
Formal Computational Skills

Dynamical Systems Analysis



Why? Often have sets of differential equations describing a 

dynamical system. 

Analysis determines how the system behaves over time, in 

particular investigating future behaviour of the system given 

any current state ie the long-term behaviour of the system. Can 

solve equations for particular starting point(s), but this is often 

not enough to enable us to understand the system

Therefore use complementary analysis focused on finding 

equilibrium states (or stationary/critical/fixed points) where 

system remains unchanged over time

Also try to classify these states/points as stable/unstable by 

investigating the behaviour of the system near them

Dynamical Systems Analysis



Eg coin balanced on a table: how many equilibria?

Given a noisy world, coin will end up in a stable state

Note however, may not be able to tell which state it will end 

up in … idea of chaotic systems

Both stable as perturbation does not result in a change in state

Start on its edge, it is in equilibrium … is it stable?

… No! Small movement away (perturbation) means that coin 

will end up in one of 2 different equilibria: Heads/ Tails. 

3: Heads, Tails, Edge

Similarly, think of a ball at rest in a dark landscape. It‟s either on 

top of a hill or at the bottom of a valley. To find out which, push it 

(perturb it), and see if it comes back. (What about flat bits?)



By the end you will be able to: 

• Find fixed points of a system

• Classify fixed points as stable/unstable etc

• Use graphical methods (direction and cobweb plots) to analyse 

the behaviour of systems

• Use phase-plane analysis to analyse the behaviour of systems

1st half: 1 (space) dimensional systems

2nd half: 2 (and higher) dimensional systems

Will NOT talk about:
• Proofs of many of the stability theorems – focus will be on 

how to use them to analyse your systems

• The many special cases – these lectures are a primer



Fixed points of 1D systems

Want to analyse multi-dimensional nonlinear dynamical 

systems

start with simple 1D systems eg

dx/dt = f(x, t)

At a fixed point, x doesn‟t change as time increases, ie:

dx/dt = 0

So, to find fixed points, set: f(x, t) = 0 and solve   

Note: same procedure for finding maxima and minima



Eg: dx/dt = 6x(1 – x) What are the fixed points?

Maths fact: if AB = 0 either A = 0 or B = 0

so either 6x = 0 => x = 0 or     1 – x = 0 => x = 1

Therefore 2 fixed points: stability??

Set: dx/dt = 0 ie: 6x(1-x) = 0

But to perturb them must have a model of the system. 

Use difference equation: x(t+h) = x(t) +h dx/dt from various 

different initial x‟s

Eg start from: x = 0 + 0.01, x = 0 – 0.01, 

x = 1 + 0.01, x = 1 – 0.01

Perturb the points and see what happens …



x = 1 + 0.01 Start from x = 0 + 0.01

x = 1 - 0.01 x = 0 – 0.01 

0 0

0

1 1

1



So by perturbing looks like x=0 unstable and x=1 stable



Use direction fields. Idea is to plot x against t and, at a grid of 

points on the plane, draw an arrow indicating the direction of 

subsequent points x(t+h), thus showing the movement of x for 

different starting conditions. 

x=0 unstable and x=1 

stable. What if we want 

more info? 

What happens if we don‟t 

start from a fixed point? 

Iterate the system to get 

behaviour 

What happens if we start at 

any starting positions eg 

x(0) =0.8 or any of the 

points shown by blue dots?
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Direction fields

What is this direction? remember: x(t+h) = x(t) + h dx/dt

Drawing an arrow from x(t) to x(t+h), shows the direction of next 

point so arrow starts at (t, x(t)) and goes to (t+h, x(t)+hdx/dt)

Matlab code to generate 

direction : use „quiver‟

[T,X]=meshgrid([0:0.1:1.4],  

[0:0.1:0.9]);

NewT= ones(size(T));

NewX=6*X.*(1-X);

quiver(T,X,NewT,NewX)
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Don‟t need h as it is scaled 

automatically



Can use them to eg see the influence of parameters on systems
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All points stable: 

degenerate solution

6x(1-x)
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Now 0 is stable and 1 unstable
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Recap:

Have looked at analysis of 1D systems 

Analysis focussed on finding fixed points and analysing 

stability

Showed that fixed points could be found by solving:

dx/dt = 0

Next we will examine discrete dynamical systems then 

systems with more dimensions!

