
Formal Computational Skills Worksheet: Optimisation 
 
Aims:  The aim of this worksheet is to experiment with the gradient ascent algorithm and 
compare its performance to a hill-climbing algorithm. You should also see the influence of the 
learning rate and several other user specified parameters 
 
Optimisation 
 
Suppose we have a function f(x1, x2, …, xn) which takes n variables as inputs and gives a 1-
dimensional output (ie a number). We can visualise this as an n+1 dimensional space where x = 
(x1, x2, …, xn)

T
 is a point on an n-D plane and f(x) is the height above the plane. So for a 2D x 

we would have: 
 

  

Suppose we want to find the 
highest (or lowest) value of f. 
The idea is to search the space 
of all possible values of x 
(known as the search-space) 
until we find it. Instances of x 
are often referred to as 
solutions. 
 
In this case we would search for 
x = (1, 0) as f(1, 0) is the highest 
point or the optimum 
 
If there is more than one peak, 
the highest is called the global 
optimum and the others  local or 
false optima 

 
The procedure of searching is known as function optimisation and a great many techniques and 
algorithms are used for it. Two issues that are important in determining which method to use are 
(1) the time it takes to find an optimum and (2) the height (relative to the global optimum) of the 
optimum found. These issues are often in opposition since generally the longer spent searching, 
the better the optimum that is found. Which factor is prioritised therefore depends on the needs 
of the optimiser: do you want an ok solution quickly or do you have the time to look for a really 
good one?  
 
In this worksheet we will implement two optimisation methods: gradient ascent and hill-climbing. 
By optimising two functions, we will explore the interplay of the time taken to reach a solution 
versus the solution’s quality and see how the parameters used affect this balance.  
 
Gradient Ascent 
 
The idea of gradient ascent is very simple. Starting from a random position in the search-space, 

take a step in the steepest direction up-hill and repeat. Since the gradient )(xf  points in the 

steepest direction uphill the algorithm is: 
 

1. Choose a random starting position x 

2. Evaluate the gradient at x: )(xf  

3. Do xnew = x + )(xf  

4. Repeat from 2 until a stopping condition is met 
 
 
 
 

x2 x1 

f(x1,x2) 

x=(1,0) the optimum 



There are therefore three potential areas that can be varied/investigated by the user: 
 

The learning rate : this controls the size of the step taken and is usually set to a value much 
less than 1. It will affect the time to get a good solution and the quality of a solution. Theory 
suggests that a larger learning rate will get to a solution quicker but it may miss better optima. In 
most practical algorithms, it is set on-line and changed adaptively. 
 
Stopping condition: It is often difficult to know when to stop searching – is the optimum you are 
at the best or not? – and the question is sometimes answered by practical issues of how much 
time one has. Typically, an upper limit is set on the number of steps of the algorithm or function 
evaluations, though if the solution stops moving for a length of time, the algorithm may be 
terminated prematurely. 
 
Evaluating the gradient: In most cases, as the function being optimised is unknown, the gradient 
cannot be evaluated mathematically and must be estimated. This can range from simply seeing 
if it is higher/lower on either side, to sophisticated (and time-consuming) algorithms which 
approximate 1

st
 and 2

nd
 order derivatives. 

 
Here we will use a constant learning rate initially set to 0.1 (though you will experiment by 
changing this value) and will stop after a maximum of 50 iterations of the algorithm. As we know 
the functions we will be optimising, the exact gradient will be used.  
 
Hill-climbing 
 
Hill climbing is another very simple algorithm which proceeds as follows: 
 

1. Choose a random starting position x 
2. Randomly select a new point xnew ‘near’ x, that is, mutate x 
3. If f(xnew) > f(x), set x = xnew else repeat from 2. 
4. Repeat steps 2 and 3 until a stopping condition is met 

 
It is similar to gradient ascent in structure and can be seen as a form of this algorithm. The main 
difference however is in the level of stochasticity. In the form we will use it, once learning rate 
etc have been decide on, the gradient ascent algorithm is largely deterministic. That is, given a 
particular starting point it will always end up at the same point. In contrast, the randomness 
introduced by step 2 (and sometimes in step 3) makes hill-climbing much more stochastic. 
Together with the stopping condition (which has the same issues as for gradient ascent), the 
issues in steps 2 and 3 determine how the algorithm behaves. 
 
Step 2: The mutation process can be divided into 2 parts: which dimensions of x to change and 
how much to change each of them. Some schemes ensure a small random movement in only 
one dimension at a time, while others allow a move to any part of the search-space, albeit with 
vanishingly small probabilities. Usually the process is set so that mutations to points near x are 
more likely than those further away. 
 
Step 3: When to set x = xnew

 
is normally if f(xnew) > f(x). However, we often allow so called 

neutral moves where f(xnew) = f(x) and often allow downward moves ie when f(xnew) < f(x) but 
only with a certain probability, eg only allow 10% of downward moves. This brings more 
randomness into the algorithm’s behaviour but also allows it to ‘escape’ from local maxima. 
 
