDDDD,
CDDDD, DDDDD). Each of these has the same
probability, and there are®4f them. The probability

of each one is 12 or approximately 0.001. 4 of the
strings have AAAA at the left end, and 4 have
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AAAA at the right end, but AAAAA is common to
both these groups, so the total number containing
AAAA is 7. Thus the probability required is 7%r
about 0.007. This process of effectively counting the
number of ways to get a given observation is the
basis of combinatorial probability computations.

(The general case of finding the probability of a
given pattern in a random string is covered by a vari-
ety of formulae depending on the exact circum-
stances — textbooks will give great detail when
needed.)

Another way to do the example is simply to generate
all the possible strings and count the number of them
containing the sequence AAAA, dividing by the total
number to get the exact probability. Another way is
to use aMonte Carlomethod, generating strings at
random and estimating the probability by counting
those that have AAAA. Such techniques are valuable
fallbacks when textbook methods cannot be applied.
Many simulation experiments are, in a sense, just
Monte Carlo probability estimations.

2.3 Conditional probability and independence

It is often useful to talk about the probability of one
event, given that another event is known to have
occurred. For example, for an autonomous robot, it
may be useful to consider the probability that there is
a particular object — say an apple — in front of its
camera, given that the robot's perceptual system is
reporting the presence of a particular image feature
— say a circular shape. Such a probability isoadi-
tional probability If A is the event that an apple is
present, andC is the event that a circular shape has
been detected, we write

PAIC)

to mean the probability of there being an apple when
a circular shape has been seen.

One way of thinking about this is to usepassible
worlds model for probabilities. ) means the frac-
tion of all possible worlds in which there is an apple
in front of the camera. B) means the fraction of all
possible worlds in which a circle is detectedARC)
means the fraction of worlds in which there is an
apple, but consideringnly those possible worlds in
which a circle has been detected. Whether you like a
“possible worlds” way of thinking about probabili-
ties is partly a question of your philosophical stance.

Some books use the notation
Pc(A)
to mean the same asfH(C).

It seems reasonable that evéhtdoes tell the robot



something about everit Consider evenB, which is

the presence of an apple on a tree in the garden.
Knowing C does not tell the robot anything about the
likelihood of B. It seems reasonable to express this
by writing

PB[C)=P@)

This formula is actually one definition of statistical
independencef the probabilities forB and C obey
this rule, therB andC are statistically independent. It

is often useful to assume statistical independence
between variables even when this is not strictly justi-
fied.

One warning — unnecessary | hope. If two events
really are physically independent, then they will be
statistically independent and observing one of them
will not affect the probability of the other. Failing to
realise this is the classical gambler’s error. Observing
six heads in six tosses of a coin does not mean that
the probability of a head on the next toss is anything
other than a half, provided the coin is fair. It is easy
for subtle versions of this error to crop up, and it is
advisable to watch out for them. (The chairman of
the National Lottery was quoted in a newspaper as
saying that high numbers had a good chance in a par-

PC)=0.2

In addition, the robot knows from previous experi-
ence (when it has been shown something and told
that it definitely is an apple), that it detects a circular
shape three-quarters of the time when an apple is in
front of it. That is,

PC|A) =0.75

Now the robot, roaming its world in search of food,
detects a circular shape. What is the chance that an
apple is in front of it? In other words, given the data
above, what is (| C)?

This can be answered by considering how often there
is an apple in front of the camerandthe robot sees

a circular shape; that is R@ndC). It is easy to work

this out: an apple is in front of it one tenth of the
time, and on three-quarters of those occasions a cir-
cle is seen, so the answer is three-quarters of a tenth
or 0.075. In symbols

P(A andC) = P@) P(CJA) = 0.1x 0.75 = 0.075

Now we know that the robot has seen a circle. The
probability that there islso an apple present, given
the circle, is the fraction of times an apple and a cir-

ticular week because there had been a preponderancecle occur together, divided by the fraction of times a

of low numbers before that — one might have hoped
that someone in his position would have known bet-
ter.)

There is a second way to express statistical independ-
ence numerically. 1B and C are independent, then
the probability of both events occurring is given by

P@®B andC) = PB) P(C)

This can be shown to be equivalent to the definition
above in terms of conditional probability. It is an
important relationship, in that it is often useful to

circle occurs without regard to the apple. In symbols
P(AIC) = PAandC) / P(C) =0.075/0.2 =0.375

So the answer is 0.375 or three-eighths. One way of
saying this is that thevidenceof the visible circle
has increased the probability of thgpothesighat an
apple is in front of the camera from 0.1 to 0.375.

If this is unfamiliar, work through the argument again
using different numbers and a different example. For
instance, imagine a patient going to a doctift.
might be the event that a patient has meningococcal

assume that different events are independent, becausemeningitis (with say A1) = 0.00002, or one in

we know of no causal link between them, and to
work out probabilities of combinations of events
using this product rule.

2.4 Bayes' theorem

There is a very important relationship concerning
conditional probabilities. We will approach this by
putting some numbers into the perception example
above.

Suppose that the robot “knows” that apples happen to
be in front of its camera on one-tenth of the occa-
sions that it looks, so

PA) =0.1

and that it detects a circular shape in the image on
one-fifth of the occasions that it looks, so
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50,000), S might be the event that the patient has
headache with fever (with say $(= 0.004, or one in
250), and it is known that patients with this kind of
meningitis display headache with fever half the time
(so PG| M) = 0.5). If a patient turns up with this pair

of symptoms, what is the chance that he or she has
meningococcal meningitis — what isM( S7? (On
these data, it is 0.00025 or one in 400 — but check
that you get the same answer. These numbers are
made up and may not correspond to reality.)

Given the numerical examples, it is possible to see
how they generalise and so to write down the formula
for the general case. ThisBayes’ Theorem

P(B|A)P(A)

P(A|B) = 5]

Terminology: PA) is known as theprior probability



of eventA — prior, that is, to knowing thaB has
occurred. P4 | B) is theposterior probabilityof A.

The theorem itself is uncontentious: it follows
directly from the fundamental properties of probabil-
ities. Extremely contentious, though, are its interpre-
tation and its application in practice. Very often, the
use of the theorem is associated with the philosophi-
cal stance which interprets probabilities as measures
of strength of belief; hence “Bayesian inference” is a
phrase with connotations well beyond the mere use
of the formula.

The greatest practical problem with Bayesian infer-
ence is the estimation of the prior probabilityAp(
Usually, the conditional probability B(| A) is esti-
mated from some kind of experiment (or, equiva-
lently, as part of a learning process in an a-life
system), and M) is just a normalising factor to make
all the probabilities for the alternatives outcome#to
add up to 1. The prior is much harder to estimate —
if there is nothing else to go on, all the possibilities
are given equal prior probalities, but this can be hard
to justify, and causes technical problems when the
outcomeA, rather than being a definite event, is one
of a continuum of possibilities, as when an estimate
is being made of a real-valued number.

Nonetheless, Bayes’ Theorem is well worth remem-
bering, partly for the insight it gives into the meaning
of conditional probabilities. It is of increasing impor-
tance in Al — for example, expert systems that used
ad hoc measures such as confidence factors are giv-
ing way to those based on Bayesian methods. The
approach has received impetus from the work of
Judea Pearl, who has described algorithms for effi-
ciently propagating probabilities through a “belief
network” using Bayesian rules.

2.5 Summing conditional probabilities

There is a second formula that is useful involving
conditional probabilities. It is an extension of the
basic summation relationship for probabilities of
mutually exclusive events. KK; ... Xy is a complete
set of mutually exclusive events, aAds some event
that depends on them, then

P(A) = 3 P(AIX)P(X)

This follows because the expression being summed is
equal to PA andX;). This is one of a set of mutually
exclusive events, and if any one of them occurs, then
A occurs, so the probability of all of them added
together is the probability &

This is yet another weighted sum, and so gives
another interpretation to the action of a linear neural
network unit (Section 2). The weights on such a unit
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can sometimes be sensibly regarded as representing
the conditional probabilities of evet given differ-

ent input event¥;. The input data represent the prob-
abilities of the different events, and the output is the
probability of A. Such an interpretation can only be
applied straightforwardly, of course, if all the signals
are in the range 0-1 and both weights and inputs are
normalised to sum to 1.

2.6 Random variables and probability distribu-
tions

Like an ordinary variable, a random variable can take
any one of a set of values. For a random variable, the
values represent a complete set of mutually exclusive
events, and there is a probability associated with each
event. Theprobability distributionfor a random vari-
able is just the association of a probability with each
of its possible values.