Introduce cobweb plots as an analytical aid



Discrete dynamical systems
Now widen discussion to discrete dynamical systems where:

x(n+1) = f(x(n))

for a sequence of time steps, t0,t1, t2, ..., tn, tn+1, ...

ie x(n) is shorthand for “the value of x at the n‟th timestep tn”

However, the dependency on the step-size h is now explicit

Important as stability can be determined by value of h used

[NB this is same as if dx/dt=0 since 

Define f(x(n)) = x(n) + hdx/dt,  

then if: dx/dt = 0 ,   x(n+1) = f(x(n)) = x(n) + 0 = x(n)]

Fixed points are those where x(n+1) = x(n) so find them by 

solving: a = f(a)



Cobweb Plots
Often instructive to solve a = f(a) graphically ie plot y=a and 

y=f(a) on the same axes. 
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Eg dx/dt=6x(1-x) with 

time-step h=0.1:

Where they cross, f(a) = a ie the fixed points ie a= 0 and a = 1.

a

so plot:

y=f(a)=a + 0.6 a(1-a) (red)

and y = a (blue)

x(n+1)=x(n) + hdx/dt

x(n+1)=x(n) + h(6x(1-x))

So: f(x) = x + 0.6x(1-x)
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However, these plots can also tell us about the stability of the 

fixed points via the following procedure: 

Start at a point x(0)=0.2

x(0) x



Start at a point x(0)=0.2

Go vertically up to the 

curve f(x)

This is f(x(0))= x(1)
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y=f(x(0))= x(1)

x
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Go horizontally from 

this point to the line y=x 

as this is x(1) on the x-

axis. 

x(1)

y=f(x(0))= x(1)

x
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Go horizontally from 

this point to the line y=x 

as this is x(1) on the x-

axis. 

Get x(2) from going 

vertically from this point 

to f(x)

This is f(x(1))= x(2)

x(1)

y=f(x(1))= x(2)

x
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x(3)

y=f(x(2))= x(3)
Go horizontally from 

this point to the line y=x 

to get  x(2) on the x-

axis 

Then get x(3) from 

going vertically from 

this point to f(x) since:

f(x(2)) = x(3) 

x
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Then get x(4), x(5) etc 

etc

Can therefore classify 

stability of fixed points 

by seeing which 

starting points lead to 

which fixed point

x(4)

x(5)
x(6)

x



Try eg‟s on sheet. Start from values indicated

Solid (blue) lines are y=x, dashed (red) lines y=f(x)
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Stable

y = 0.6x + 0.2
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y = 2x - 0.5
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Semi-Stable 

from below

y = x3 – x2 + 1
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x=1.2 stable, x=1.4 unstable.

y = 0.8x - x3

Last eg illustrates the concept of a basin of attraction: the 

range of values of a that will lead to a stable point if started 

from (or if passed through)
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Stable Unstable

y = 0.6x + 0.2 y = 2x - 0.5

Notice that if the gradient of y=f(x) evaluated at a0 (the fixed 

point) is > gradient of y=x (which equals 1) the point is 

unstable

Leads us to following theorem ...

x x



Classifying Fixed Points

If a0 is a fixed point 

if |f‟(a0)| > 1, a0 is unstable

if |f‟(a0)| < 1, a0 is stable

if |f‟(a0)| = 1, inconclusive. 