Here we will use following mutation procedure: randomly choose one element of the vector x to 
mutate; mutate this by adding a random number in the range (-MaxMutate, MaxMutate); if 
f(xnew) > f(x) set x = xnew. We will start with MaxMutate=1 though you will experiment with this 
value. As with gradient ascent, stop the algorithm after 50 iterations. 
 



Task 1: Gradient ascent and Hill-climbing with a simple function [40%] 
 
Download the file GradientAscentEG.m from the web-site and copy it to your directory. The file 
contains functions SimpleLandscape and SimpleLandscapeGrad, and ComplexLandscape and 
ComplexLandscapeGrad. These functions take an (x,y) position as input and return the height 
or gradient vector of 2 functions of x and y: one simple and one more complicated. It also has 
the outline of functions which perform gradient descent/hill-climbing. Sections you need to 
complete are marked with TO DO in the comments. 
 
1.1 Gradient Ascent 
 
To perform gradient ascent you need to first calculate the gradient at a point (line 28) and then 
use this gradient to update the point you are at (line 30). Use the function 
SimpleLandscapeGrad which returns the elements of the gradient as a vector. Try starting the 
algorithm from a few random points and observe the behaviour. 
 
1.2 Hill-climbing 
 
Now try hill-climbing on the same landscape. Comment/uncomment lines 15-16, then write the 
function mutate. As described earlier, this will have 2 components: First generate a random 
value MutDist between (-MaxMutate, MaxMutate). Look at line 13 for an example of this. Next, 
use rand to decide which element of StartPoint to change, and add MutDist to it; Now evaluate 
the new point and update if f(xnew) > f(x). 
 
 
Questions 
 
What do you notice about the 2 algorithms in terms of the height they get to and the time it 
takes them to get there? To test this, change the hill climbing and gradient ascent functions so 
that they return 2 parameters: a 1 or 0 specifying whether the global optimum was reached 
together with how many iterations the algorithm performed. NB to stop the algorithm after the 
maximum has been reached, use an ‘if’ statement to test whether the maximum height has 
been reached, then use the function ‘break’ to break out of the ‘for’ loop.  
 
Now test the algorithms systematically by starting from a grid of points covering the landscape. 
Do this by replacing the line generating a random starting position with a loop eg: 
 
GridPoints=[-2:0.25:2] 
for i = 1:length(GridPoints) 
 for j = 1:length(GridPoints) 
  StartPt=[ GridPoints(i) GridPoints(j)]; 
  [MaxReached(i, j), Iters(i, j)] = GradAscent(StartPt,NumSteps,LRate); 
  if(MaxReached(i, j)) SumItersToMax = SumItersToMax + Iters(i,j); end 
 end 
end 
 
NB commenting out plotting commands makes the program run faster. Calculate how many 
starting points lead to the maximum using sum(sum(MaxReached)), then calculate the mean 
number of iterations it takes those that reached the maximum, to get there. Use ‘pcolor’ to graph 
Iters and MaxReached eg: pcolor(GridPoints,GridPoints,MaxReached). To get a scale bar do: 
colorbar. Experiment with shading and colormap to see their effects.  
 
Explain any differences in results between the 2 algorithms. Experiment with changing the 
learning rate and range of mutation to see what happens. 
 
Marks: Half the marks are for implementation, ie running the algorithms from different 
starting points, running them systematically and experimenting with changing learning 
rate and max mutation size. The other half of the marks are for describing, explaining and 
analysing the results, especially ‘odd’ results and relating them to how the algorithms 
work. 



Task 2: Gradient ascent and Hill-climbing with a complex function [40%] 
 
Now try the complex function, ComplexLandscape. To plot it, rather than line 4, use the function 
DrawComplexLandscape. You will need to change GridPoints and/or your procedure for 
generating a random starting point so that both x and y are in the range [-3, 7]. You can 
however delete the parts of your algorithms which check if points are within the range. 
 
Questions 
 
Try some random starting positions. If gradient ascent keeps failing as its in a flat bit of the 
landscape, change the range of random starting positions. What do you notice about the 2 
algorithms in terms of their performance? How does this differ from their performance on the 
simple landscape? 
 
Now test your algorithms systematically over the new ranges. This time however, as there are 
many optima that the algorithms could find, simply return the height that they achieve after 
NumSteps iterations and do eg pcolor(MaxReached) to see a plot of the heights reached. The 
function colorbar will give you a scale. This plot will show you the basins of attraction of each of 
the optima that is, the set of points which lead to a given optima. Experiment with the learning 
rate and range of mutation and comment on any observations. In particular, try lowering the 
learning rate to 0.01. How does the result change if you double NumSteps? 
 
Marks: Again, half marks for implementation and experimenting with parameters, the 
other half for description and analysis of results, relating observations to the way the 
algorithms work. 
 
 
Task 3 (extra credit): Improve the algorithm [20%] 
 
Try to improve the algorithms by altering them. Test them on the landscapes and report the 
results. 
 
Marks: 5% of the marks for suggested improvements based on originality and 
practicality. The remaining 15% of the marks are for describing and analysing the 
performance of the augmented algorithms. 
 