For a finite set of values, this is straightforwardXIf

is a random variable whose values are h (for heads,
perhaps) and t (for tails), then a typical probability
distribution might be P{=h) = 0.5 and PX=t1) =

0.5. This is an example of a discrete distribution.

If the random variablé& can take on any of a contin-
uous set of values — for example Xfrepresents any
real number in the range @ L — then we have a
continuoudistribution and the assignment of proba-
bilities needs some extra formalism. One way to han-
dle this is to describe the distribution by using the
probability thatX is less than some particular value:

PX<x)

whereX is the random variable ands some specific
value that it might or might not exceed. This proba-
bility is a function ofx — we might write it asF(x)
whereF is the name of the function — and is called
the cumulative probability distribution.

For example, ifX is equally likely to have any value
between 0 and 1, then its cumulative probability is
given by F(x) = x. This distribution is called ani-
form distribution

The cumulative probability does not seem to tell us
the probability of X having any particular value. In
fact, there is no answer to that question for a continu-
ous variable; the nearest approach is to consider the
probability thatX lies within a range of values, from
sayx tox+ &, or

P(X = xandX < x+ 38X)

We then consider what happens whé&nis made
smaller and smaller. Assuming that the cumulative
probability varies sufficiently smoothly witl, we
would expect that whedx is sufficiently small, the
probability for a range of values will be proportional



to the size of the range, and we expect that, approxi-
mately,

P(X=xandX < x+06X) = f(x)ox

wheref(x) is some function ok. We expect that the
approximation will be exact whedx is reduced to be
infinitesimally close to zero. The functiof(x) is
called aprobability density functionand bears the
same relation to probability that the density of a sub-
stance does to mass. You need to multiply a density
by a volume to get a mass, and you need to multiply
a probability density by the size of part of sample
space to get a probability.

There is a relationship between the cumulative distri-
bution and the probability density; it is

1) = JF

(and the cumulative distribution is the integral of the
density).

Sometimes the notation X is used to indicate the
probability density function of a random variable

There is, again, a large literature on specific distribu-
tion functions. By far the most common (apart possi-
bly from the uniform distribution) is th&aussiaror
normaldistribution, for which the probability density
function is

1 HX=W)20
exp
0@ O og2 0O

f(x) =

where u and o are called themeanand standard
deviationrespectively of the distribution.

The graph of this function is sometimes called the
bell shaped curve. It is particularly beloved by psy-
chologists and social scientists; so much so that a
recent highly controversial book on 1Q took “The
Bell-Shaped Curve” as its title.

There are two reasons why this distribution is so
common: one is a theoretical result which says that if
a random variable is the sum of a large number of
other random variables with their own arbitrary dis-
tributions, then it will tend to have an approximately
Gaussian distribution; the other is that Gaussian-dis-
tributed random variables have some properties that
make them easy to manipulate.

Any standard textbook will discuss this distribution,
along with various other important distributions. Sta-
tistics books nearly always have a table of its values,
and also a table of the corresponding cumulative dis-
tribution F(x). This is is called theerror function
(abbreviation erf) and is important for some statisti-
cal tests. Some mathematical software packages
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include a procedure for computing erf.

The bell shaped curve for the particular case of mean
= 3 and standard deviation = 2 appears below as an
example.
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3 Statistics of distributions

It is often necessary to summarise the distribution of
a random variable using a few numbers. This might
be because the exact details of a distribution are not
known, or because only some of its properties are rel-
evant to a situation. The quantities that summarise a
random distribution are called ifmrameterspartic-
ularly when they appear explicitly in the formula for
the distribution. Often, however, a distribution is not
fully specified theoretically, but some aspects of it
must be estimated from some data. Quantities that
help describe a distribution and which have been cal-
culated from data are called statistics. The process of
estimating parameters from statistics is cakeatis-
tical inference

Here we look briefly at a few of the more important
statistics. Statistical inference in general is too large a
topic to embark on here, but the use of averages to
describe properties of data is something that every-
one should be familiar with.

3.1 Averages

One of the most important descriptors of a distribu-
tion is itsmean This term is used in two ways. In the
formula for the Gaussian distribution, the mean was
one of the parameters (and was denoteg}yOn the
other hand, the mean is also a statistic, obtained by
adding together a set of observed numbers and divid-
ing by the number of observations. The mean is also
called the arithmetic average, or just average. In the
case of a Gaussian distribution, this statistic is a good
estimator of the parametgr

It is useful to define the mean for any distribution,
whether or not it appears as an explicit parameter.



For a discrete distribution with a finite number of val-
ues of the variable, the mean is

inP(X =X)

whereX s the variable, and its possible values gye
X, etc. This is often abbreviated to

in P(x;)

wherey; is a shorthand for the evexit x;.

This makes sense in terms of the mean as a statistic.
If we make a large number of observations, Baye
expect eaclx; to occur aboulN P(x) times (from the
meaning of probability). Thus if we average the
observation values, adding them and dividingNby

we expect to get approximately the result

inNP(Xi)
I N

which is just the distribution mean. For this reason,
the mean of a distribution is sometimes called its
expectation(especially in quantum mechanics).

The mean of the distribution of a variab¥eis often
written

<X>orX
Angle brackets will be used here.

The idea of an average can be extended to any
numerical function of a random variable. For a func-
tion f, the general formula is

Or(x)o= Z f(x)P(x;)

In a cellular automaton, for example, the different
states might be labelled with a set of symbols. An
energy might be defined for each state; the average
energy (which is important in some analyses) would
then be obtained using a formula such as that above,
if the probability of each state was known or could be
estimated.

For continuous variables, the sums in the formulae
above become integrals.

3.2 Variances and standard deviations

The mean of a distribution says, loosely, something
about where its centre is. The next most useful thing
to know is how spread out the distribution is. One
way to measure this is to work out the average dis-
tance of the values from their mean. In practice,
squaring the differences between the values and the
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mean not only avoids negative numbers, but makes
various calculations simpler. The average squared
distance from the mean is called thariance and its
formula is given by

var(x) =y (x - [XD)2P(x;)

It is not difficult to show that this is equivalent to
X2~ X2

which gives a quick way to estimate the variance
from data.

The square root of the variance is called stiendard
deviation It turns out that if the sum above is
replaced by an integral and applied to the Gaussian
distribution, the standard deviation as defined here is
just the parameter sigma, justifying the use of the
term in the description above.

3.3 Entropy

A final average that is often of great interest is minus
the average of the logarithm of the probabilities of a
distribution. This is at first sight a strange thing to
calculate; the formula is

Entropy(x) = —z (logP(x;))P(x;)

This does not depend on the values<at all — only

on how the probability is spread out across them.
This quantity has a variety of interpretations and
uses, but essentially it measures the smoothness of
the distribution.

For example, suppose there atélifferent values for

X with equal probability M. Then the entropy is just
-log(1/N) which is equal to lody). For a flat distribu-
tion like this, the entropy thus increases with the
number of possibilities. On the other hand, suppose
the probabilities are all zero, except for a single value
of X which always occurs — a maximally peaked
distribution. For this, the entropy is zero (since log(1)
=0).

Entropy has a central role imformation theory If
information about a variable’s value is to be transmit-
ted, then on average the amount of information
needed to specify the value is given by the entropy of
the distribution. If the logarithm is to base 2, entropy
is measured irbits. If there are two equally likely
possibilities for a variable, then both the formula and
common sense indicate that 1 bit of information is
needed to specify the variable’s value.

Consider, for example, a linear neural network unit
whose two inputs are random binary variables, which
each independently take values -1 or +1 with equal



probability. The variableX stands for the input vec-
tor, so its values are (-1,-1), (-1,+1), (+1,-1), (+1,+1),
each with probability 1/4. The entropy of this distri-
bution, using the formula above, is

! 1100t +110q10
Iog Iog4 4Iog4 4|°g4D

1 1
_4><4><|og‘—1
=2

because log(1/4) = -2 if we use logarithms to base 2.
That is, X requires, not surprisingly, 2 bits of infor-
mation to specify it.

Now suppose this unit simply sums its inputs. The
output,Y, is a number whose values are -2, 0, 0, +2
respectively for the 4 possible inputs. There are only
3 values ofY, with probabilities P(-2) = 1/4, P(0) =
1/2, P(+2) = 1/4 (using the rule for combining proba-
bilities for mutually exclusive events). Thus the
entropy ofY is

[t 1
Iog4 2Iog2 4Iog
=15

That is the outpul has a lower entropy — it trans-
mits less information — than the inpit The reason

is, of course, that information has been lost in the
addition, as the two cases when the inputs are differ-
ent cannot be distinguished in the output.