(where f‟(a0) means the derivative of f, df/dx (or df/da etc) 

evaluated at a0 and |f‟(a0)| means the absolute value of it)

if |f‟(a0)| = 1 need to use higher derivatives or other methods 

Can be semi-stable from above or below or periodic …



eg x(n+1) = -x(n) + 4: 

So f(x) = 

df/dx = f‟(x) =

so |f‟(a)| = 1, 

but notice what happens if we start with x(0) = -2: 

x(0)=-2, 

x(1) = -x + 4 =

x(2) =

x(3) =

periodic with period 2 

-x + 4

-1 

-(-2) + 4 = 6 

-6 + 4 = -2 
-(-2) + 4 = 6     etc 



Check the Egs:

1) f(x) = 0.6x + 0.2

2) f(x) = 2x - 0.5

3) f(x) = x3 – x2 + 1

4)   f(x) = 0.8x - x3

First determine df/dx = f‟(x)

Then calculate f‟(x) at the fixed points



Determine f‟(x):

1) f(x) = 0.6x + 0.2

2) f(x) = 2x - 0.5

3) f(x) = x3 – x2 + 1

4)   f(x) = 0.8x – x3

f‟(x) = 0.6

f‟(x) = 2

f‟(x) =3x2 – 2x

f‟(x) =0.8 – 3x2



Calculate f‟(x) at the fixed point:

1) f(x) = 0.6x + 0.2,  f‟(x) = 0.6

2) f(x) = 2x - 0.5,  f‟(x) = 2

3) f(x) = x3 – x2 + 1,  f‟(x) =3x2 – 2x

a0=1 so: 

f‟(a0) = 3(12) – 2(1) = 1 

so inconclusive (semi-stable)

4)   f(x) = 0.8x - x3,  f‟(x) =0.8 – 3x2

a0=0 so: 

f‟(a0) = 0.8 – 3 (02) = 0.8 <1 

so stable

< 1 so stable

> 1 so unstable



Summary

So far:

• how to find fixed points of a dynamical system 

• concept of stability and its dependence on parameters

• Direction fields for determining behaviour 

• cobweb plots for stability

• how to check the stability of a fixed point

In seminars: 

• introduce a few more examples

• show how the wrong choice of a time-step leads to instability

• work through an example of this analysis used for GasNets

Now

• 2D (and higher) systems... 



In higher-dimensional systems movement of trajectories can 

exhibit a wider range of dynamical behaviour

Fixed points still exist, but can be more interesting depending 

on how trajectories approach or repel from the equilibrium point 

eg system could spiral in to a stable point

Also, other types of stability exist eg saddle-nodes, and 

importantly cyclic/periodic behaviour: limit cycles

More interesting, but more difficult to analyse… We will cover:

• How to find fixed points 

• Classifying fixed points for linear systems

• Phase-plane (phase-space) analysis of behaviour of system

2 and higher dimensional systems



2D systems
Analyse 2D (and multi-D) systems in a similar way to 1d 

systems.

Won‟t go into proofs (see eg introduction to ordinary differential 

equations, Saperstone and refs at end) but will give general 

procedure

1. Find fixed points

2. Examine stability of fixed points

3. Examine the phase plane and isoclines/trajectories

),(

),(

yxgy
dt

dy

yxfx
dt

dx



Suppose we have the 

following system 



Find Fixed Points
Find fixed points as before ie solve dx/dt = 0 and dy/dt = 0 ie 

solve: f(x,y) = 0 and g(x,y) = 0 to get fixed points (x0, y0)

Set 0 = 0.6x – 0.05xy  and: 0 = 0.005xy – 0.4y  

so: 0 = x(0.6 - 0.05y) so:   0 = y(0.005x – 0.4)

so: x = 0 or y = 12 so:   y = 0 or x = 80

yxyy

xyxx

4.0005.0

05.06.0



Eg predator-prey from 

last seminar:

If x=0, dy/dt = -0.4y ie need y=0 for dy/dt=0 so fixed point at (0,0)

Similarly, if y=0, dx/dt = 0 for x=0 so again, (0,0) is fixed point

Other fixed point at (80, 12)



eg predator-prey from last week: phase plane gives extra info
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Examine behaviour at/near fixed points but view in phase-

space (or phase-plane) where x plotted against y rather than 

against time

x and y in 

phase-plane

x and y 

over time

Need phase plane AND fixed points to analyse behaviour: [DEMO]

Cyclic behaviour is fixed but system not at a fixed point: 

complications of higher dimensions



Classify Fixed Points

Suppose x0 =(x0, y0)
T is a fixed point. Define the Jacobian: 

Find eigenvalues and eigenvectors of J evaluated at the fixed 

point:

1. If eigenvalues have negative real parts, x0 asymptotically 

stable

2. If at least one has positive real part, x0 unstable

3. If eigenvalues are pure imaginary, stable or unstable
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f
yxf x ),(where

y

f
yxf y ),(and

1i

Complex numbers are made up of a real part (normal number) 

and an imaginary part eg 4 + 3i  where



Remember from matrix lecture: Intuition is direction of x is 

unchanged by being transformed by A so it  reflects the principal 

direction (or axis) of  the transformation

Starting from an eigenvector, x however, get: 

x

x

x

x
x x

ie Repeatedly transform v by A.

Start at v then Av then AAv= A2v

Most starting points result in curved trajectories 

etc …

Ax = x, A2x = 2x,

A4x = 4x, …

A3x = 3x,

So trajectory is a straight line
x

x

x

x

Note if | | > 1, x expands. If not, 

will contract



Fixed Points of Linear Systems

Unstable node, 

e1 > e2 > 0 

(Stable node is same 

but arrows pointing 

the other way)

Various behaviours depending on the eigenvalues (ei) and 

eigenvectors (vi) of J

In general, points attracted along negative eigenvalues and 

repelled by positive. Axes of attraction etc are eigenvectors eg



Saddle point, e1 < 0 < e2



Unstable focus, complex ei‟s, real part > 0

For a stable focus, real part < 0



Linear centre, 

complex ei‟s, real 

part = 0

For non-linear equations, behaviour near the fixed points will 

be „almost like‟ the behaviour of a linear system depending 

how „almost linear‟ it is

Behaviour gets less linear-like the further away trajectories get 

from the fixed point



Back to eg:

yxyy

xyxx

4.0005.0

05.06.0





For J(0,0) eigenvalues 0.6 and –0.4 and eigenvectors (1,0) and 

(0,1). Unstable (a saddle point) with main axes coordinate axes

fx = 0.6 – 0.05y, fy = 0.05x, 

gx = 0.005y, gy = 0.005x – 0.4

04

6.00
)12,80(J

For J(80,12) eigenvalues are pure imaginary: need more info 

but will be like a centre…. to the phase-plane!
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have a saddle node at (0,0) and a centre at (80, 12)
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To get a more accurate picture, we can look at all the 

direction vectors in the phase plane



Phase plane analysis

Similar to direction fields except 

we use a plot of x against y

2. By Euler evaluate: 

(x(t+h),y(t+h))=

(x(t)+hdx/dt, y(t) +hdy/dt) 

plot an arrow depicting the 

direction of movement

(x(t+h),y(t+h))

(x(t),y(t))

1. Select a set of starting 

points (x(t),y(t))

x

y

Want to examine behaviour of the 

dynamical system from different 

starting points
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Isoclines

Often helpful to plot isoclines on the phase plane 

Isoclines are curves where dx/dt or dy/dt are constant

Found by setting dx/dt = c and dy/dt = c and solving

The most useful are nullclines, where dx/dt or dy/dt = 0 since

1. Points where the nullclines cross are fixed points

2. Trajectories cross the nullclines at right angles so we 

know in which direction they are moving

Why? New point   (x(t+h), y(t+h))  =  (x(t)+hdx/dt,  y(t)+hdy/dt) 

If:   dx/dt = 0  x(t+h) = x(t) so movement is vertical

If:   dy/dt = 0  y(t+h) = y(t) so movement is horizontal



w

V

fixed point

both the components 

vanish

w- nullcline

V- nullcline ( , ) 0F V w

( , ) 0G V w

can be more useful in a more complicated example eg 

Fitzhugh-Nagumo



eg

x

x

x

yyxyy

xyxx

4.0005.0

05.06.0





so tells us direction of rotation of the centre

dy/dt = 0

Similarly, dy/dt=0 => x=80 and dx/dt = 0.6(80) – 0.05(80)y  ie 

dx/dt = 48 – 4y

dx/dt=0

if dx/dt=0 => y= 12
12

dy/dt =0.06x – 4.8 

dy/dt< 0  if x< 80,           

dy/dt > 0 else

dx/dt< 0  if y<12,           

dx/dt > 0 else

80



To see the behaviour of the system, use all the info gathered

x

x

x

y dx/dt=0

dy/dt = 0

stability analysis and isoclines
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trajectories in phase space and over time