The idea of 1.5 bits might seem strange. Remember,
though, that this is a measure of the amount of data
needed to specify on averaggif the process is done

a lot of times. The entropy measures how well a per-
fectly efficient coding scheme could do in compress-
ing the information carried by the output of the
network when it is used repeatedly.

Entropy can also be viewed as a measurdisdrder
The more disordered a system is, the more informa-
tion is needed to specify it exactly. If the cells of a
cellular automaton are all likely to be in any state
with equal probability, then to transmit the state of
the whole system we will need to transmit the state of
each cell. The disorder is high, and calculating the
entropy will give a large number. If, however, one
state is much more likely than the others, then we
need only transmit the state of the cells that are in
one of the lower-probability states. The order is
higher, and the entropy will work out as a lower
number. Minus the entropy is sometimes called the
negentropyand used as a measure of order in a sys-
tem.
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4 “Random” numbers

It seems worthwhile to include a brief note about ran-
dom numbers in the context of computer simulations.
Such simulations rely very heavily on so-called ran-
dom numbers, usually generated by calls to library
procedures such as Cfand routine. In fact, such
numbers are actuallgseudo-randomsince they are
generated using a deterministic algorithm that pro-
duces a completely predictable sequence. True ran-
dom numbers which are independent of one another
form a completely unpredictable sequence.

Pseudo-random number algorithms are designed to
be (a) fast and (b) produce numbers whose statistics
are the same as far as possible as those of true ran-
dom numbers. Thus the mean, standard deviation and
so on of the numbers themselves, and higher-order
statistics such as the mean of differences between
successive pairs of numbers, will be within the
expected ranges for uniformly distributed true ran-
dom numbers.

Usually, there is no need to worry unduly about using

these generators: their properties have been well
worked out and they are adequate for most simula-
tions. However, there have been one or two cases in
which standard libraries have contained very poor

generators, in that, for example, successive “random”
values have been correlated with one another. It is
worth bearing in mind this possibility: if a simulation

is not behaving as expected, and all else fails, it
might be worth trying using random numbers from a

different routine.

In addition, for large, delicate simulations, there is a
rule of thumb that suggests that the number of values
extracted from a pseudo-random generator should
not exceed the square root of the cycle length (or
period) of the generator (the number of values it pro-
duces before repeating itself). A reputable generator
will state its cycle length in its documentation — e.g.
the implementation ofand on my machine has a
period of 22 so should ideally not be used for more
than 2° = 65,536 values in any one simulation. For-
tunately much better generators are easily available.

Do not be tempted to try to improve the properties of
a pseudo-random generator by resetting it from time
using, say the system clock, memory usage or some
other “random” value from outside the program.
Such strategies will almost always degrade the statis-
tical properties of the generator.

One question that often arises in practice is how to
get pseudo-random numbers that have approximately
a given distribution. Most pseudo-random generators
provide numbers drawn from a uniform distribution
with cumulative probabilityF(x) = x, with 0 < x < 1.
Suppose we need to simulate a random variable



with cumulative probability distributiorG(y). If X
andY are related byX = G(Y), then it is possible to
show thatY has the required distribution. Thus to
convert directly from values produced by the genera-
tor to the required values, it is necessary to compute
the inverse of the required cumulative distribution
function for each value generated. This can be diffi-
cult and computationally costly in some cases.

There is a very rough-and-ready short cutdpprox-
imate Gaussian distributions: adding 12 uniformly
distributed random numbers in the range 0-1 together
gives a value which is roughly from a Gaussian dis-
tribution with g = 6 ando = 1. You can scale and
shift this to approximate any Gaussian distribution,
provided an accurate distribution is not needed.
Using more than 12 inputs gives a better approxima-
tion; the mean will be half the number of values
added and the standard deviation the square root of
the number of values divided by the square root of
12.

5 Conclusion

Dealing with uncertainty is the central problem in
prediction and control. Probability is the calculus of
uncertainty, and statistics are the tools used to draw
inferences from data within a probabilistic frame-
work. The topics mentioned above — probability
distributions and simple statistics — are the starting
point for a great deal of sophisticated analysis. In
particular, the theory of statistical inference is a large
and complex one.

However, for many practical problems, a clear idea
of what is meant by a probability distribution and by
the mean and standard deviation (and possibly the
entropy) can be put to good effect in straightforward
ways.
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Section 8

This section gives an introduction to some techniques relevant to the analysis of the results of experiments on non-

deterministic systems.
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Combining significance levels
Problems with hypothesis testing

1 Introduction

In traditional Al, it has been common for researchers
to make their points by building systems that illus-
trate particular techniques or demonstrate particular
competences. In some ways, this is rather like the
approach of an engineer, in that the production of an
object that performs a given task within given
resources is sufficient to show an advance in the state
of his or her art.

Increasingly, though, there is a kind of investigation
that demands a different approach, more like that of a
behavioural scientist. This occurs particularly when
systems cease to be transparent; it is not enough to
build such a system: its properties must also be
explored. In addition, in artificial life and evolution-
ary systems simulations, such systems involve the
use of random numbers to mimic environmental vari-
ability, whilst robotic systems that interact with the
real world are subject to the genuine thing. Charac-
terising systems which involve variability involves
the use of statistical methods.

The use of statistics applies the theory of probability
(see Section 7) to the description of processes which
are subject to random variation. Various kinds of
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Statistical analysis of experiments

descriptive statistics are useful in general exploration
of a system, and are the main method of trying to
obtain some degree of understanding of it. More for-
mal methods o$tatistical inferencere used to draw
guantitative conclusions or to attempt to determine
specific properties of a model of the process.

Here | mention a few techniques of descriptive statis-
tics, and discuss one particular approach to statistical
inference, known as hypothesis testing.

Books aimed at psychologists are probably the most
useful for an initial understanding of this material,
and for practical help in applying it. Two that are
widely used are “Learning to use statistical tests in
psychology”, bu J. Greene and M. D'Oliveira (Open
U.P., 1982, in the library at QZ 210 Gre), and “Non-
parametric statistics for the behavioural sciences”,
2nd edition, by S. Siegel and N.J. Castellan
(McGraw Hill, 1988, in the library at QD 8320 Sie).

2 Descriptive statistics

2.1 Graphs

When looking at results from an experiment, the first
set of tools to turn to are graphical ones. Tools such
as Matlab, Maple and AVS provide a wide variety of
ways to display data graphically. The area is too large
and complex to discuss here, and methods such as 2-
D and 3-D graphs and bar charts are probably famil-
iar already. The main point is that time spent produc-
ing graphical output is usually well spent, but that
when data have multiple dimensions, it can be diffi-
cult to find the appropriate combinations to display.
It is essential to spend time finding the right way to
display data in order to reveal relationships which
may be present.

2.2 Simple numerical statistics and correlation

The mean and standard deviation of a set of data have
been discussed in Section 7. Calculating these statis-



tics for results obtained when an experiment is
repeated is often the first step in gaining a clear view
of what is going on. The mean gives a measure of the
location of the centre of some numerical data; the
standard deviation gives a meaures of its spread.

An additional descriptive statistic, not introduced in
Section 7, is theorrelation coefficienbetween two
sets of data, which can be used when the individual
data values can be paired off between the two sets.
This gives a measure of whether the two random var-
iables being sampled vary together or are independ-
ent. For instance, in an experiment involving a
simulated visual system, it may be interesting to look
at whether the time to pick out some target varies
with the number of distracting objects in the field of
view.

If two random variableX andY are being sampled,
the correlation coefficient is defined as

r = HX_D(D(Y_ DYDD
JVar(X)Var(Y)

That is, it is the average of the products of the devia-
tions of the variables from their means, normalised
using the variances. It lies between -1 and +1, and
either -1 or +1 means that there is a perfect linear
relationship between the two variables, whilst 0 cor-
responds to ntinear relationship betwen the two.

2.3 The histogram

The mean, standard deviation and other similar
measures provide some indication of thistribution

of a variable (such as the fitness of a population)
which is being measured. A graphical way of looking

at the distribution generally is to use thistogramof

the values found.

The simplest way to produce a histogram is to create,
in effect, a set of bins covering the range of values of
the variable. Each bin initially contains the value
zero. After each trial, the value of the variable being
measured is used to pick out a bin, and the value held
in the bin is incremented. For instance, in a simple
case, a measure might range from 0 to 99. We create
10 bins, covering the ranges 0-9, 10-19, 20-29 and so
on. If a trial yields the value 63, we increment the 60-
69 bin, and so on. After a large enough number of tri-
als, the values in the bins will be an approximation to
the underlying probability distribution of the varia-
ble.

There is a trade-off between the number of bins and
the accuracy of the probability estimate each one
holds. A lot of bins gives a narrow range of values for
each, giving a higher accuracy on the position of any
feature of the distribution, but lower accuracy on the
probability estimates because fewer votes will be cast
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for each bin.

There are more sophisticated ways of generating his-
tograms which do not involve discrete bins. (Treating
the data as a set of delta functions and convolving
this with a smoothing kernel is one such method.) All
of them, however, involve essentially the same trade-
off.

Looking at graphs, descriptive numerical statistics,
and histograms are all important ways of understand-
ing a system. More formal methods are also some-
times called for, particularly in the context of
statistical variability.

3 Hypothesis testing

3.1 Basic framework

Suppose you run a simulation and measure some out-
come — say the average level of fithess in a popula-
tion after a certain number of generations, or the
number of times a robot succeeds in reaching its
goal. You then make some adjustment, perhaps by
varying a parameter of the simulation such as the
mutation rate of a genetic algorithm or the rate of
learning of a neural network, and repeat the simula-
tion. If the outcome changes, how can you say
whether this was a result of the adjustment you
made, or simply a random fluctuation which might
have been expected to occur regardless?

This kind of question is at the heart of the dominant
statistical methodology of the behavioural, social and
medical sciences. The question of whether a new
drug has an effect on the outcome of a particular dis-
ease is, for example, a crucial one in medicine.

The method generally used is callegpothesis test-
ing. The approach is to ask whether it is reasonable
to attribute any differences observed to random fluc-
tuations, assuming that the manipulation (application
of the drug, change of the mutation rate, or whatever)
has no effect. If the changes are too big for this to be
reasonable, then the experiment is taken as evidence
for a real effect. The reason for doing it this way
round is that if there is no effect, then it is possible to
calculate the probabilities associated with the meas-
urements, and see how unlikely they are.

Some terminology is needed to set this up formally.

Thenull hypothesisdenoted byHg is the hypothesis
that the differences in conditions between the two
runs of an experiment have no effect. Tdleernative
hypothesisHj, is thatHg is false, i.e. there is an
effect of the manipulation. If we decide that the
experiment shows an effect when in fact there is
none, we have madeTagpe | error Conversely, if we
decide that there is no evidence for an effect, when in



fact one exists, we have madé&yge Il error

Usually, the differences between the experimental
results are summarised in a single statistic. This
might be something like the change in the success
rate of the robot. We then calculate the probability,
assuming the null hypothesisf getting either the
observed value of the statistic, ar more extreme
value This probability is always given the symbi|

and is known as aignificance levellf P is low, then

the result we have is unlikely under the null hypothe-
sis.

3.2 A simple example

Suppose you conduct an experiment in which you
run a simulation of a system, setting your pseudo-
random number generator to a particular seed before
you start, and using valueefor some parameter you
are interested in. You then change the parametby to
reset the random number generator to the same seed
as before, and rerun the experiment. You then look to
see whether the performance is better or worse then it
was before. You then repeat the pair of tests some
number of times — say 10 — recording for each pair
whether performance increased or decreased when
the parameter was changed fraanto b. Different
random numbers are used in each pair of tests.

Suppose the performance gets better on 8 trials out of
10, and worse on 2 trials. How likely is this under the
null hypothesis that changing the parameter feoto

b produces no improvement in the peformance? Is
the overall improvement attributable to the change in
the parameter?

The null hypothesis says that changing the parameter
has no effect, so the performance is equally likely to
get better or worse; each trial is like tossing a coin. In
this case, there aréd = 1024 different equally likely
ways the experiment can turn out (see Section 7). In
one of these, performance will improve on all 10 tri-
als, in 10 of them performance will improve on 9 tri-
als, and in 45 performance will improve in 8 trials
(you can check this by enumerating the different
cases, or by using the binomial expression if you
happen to know it). In other words, there are 1 + 10 +
45 = 56 cases that give the observed result or a better
one in the sense of more improvements. If better is
interpreted to be “more extreme”, then it follows that
P = 56/1024 or about 0.055. That is, on about 55 in
1000 repetitions of the whole sequence, you would
expect to get 8 or more improvements, just by ran-
dom fluctuations in the total.

You may ask whether a result of 2 or fewer improve-
ments out of 10 would not be just as “extreme” as a
result of 8 improvements. This depends on whether
you simply want to test that the change had an effect
of some sort, or whether you want to test that it pro-
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duced an improvement. If the former, then these
other cases would also have to count as “extreme”,
and theP value would double to 0.11. This is called a
two-tailed testIf however, the alternative hypothesis

is that the change does produces specifically an
improvement then exceptionally poor results are
lumped in with the run-of-the-mill ones, only success
rates greater than that observed are counted as more
extreme, and the test is callede-tailed

This kind of experimental design, incidentally, is
called arelated sampleslesign. Within each pair of
tests, everything is the same except for the parameter
of interest. Thus every single run of the simulation
with parametea has its owncontrol with parameter

b. The tests come imatched pairsAn alternative
way to do it would be to use new random numbers
for every single trial. This is called aimdependent
samplesdesign; there is no natural pairing. One
could still apply the test described above to arbitrary
pairs, but an effect would be much more likely to be
masked by random fluctuations in the results (that is,
the test would not be very powerful). In an independ-
ent samples design, you would be more likely to
adopt a statistical test in which you put the results
into different classes before doing any comparisons
between the two conditions.

3.3 General methodology

Does the resulP = 0.055, obtained in the imaginary
experiment above, mean that changing the parameter
produces an improvement, or not?

The received version of how to answer this is as fol-
lows. Before doing the experiment, you decide on a
critical value ofP. This is calleda (alpha). IfP turns
out to be less than, you reject the null hypothesis
(you accept the existence of an effect). Otherwise,
you accept the null hypothesis.

How do you choos&? Thea value is in fact the
probability that you will make a Type | error — that
you will think you have seen an effect when there
isn't one. That is, if you decide to use= 0.05, and
you do lots of independent experiments, then if all
the null hypotheses are true, on one experiment in 20
you will getP < a and you will decide that there is an
effect that is not there. This follows directly from the
definition of P. So if you do not mind making this
kind of error one time in 20, you choose= 0.05; if
you want a stricter criterion, you might chooge=
0.01.

This approach means that one never has to calculate
the exact value oP for a given experiment. What
you do is to look up the value of the statistic you are
using that would give® = a. Then if, when you do

the experiment, the statistic is more extreme than this
critical value, you rejecHg; otherwise you accept



Ho. More extreme values are said to lie in tréical
regionor rejection regionfor the null hypothesis; the
rest lie in the acceptance region. For the experiment
described above the statistic is the number of times
an improvement occurred. In the one-tailed test, val-
ues of 9 and 10 lie in the rejection region far=
0.05, but 8 does not quite make it. Eight out of 10
improvements would not allow us to reject the null
hypothesis at the 0.05 significance level.

You can picture these regions by drawing a graph of
the distribution of a statistic. Suppose for this pur-
pose that the statistic has continuous values. For
commonly used statistics, the distribution will have a
hump in the middle for the likely values and tail off
for extreme values. For a one-tailed test, split the area
under the curve into two parts: a part under one tail
occupying 5% of the area and a part under the rest
occupying 95% of the area. The 5% region represents
the rejection region foo = 0.05. For a two-tailed
test, the 5% has to be split across the two tails of the
distribution.

Knowing the probability of a Type | error is useful,
but of course the probability of a Type Il error (not
seeing an effect that is really there) is useful too.
However, estimating this probability is generally
quite messy and difficult. Intuitively, the more data
you have, the lower the chance of a Type Il error
ought to be (for a given), and indeed this is the case
for any reasonable test. Different tests are compared
on their power, which is 1 - P(Type Il error), but
working this out often involves making more detailed
assumptions about the distribution of the data than
does the null hypothesis. The reason for this is that to
say something about Type Il errors means that you
have to say something about the distribution of the
data when the null hypothesis is false — and that
might be much harder to specify precisely.

Essentially, a significance test gives a good measure
of the probability that an observed effect has
occurred by chance. A low value fércan thus be a
reliable indicator that something real is going on. On
the other hand, if the null hypothesis is accepted
becauseP is large, there is nothing simple to say
about what the chance of a Type Il error is. There
might be a real effect which is not shown up, either
because there is not enough data, or because the sta-
tistic used is not a good one for detecting the particu-
lar kind of difference that has occurred.

3.4 Another example

There are significance tests to cover many different
situations. The books mentioned at the head of this
file describe many different tests and give guidance
on making an appropriate choice. In the event of your
needing a test for an experiment, you will need to
spend time analysing the nature of the measurements
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and the experimental design to find the correct one.

The test used above on the experiment with binary
outcomes (improvement or non-improvement) is
called thesign test Here, | give one further example
of a test to illustrate the general idea. This test is of
quite wide applicability; it is used when you want to
know if two independent (not matched) sets of data
obtained under different conditions differ signifi-
cantly. For each condition some outcome is observed
in a number of trials; the outcome must be measured
with a number (strictly speaking, it must be an ordi-
nal measure). We want to know whether the outcome
is significantly different in the two conditions. Since
we have a number of trials in each condition, we have
an indication of what the spread of likely values of
the outcome measure is, so it seem reasonable to sup-
pose that information about whether the conditions
differ significantly is available without making fur-
ther assumptions.

One test that will handle this situation is th@l-
mogorov-Smirno¥wo sample test. The statistic that
this uses is the maximum difference in the cumula-
tive distributions of the two outcome measures. This
is easiest to explain with an example.

Suppose we conduct a series of trials — say 10 — in
one condition — say using one kind of crossover
operator in a genetic algorithm. In each trial we
measure, say, the number of generations to reach a
particular state of the population, and get the follow-
ing results:

630 890 700 270 500 480 320 950 836 585

We then do the same thing in an independent set of
trials (no pairing with the first set) using a different
operator. Suppose this gives

784 456 893 555 678 699 350 821 921 772

Is there a significant difference between these two
sets of numbers? To find the statistic for the K-S test,
imagine making a cumulative frequency graph for
the first data set by counting the number of values
that are less than any given value. It looks something
like this:

I I I
200 300 400

L I I I I
500 600 700 800 S00

What this graph means is that, for example, 0.2 of the



values are less than 400 (in fact the values 270 and The statistick = 0.3 can then be looked up in tables

320), 0.4 of the values are less than 550, 0.7 of the

values are less than 750, and so on. Now we superim-

for the test. Not surprisingly, this turns out to be not
significant for 10 trials in each dataset evenuat

pose the graph for the other dataset. That gives some- 0.05 — these data do not seem to show any non-ran-

thing like:

o Lo L I I I I L I
200 300 400 500 600 700 800 900

The statistic needed for the K-S test is the largest ver-
tical difference between the two graphs, which we
will call K. You can see by inspecting them that the
largest such difference is = 0.3, near the asterisk,
between values of the outcome from 630 to 678. In
practice, one would calculate this statistic by order-
ing the two data sets independently, then comparing
the ordering between them thus:

270
320
350
456
480
500
555
585
630
678
699
700
772
784
821
836
890
893
921
950

and finding the point in the sequence with the biggest
difference in contributions from the two datasets
above it. It is straightforward to write a program to
do this, but many packages will do it for you. If there
are different numbers of trials in the two conditions,
division by the number of trials has to be carried out
in counting the fraction of trials to the left of any
point in the sequence.
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dom differences using this test. In fact, a difference
of K =0.6 would be needed (for 10 trials in each con-
dition) before the results were significant at the 0.05
level.

The clever thing about this is that the distribution of
the statistidk under the null hypothesis (both sets of
data come from the same underlying distribution) is
known independently of what the distribution of the
data actually is. There is no assumption that the data
come from a Gaussian distribution, or indeed any
other distribution. A test with this property is known
as anon-parametrigest.

Tests that make assumptions about the distributions
are known aparametrictests; typically they assume
the distribution is Gaussian. A parametric test that
could be applied to these data, if you were willing to
make the necessary assumption, is the unrelated t-
test, which uses as its statistic the difference in the
means of the two data sets, normalised by an esti-
mate of the standard deviation of the data. In general,
parametric tests are more powerful and involve sim-
pler calculations; but if the assumption of a Gaussian
distribution of the data is incorrect, they can give
misleading results.

There are numerous other significance tests that can
be useful. One important one is the chi-square test,
which is useful when some data need to be compared
with expected frequencies.

3.5 Combining significance levels

Sometimes a hypothesis is tested in two experiments
which yield independen® values. The best way to
combine the results is to find a way of treating the
two experiments as one, and finding an overall statis-
tic that can be used in a test of significance. When
this is not possible, it can be useful to know how to
combine more than one significance level in a sensi-
ble way.

In particular, the correct way to combine them is not
to take their product, or their maximum or minimum
(though all of these are sometimes suggested). If the
two significance levels ar®, and P,, the signifi-
cance level of the two experiments taken together is
in fact

P = P,P,(1—log(P;P,))

where the logarithm is to base (a natural loga-
rithm). Thus two experiments each significant at 0.05
yield a combined significance level of 0.017. The
argument to reach this conclusion depends on a par-



ticular definition of “more extreme”, to mean combi-
nations of results that would have lower probability
under the null hypothesis than the results actually
obtained.

The generalisation of this formula té experiments
is

N-1
_ (-logg)"
P=gy s
r=0

whereg is the the product of th&l separate signifi-
cance levels, and is the factorial function of.

3.6 Problems with hypothesis testing

Hypothesis testing is a respectable and sometimes
valuable way to assess the results of experiments.
However, it has difficulties.

An important one of these is that if the methodology
were taken literally, hypotheses about, say, the effec-
tiveness of a new drug would be accepted or rejected
when it was known that there was a definite probabil-
ity that an error was being made. This problem is
exacerbated by the asymmetry in the treatment of the
null and alternative hypotheses, which means that
probabilities of Type | errors are accurately control-
led but probabilities of Type Il errors have to be
largely guessed.

In practice, the approach is not followed literally:
common sense prevails. Rather than settingran
advance and then acting accordingly, most research-
ers tend to treat thE value obtained for their data as

a kind of standardised descriptive statistic. They
report thesd® values, then let others draw their own
conclusions; such conclusions will often be that fur-
ther experiments are needed. The problem then is
that there is no standard approach to arriving at a
final conclusion: everything remains tentative. Per-
haps this is how it should be; but it means that statis-
tical tests are used as a component in a slightly ill-
defined mechanism for accumulating evidence,
rather than in the tidy cut-and-dried way that their
inventors were trying to establish.

The rejection/acceptance paradigm also leads to the
problem of biassed reporting. Usually, positive
results are much more exciting than negative ones,
and so it is tempting to use loRvalues as a criterion
for publications of results. By definition, thoughPa
value below 0.05 will be found in roughly 1 experi-
ment in 20 even when no real effects are present. If
this experiment is reported and the others are not, it
is clear that the publication will be misleading. This
is a serious worry in the medical and psychological
literature.

There are alternatives to significance tests. Bayesian
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techniques can be used to place confidence limits on
the values of particular parameters, and an approach
using likelihood reasoning has been proposed by
A.W.F. Edwards, whose book “Likelihood” (Cam-
bridge U.P., 1972, expanded edition Johns Hopkins
U.P. 1992, in library at QD 8000 Edw) contains a
trenchant attack on significance testing.

Despite these difficulties, those who seek rigorous
analysis of experimental results will often want to
seeP values, and provided its limitations are borne in
mind, the hypothesis testing methodology can be
applied in useful and effective ways.



Section 9

This section introduces some ideas related to the development of dynamical systems, and especially those that

Chaotic systems and fractals

show chaotic behaviour. The associated idea of a fractal dimensions is introduced.
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1 Introduction

Classical mechanics deals with how deterministic
systems, such as swinging pendulums and orbiting
planets, change with time. The dynamics of such a
system are described by #$ate which captures the
values of all the variables that are needed to predict
the future of the system, and a set of rules, often in
the form ofdifferential equationswhich say how the
state changes with time. For example, the state of a
simple (undriven) pendulum is given by its angle to
the vertical and the speed with which it is swinging.
The rules that govern the pendulum are a pair of dif-
ferential equations that involve only these two varia-
bles. (Parameters such as the length of the pendulum
are not part of the state, because they are constant;
such parameters are thought of as part of the rules.)
The differential equations are solved, with the cur-
rent state as an initial condition, to predict or simu-
late the evolution of the system. This is done
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analytically in very simple cases, but more often
numerically (see Section 6).

(Quantum mechanics, by contrast, describes systems
that are fundamentally non-deterministic, and have
unavoidable randomness. Real physical systems
appear to have this quality, though on a large scale
they are well described by deterministic laws. In
guantum mechanics, the probabilities of the system’s
being in various states evolve according to determin-
istic rules, but the future state itself cannot be pre-
dicted exactly. A third approach, statistical
mechanics, is used to describe systems that are sup-
posed to be fundamentally deterministic, but where

3 probabilities are used to represent our ignorance of

the microscopic details of the system.)

Two things might seem to be sufficient for the study
of a deterministic system: (1) discovering the rules
governing it; and (2) finding sufficiently accurate
analytic or numerical techniques to use these rules to
predict its evolution. Indeed, this is true for many
practical purposes. However, understanding a
dynamical system involves more than this, and we
often want to characterise and classify systems rather
than to treat each in isolation, in order to gain some
insight into their structure. There are many ways to
approach this, but here we concentrate on one or two
of the more graphical ones, which have come to
increased prominence recently, although their roots
were established many years ago.

Simple physical systems often provide analogies for
the study of living or artificially living systems. One
important class of behaviour that is increasingly
identified in physical systems ishaotic behaviour,
which is of particular interest because simple deter-
ministic rules produce high degrees of complexity
and unpredictability in the system itself. Chaos can
readily be demonstrated with simple simulations, but
may play in important role in understanding the evo-
lution of complex simulations with large numbers of
parameters and variables.



Central to the idea of chaos is that tiny fluctuations in
the current state of a system produce large changes in
its future state. To describe this property, it is neces-
sary to look at smaller and smaller variations in the
state. This idea of moving to every smaller scales and
ever greater detail leads to the usdrattal descrip-
tions of the state trajectories associated with this kind
of dynamics.

A good introduction to chaotic dynamics can be
found in “Chaotic Dynamics: an introduction” by
G.L. Baker & J.P. Gollub (Cambridge U.P., 1990, in
library at QE 5360 Bak). There are many books on
fractals, which because of the application to compu-
ter graphics are often very attractively illustrated; a
good example is “The Science of Fractal Images”
edited by H.-O. Peitgen & D. Saupe (Springer-Ver-
lag, 1988, in library at QD 2500 Sci). Also possibly
of interest is “Complexity : life at the edge of chaos”,
by R. Lewin (Dent, 1993, in library at Q 1200 Lew)
— and see also the various books in the library cata-
logue with “chaos” and “fractal” in their titles.

2 System description using phase
space

2.1 Basic idea

A central concept in dynamical systems is that of
state The idea is that the state of a system is known,
then no further information will be any help in mak-
ing predictions about the system. Specifying the state
separates the future from the past, in that everything
in the system’s history is irrelevant to predicting the
future provided the state is known.

One way of thinking of this in relation to simulations
is to imagine a procedure which is called whenever
the simulated time is to be advanced by one tick of
the clock. If the procedure has no local memory in
which it can store variable information between calls
to it, the arguments it is given and the results it
returns will necessarily represent the state of the sys-
tem.

A physical example is given by the solar system. The
laws of gravity provide the rules which govern the
motion, which together with the masses of the Sun
and planets provide the fixed information. The state
is given by the positions and velocities of the heav-
enly bodies in some suitable frame of reference. If
these are known, then there is no point in knowing
where Jupiter was last week, or what its current
acceleration is; such extra information is simply
redundant.

Similarly, in a genetic program, the state at a point
between generations might be fully represented by
the genomes of all the current individuals. Extra
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information, such as their previous levels of perform-
ance on some task, or their ancestry, could be irrele-
vant to what will follow, in that the algorithm
progresses with no information other than the genetic
seqguences.

The state will usually be a collection of the values of
some variables. It seems reasonable to put this col-
lection into a single structure, and this is then known
as astate vectofsee Sections 4 and 5). Given that, it
is a small step to decide to see whether the geometri-
cal interpretation of the vector is any use, and to start
thinking of it as representing position in an abstract
state spacer phase space

Note, however, that these vectors do not represent
simple physical entities, and their components have
varying interpretations. For example, if a system con-
sisting of a single object moving in 3-D is being ana-
lysed, its state vector might well need 6 components,
3 for position and 3 for the components of velocity.
Phase space for this object will be 6-dimensional. If
the object also had a direction it was facing different
from its direction of motion, then a further 2 compo-
nents might be needed to represent its orientation in
space. As with any high dimensional representation,
the value as a conceptual tool depends in part on
whether there is a sensible way to look at it in 2 or 3
dimensions in order to produce pictures.

2.2 Example: the undriven small-angle pendulum

An example of the use of phase space is provided by
a simple pendulum. The point of using such a simple
system is that its phase space is already low-dimen-
sional, so it is easy to produce graphical representa-
tions.

The state of the pendulum is given by two variables.
The first is its angle to the verticed, which will be
positive when it is to the right of centre and negative
when it is to the left, say. The second is the rate of
change of this angle, or the angular spead,The
state might be written a$(w), and phase space is a
2-D plane withB andw as the axes.

If the amount of swing is small, the rule governing
the state is given by a matrix relation (Section 3):

de
dt| o 1]l
A
dt

To simplify the equation, | have assumed that the
pendulum has a certain period (actually @ about
6.283 in whatever time units are being used). The
parametenq is a number which describes how much
damping (such as air resistance) there is: lagge



means little damping. The varialilstands for time.

The vector on the left is a vector of rates of change of
the state variables. If the state vector is thought of as
the position of a point, then the vector on the left is
simply the velocity of that point. If this is not obvi-
ous, try replacind@ andw by x andy, and remember
that velocity components are just time derivatives of
position components. The vector on the left gives the
direction and speed of motion of the state vector
through phase space.

Supposeis very large, so the bottom right-hand ele-
ment of the matrix is almost zero. Then the matrix is
just a rotation matrix through -90° (see Section 4,
part 4.2), since cos(-90°) = 0 and sin(-90°) = -1. That

Gollub’'s examples. It is not difficult to write a pro-
gram which will display both the pendulum’s motion
and the phase space trajectories — see below for
details of one such program to display trajectories.

2.3 Some properties of state trajectories

It is worth noting that trajectories in phase space can-
not cross one another. The reason is simple: at the
crossing point, you would need to know which tra-
jectory you were on in order to know in which direc-
tion to continue. But the position of the point by
itself is sufficient, by the definition of ‘state’, to know
which way to go next — knowing which of two tra-
jectories was being followed is bound to be superflu-
ous. So two trajectories cannot pass through the same

means that wherever the state is in phase space, its point and continue on the other side, though they can

motion will be at right angles to the line joining it to
the origin. In other words, the state will go round in a
circle. (See also the discussion of flow fields in Sec-
tion 5.) Thetrajectoriesof the system in phase space
are circles around the origin. This set of circles char-
acterises the behaviour of the pendulum — and of
course, the cyclical nature of the circle represents the
oscillation of the undamped pendulum. The circles
are known a$imit cycles

If gis made smaller, so that there is some damping,
then dw/dt will have an extra contribution ofw/q.
This allways acts to pull the point inwards towards
the® axis. (Plot a few of the vectors corresponding to
this contribution if this is not clear.) This means that
the state will spiral inwards towards the origin, wher-
ever it starts from. This corresponds to the running
down of a free pendulum which is damped by air
resistance. Since all trajectories end up at the origin
(which is the state of no motion and a vertical pendu-
lum), the origin is called aattractor of the system.

In fact, the idea of an attractor is generalised to
include limit cycles and other structures in phase
space that characterise the long term behaviour of a
system.

You may have met the elementary analysis of the
simple pendulum, in which the differential equations
are solved to get an explicit equation fas a func-

tion of t. The graphical way of looking at it using
phase space provides a much more powerful and gen-
eral technique for studying dynamical systems.

On a practical note: the matrix equation can be used
in writing a simulation of the pendulum. At each
time step, the derivative@ddt is multiplied by the
size of the time step in order to compute the amount
by which to chang® (see Section 6). Likewise faw.
Baker & Gollub’s book (see above) uses Runge-
Kutta integration to get the numbers, but Euler inte-
gration with a small time step works well, and will
replicate the behaviour demonstrated in Baker &
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converge on an attractor.

A second property is that for systems that do not lose
energy, such as the pendulum with very large (infi-
nite really)q, area is conserved in phase space. What
this means is that if you take a bunch of states that
cover a region of phase space, and let them all evolve
for a while, then they will be covering a new region
of phase space, but with the same total area. This
obviously happens for trajectories that move round
concentric circles. If the system loses energy, as
when the pendulum is damped, then the area covered
reduces with time — the points get squeezed together
as they approach the attractor.

In general, the advantage of a phase space descrip-
tion is that it allows aqualitative description of the
system, in terms of the main features of the trajecto-
ries rather than in terms of arrays of numbers. In
addition to point attractors and limit cycles, phase
spaces are characterised by features such as critical
points which areunstablepoints, where trajectories
diverge, orsaddle pointsvhere trajectories converge
along one direction and diverge along an orthogonal
direction. Areas round attractors are described by
basins of attraction any trajectory starting in the
basin of attraction round an attractor will finish up at
the attractor, like water in the catchment area of a
reservoir.

A practical use of phase diagrams is in research in
biomechanics, where they are used in the analysis of
human motion. For example the angle at a person’s
elbow might be plotted against the rate of change of
that angle during a reaching task, in order to make
disorders of motor control graphically apparent.
Phase descriptions of the cardiac cycle are important
in trying to understand how certain failures of car-
diac rhythm arise.



3 The phase space of a chaotic sys-
tem

3.1 The driven nonlinear pendulum

The simple pendulum served to introduce the idea of
phase space, but it did not illustrate the idea of chaos.
To do this, two modifications are needed. The first is
that the system is mad®nlinear— that is, that the
velocity of the state vector is not just a matrix multi-
plication of the state vector itself. For the pendulum,
this can be achieved by using the more physically
realistic equation that is needed to describe a pendu-
lum with a larger amplitude of swing. The equation is

de
d| _ |0 1 ||sinB
W
dt

where the only change is the nonlinear function sin
applied to8 before the matrix multiplication is done.

The second change is that the pendulum needs to be
sustained by a periodic force which operates at a dif-
ferent frequency from the pendulum’s natural fre-
quency. Such a force must be applied by some
external mechanism, and will be taken as an angular
force on the pendulum which varies sinusoidally. The
current value of this force is another state variable,
which will be called phi, so the state vector has three
elements. The equations with the driving force are

do .
dt| _ {o 1 i S':)e
dow -1-1qg

== CcO
at .
do _

0t - K

whereg andk are two new parameters. The last equa-
tion just means thatp increases steadily, which
means that cogj oscillates. The effect of the force is
to add a termg cos(p) to the w component of the
state velocity, so that this vector will wobble in phase
space as time progresses.

Since@ changes steadily in an uninteresting way, the
usual way to view the trajectories is to ptotagainst

0 as before, but to bear in mind that this is onlgra-
jection of the real 3-D trajectory, which winds out-
wards from thed-w plane along the axis. If the 3-D
trajectory is imagined as a wire winding across a
room, it is as if the shadow of the wire was projected
onto one wall by a distant light source. Although the
trajectory cannot intersect itself, its projection can.
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The details of these particular equations are not
important. For particular values af, g andk, this
wobble has extreme consequences for the trajecto-
ries, and what is important is to see the level of com-
plexity that is needed in the equations to allow a
qualitative change in the behaviour.

The nature of the change is that the trajectories are no
longer confined to tidy paths in phase space, but wan-
der across it. The new equations produce a radically
different picture when these trajectories are plotted.
This occurs, for example, fay=2,g = 1.5 andk =

2/3. An example program that will plot these trajec-
tories is described below, or they can be found in
books on chaotic dynamics.

A program which carries out Euler integration of the
equation above is described in part 3.3.

3.2 The Poincare section

It is quite hard to interpret a diagram consisting of
chaotic trajectories that wander across phase space or
a projection of it. One way of simplifying the picture

is to make use of the fact that the driving force is
periodic: from any starting point, it returns exactly to
what it was after a time interval ofrk. If the trajec-
tories are going to have any regularity, this is bound
to show up if we look at the state of the system each
time the driving force returns to any particular point
in its cycle. If the system is behaving simply, then the
(6, w) point will occupy one of a small selection of
locations in phase space at this stage of the cycle,
whereas if the system is chaotic, then the point might
be found in a much larger number of locations.

This is the idea of the Poincare section. Instead of
plotting a more or less continuous successiorp of
and w values, we choose an arbitrary state of the
driving force, and then plo6 and w only at times
when this state is reached. This can give a clearer
picture of what is happening in phase space, and
allows the structure of attractors to be seen more
clearly. This is like superimposing a set of slices
through the trajectory, all perpendicular to theaxis
and spread out along it. Another way of thinking of it
is that it is like taking snapshots of the pendulum’s
state using stroboscopic lighting triggered by the
driving force.

3.3 A demonstration

It is easier to understand this material by looking at
pictures than by reading words. Examples can be
found in books, but there is also a program which can
be run if you are reading the online version of this

file from Ved at a graphics terminal.

Although no substitute for the interactive version,
two examples of the results are given here. First, for



g =2,k =2/3 andg = 1, the state trajectory is dis-
played as

oMega

theta

The Poincare section with these parameters is just a
dot, somewhere on the trajectory shown above.

If, however,g is set to 1.5, the trajectory looks like

onega
4

whilst the Poincare section is diffuse:

oMega
4
2
f*"_.”;-ﬁﬁ_
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You could set up a similar demonstration fairly easily
using a package such as Matlab.

3.4 Properties of chaotic systems

One of the most important characteristics of chaotic
system is that small changes in initial conditions pro-
duce, over time, rapidly diverging trajectories in
phase space. A block of neighbouring starting points
in phase space will be smeared out across a wide
region as time progresses.

A physical system which demonstrates such behav-
iour more obviously than the pendulum consists of a
set of static billiard balls on a table, into which one
ball is fired. If friction is somehow made very low,
there may be many collisions. Now if a small change
is made to the initial direction of motion of the mov-
ing ball, a much larger change will result its direction
of motion after the first collision. The reason for this
is that the initial angular change gets converted into a
change in the point of collision between the two
balls, and the point of collision affects the outward
direction strongly. After only a few collisions, a
microscopic change in the initial direction will pro-
duce a radically different configuration of the balls.
In fact, a real billiard table is not chaotic because
there is friction but no input of energy, and the trajec-
tories end up on an attractor corresponding to stasis,
but it could be made so by some means of adding
energy to the system to keep the balls in motion, per-
haps by vibrating the edges of the table.

Similar arguments are often applied to large-scale
physical systems, with the atmosphere providing one
of the chief examples: it seems likely that the

weather is actually chaotic, and so a tiny perturbation
in one part of the world will produce large changes

elsewhere subsequently.

This unpredictability fits in with the diffuse nature of
the Poincare section in these cases: at a fixed point in
the driving cycle, the pendulum might be at all kinds
of different states, and short of running the full simu-
lation, there is no way of computing the state an arbi-
trary time into the future.

The pendulum simulation involved 3 parameters: the
amount of damping, the strength of the driving force,
and the frequency of the driving force. These param-
eters have to be given numerical values for a given
simulation. Some combinations of values produce
chaotic behaviour and some do not. One way to
explore this division of thgparameter spaces to fix

two of them and vary the third. Iff andk are kept
fixed, at say 2 and 2/3 respectively, then the behav-
iour shows an interesting variation with As g is
increased through a range from say 0.5 to 1.5, the
behaviour changes several times from non-chaotic to
chaotic. The transition into chaos is not abrupt, how-



ever; atg = 1.5 there is chaos, butgt 1.49, say, the
trajectories are orderly but complex. In fact, @$s
increased through the range just below 1.5, the tra-
jectories display a phenomenon callpdriod dou-
bling, in which the trajectory of the pendulum in
phase space requires 2, then 4, then 8 (and so on)
cycles of the pendulum before it repeats itself. This
can be displayed usingifurcation diagramswhich

will be found in textbooks, and can be observed
using the simulation mentioned above. The transition
into chaos — théiedge of chaos"— is regarded as
highly important in some theories of self-organising
systems (see the book by Lewin mentioned above).

3.5 Other chaotic systems

This introduction has been in terms of a simulation of
a simple physical system with continuous values for
its state variables. Many other kinds of system
exhibit chaos, however, and these include systems
whose state space discreterather than continuous.
Cellular automata are examples of such systems. An
interesting example of a chaotic cellular automaton is
given in the paper ‘Evolutionary games and spatial
chaos’, by M. A. Nowak & R. M. May (Nature, 359,
826-829, October 1992). Here, agents on a 2-D grid
interact with each other, playing a game called ‘Pris-
oner’s Dilemma’, and adjusting their behaviour to
copy that of their most successful neighbour.
Remarkable chaotic graphic patterns ensue. If you
read the online version of this from Ved, you can run
this system from the file TEACH PD_GAME. (You
don’t need to know Pop-11 for this — just mark and
load the examples in the file.) Although this is super-
ficially a completely different system to the pendu-
lum, there is again an adjustable parameter which
causes transitions between chaotic and non-chaotic
behaviour.

4 Fractals

The Poincare section for a chaotic system looks char-
acteristically smeared out across the projection of
phase space. Is it possible to make a more quantita-
tive measurement that reveals the nature of this struc-
ture? There are various ways of doing this (including
using the entropy — see Section 7), but one particu-
larly interesting mathematical tool is the ideafiafc-

tal dimensionThis idea will be briefly outlined here;
there are now many textbooks dealing with the topic,
and these are often worth looking at because of their
excellent graphical presentation of the material.

4.1 Basic idea

The idea that a room has 3 dimensions, a sheet of
paper 2 dimensions, and a line on it 1 dimension may
already be familiar. Of course, the paper and the line
are idealised: we pretend they have no thickness or

53

width. The number of dimensions corresponds to the
numer of coordinates that are needed to represent a
position within the structure. In addition to these eve-
ryday examples, space-time is a 4-dimensional struc-
ture, whilst a point has 0 dimensions. In all these
cases, the dimension is a whole number.

In fact, it is possible to give a fractional dimension a
well-defined meaning. Some structures can sensibly
be regarded as having 1.5 dimensions, for instance
(and it turns out that the set of points in a Poincare
sections is sometimes one of this type). Such a struc-
ture must be somehow more than aline, and less than
a plane. One way to generate an object like this is to
draw a straight line, then replace its middle third with
two sides of an equilateral triangle, then to repeat this
operation on each of the lines we now have, and to
keep doing this indefinitely, with the lines getting
shorter and shorter. (This is called the von Koch
curve.) The structure is more than a line in the sense
that there is a 2-D region of the plane where every
point is less than some infinitesimal distance from it,
but less than a plane in that every point that is part of
it has a neighbouring point that is not. The structure
is something like a sponge, occupying a part of some
space but not filling it solidly.

The most significant aspect of a fractal is that it has
structure on all scales. That is, if you look at it under
a magnifying glass you will observe the same sort of
detail that you could see with the naked eye; if the
magnifying glass is replaced with a microscope, the
appearance will still be roughly similar; and so on,
however powerful the microscope is made. This
property is known aself similarity The von Koch
curve was designed to have a particularly simple
form of self similarity, but fractal structures in gen-
eral exhibit it.

Apparently bizarre structures like this are not only
relevant to describing chaotic systems. They appear
to be useful models of a variety of natural systems.
The classic example is the coastline of Britain, which
on a large scale shows headlands and estuaries, on a
smaller scale shows small inlets and rocky points,
and so on down to the interstices between grains of
sand. Recently, much has been made of fractal sys-
tems as representations of the structure of images of
natural scenes, and the application of this to image
encoding and compression.

4.2 Fractal dimension

A fractal is mainly characterised by its fractal dimen-
sion. This is measured by exploiting the self-similar-
ity, and asking how the object appears to change as
the scale of observation is adjusted. We start by look-
ing at a different way of defining the dimensionality
of non-fractal objects.



Take an ordinary 2-D shape and draw a grid over it.
Let the size of one side of each box beand count
the number of boxes lying over or partly over the
shape. Call the number of box&§. The ordinary
area of the shape is roughly the number of boxes
times the area of each one, or

A = NgL?
so the initial number of boxes is given by
- Al
Ng = AELD
Now make the boxes times smaller. That is, make
the side of each box equal tdr, by drawing extra
lines between the original grid lines. The area of each

box is now (_/r)2, so the new value oN, which |
write as a function of, is

AL

N = AHE

A%grz
= Ngr?

This won't be exact, as the curved edges of the shape
will pass through the middle of some boxes at each

scale, but as long as the original boxes are small
enough that the estimate Afis reasonable, it will be

a good approximation. And as the original boxes are

made smaller and smaller, the approximation will be

more and more accurate.

The quantityA(1/L)? is a constantNg, so what we
have is that the number of boxes needed to cover the
shape is proportional o in the 2-D case, wheneis

the scaling factor for the boxes.

Now consider a 1-D line. LeA stand for the length

of the line. Split the line up into segments of size
and count the number needed to cover the line. The
number of segments iy = A/L. Then divide each
segment intar parts and count again. The number
needed is just

N(r) = Ngr

i.e. in 1-D the number is proportional to the scaling
factor.

Do the same thing in 3-D: split an object occupying
some 3-D volume up into cubes, with being the
side of each cube&\ is now the volume of the object.
Then you get

N(r) = Ngr3

In each of these everyday cases, the power rthat
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raised to is the dimensionality of the object. Note that
if you have, say, a 2-D surface embedded in a 3-D
space, and you look at how many boxes you need to
contain it, you still get the power of 2: it's the dimen-
sionality of the object, not the dimensionality of the
space it lives in, that is measured.

Now do the same for a fractal pattern. You start off as
before with

N = AE‘%EZ

as the number of boxes covering it. You only need to
count boxes that actually have black dots in them.
Now, A is a sort of “effective area” at the scale
defined by the length — it's more or less the area
that would get covered if the dots, rather than being
infinitesimal points, were dots of a size comparable
with L. (They'd overlap of course.)

Then you makeé. smaller by dividing byr, as before.
What happens then, though, is that you don't need as
many boxes as you expect, because as the boxes get
smaller, more of them fit into the white spaces
between the dots. What happens is that instead of
gettingN = No r?, you find that you geN = N rP,
whereD is a number less than 2. But however small
you make the boxes, you never get dowrbte 1 as

you would with a smooth curve -B flattens off at
some definite intermediate value.

The numbeD is the fractal dimension of the object.
For the von Koch curve it's actually about 1.26. The
curve has the fractal dimension because however
closely you look at it, there is always more structure
to see, so the effective area gets smaller and smaller
as you reduce the scale. However, the effective area
never gets down to zero as it would for an ordinary
curve (which has a fractal dimension of 1).

4.3 Iterated function systems — fractal dynamics

One way of generating fractal structures, exploited
particularly in image processing, is therated func-

tion system(IFS) technique, associated particularly
with M.F. Barnsley (see the book edited by Peitgen
& Saupe mentioned in the introduction). This is of
interest here as a second example of a dynamic sys-
tem which can generate fractals, although this time
the process is more direct in that simulation of a
physical system is not involved; phase space is more
or less manipulated directly.

In an IFS, a vector (here 2-D) is manipulated using
matrix multiplication and addition. Consider a point
(%, y) subjected to a matrix multiplication and a vec-
tor addition. The new pointx{, y’) is given by



= leal L

y cd |y f

wherea, b, ¢, d, eandf are 6 parameters of the trans-
formation. If this is done repeatedly, replacing y)

by (X', y’) at each stage, and the successive positions
are plotted, the dots will form a trajectory in the
plane. If the elements of the matrix satisfy a certain

condition (it defines a contractive mapping), the tra-
jectory will converge to an attractor.

In an IFS, a set of transformations like this is first
defined, each with its own set of 6 parameters. There
are typically a small handful of transformations in an
IFS. Then at each iteration of the algorithm, one of
the transformations is selected at random (using pre-
defined probabilities) and applied to the point. The
next iteration will again select a transformation at
random, either the same one or a different one. The
result is that the point defined by, (y) follows a
complex random walk around the plane, being con-
tinuously pulled to different attractors. The result is
not, however, a superimposition of simple shapes, but
(in general) a fractal pattern, showing self similarity.

Examples abound in books: the most standard is a
fern leaf, generated by four transformations with the
parameters

a b o d e f P
0.85| 0.04| -0.04 0.8 0 03 0.85
-0.15| 0.28| 0.26] 0.24 0| .0825 0.07
0.2 | -0.26| 0.23| 0.22 0.3 0.0

0 0 0 | 016 O 0 | 0.01

(the probabilitiesP are not critical). The result is
shown below. It is straightforward to write a program
that generates the image of the pattern from these
parameters. It is not difficult to come up with sets of
parameters that generate other patterns.

Part of the interest in these systems is that an object
that looks immensely complex if taken piecemeal is

shown to be summarised by a rule that has only a
small number of numerical parameters. This has both
practical application to areas like image compres-

sion, and theoretical value in understanding complex
dynamic systems.

4.4 Other fractal generators

The IFS brings together nicely the idea of a dynamic
system described by a phase space trajectory, and the
fractal dimension. However, many other rules can be
used to produce fractal objects: two examples are the
logistic map used in studies of population dynamics,
and thelL-systemwhich operates in the domain of
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formal languages and their grammars.

5 Conclusion

This teach file differs from the preceding ones in that
no new mathematics is involved. Differential equa-
tions, matrices, vectors and probability have all been
encountered already. However, their application to
chaotic dynamical systems opens up a rapidly devel-
oping area, which has major applications to the
understanding of complex systems. Understanding
systems with many interactions will involve a vast
variety of techniques, from transparent simulations to
extremely abstract formal mathematics. You will
need to use imagination to find the level of analysis
that is appropriate for your problem and your way of
looking at it.
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