and build up a 

picture of what 

will happen



Chaos and stability

Higher dimensional systems are VERY often chaotic

"No one [chaos scientist he interviewed] could quite agree on [a definition of] 

the word itself” (Gleik 1988, quoted in 

http://mathworld.wolfram.com/Chaos.html, 11/08)

My notion of chaos is unpredictability: things starting arbitrarily close together 

can get arbitrarily far apart (but do not necessarily do so)

For real systems, means that finest-grain of detail of initial conditions is 

important ie the butterfly effect

For analysis, means it is a pain if not impossible unless constrained 

somehow, which is often the case

Have the concept of Lyapunov Stability, things getting arbitrarily close to a 

fixed point, but maybe not being there all the time, and looser notions 

http://mathworld.wolfram.com/Chaos.html


Limit Cycles

Can also approach a set of points: consider a periodic attractor with period 3;   

What about period 

Limit cycles or orbits also become possible, where the state of the system 

„cycles‟ through a set of states. 

Limit Cycle: “An attracting set to which orbits or trajectories converge and 

upon which trajectories are periodic.” 

(http://mathworld.wolfram.com/LimitCycle.html, 11/08)

There are many different kinds of limit cycles eg periodic or chaotic, stable, 

unstable, or sometimes even half-stable (Strogatz, 1994). 

Limit cycles are important because eg they represent systems that oscillate 

even in the absence of external input.

http://mathworld.wolfram.com/LimitCycle.html


One Man‟s Transient is Another 

Man‟s Limit Cycle?

• „Transient‟: any point not in/at(/cycling round?) an equilibrium 

• Buckley et al showed you can get bi-stability from a mono-stable system 

• Shows the importance of transients

• Also an issue of „strict‟ definitions? Both have 2 attractors … discuss

Bi-stable Mono-stable

From Buckley et al. (2008). Monostable controllers for adaptive behaviour. In Proc SAB 10

http://www.informatics.sussex.ac.uk/users/ezequiel/MonostableSAB08.pdf
http://www.informatics.sussex.ac.uk/users/ezequiel/MonostableSAB08.pdf
http://www.informatics.sussex.ac.uk/users/ezequiel/MonostableSAB08.pdf


Multi-dimensional 1st order systems

If system is more than 2 dimensional, can use the same

techniques

ie find Jacobian (will be an nxn matrix if we have n equations)

However can only view 2 or 3 variables at once

… and for non-linear gets pretty complicated pretty quickly but 

we can but try



Summary

This lecture:

• how to find fixed points of a dynamical system 

• How to analyse stability of fixed points

• the use of the phase plane to determine the behaviour 

In seminars: 

• work through analysis of a GasNet neuron

• analyse dynamics of 2 linked GasNet neurons (NB similar to 

analysis of CTRNN neurons)



Refs
Many refs for dynamical systems. Some will be more suited to 

your level and you may find others after looking at these :

General refs:

1. Saperstone, (1998) Introduction to ordinary differential equations 

2. Goldstein, H. (1980). Classical Mechanics. 

3. Strogatz, S. (1994) Nonlinear Dynamics and Chaos, with Applications to 

Physics, Biology, Chemistry, and Engineering.

4. http://mathworld.wolfram.com/

5. Gleick, J. (1988) Chaos: Making a New Science.

More on analysis and applications

1. Rosen, R. (1970). Dynamical System Theory in Biology, volume I. 

Stability theory and its applications.

2. Rubinow, S. I. (1975). Introduction to Mathematical Biology. 

Good for discrete systems

1.    Sandefur, J. T. (1990). Discrete Dynamical Systems: Theory and 

Applications. 

http://www.amazon.com/exec/obidos/ASIN/0201543443/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0201543443/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0140092501/ref=nosim/weisstein-20

