
FCS Worksheet: Difference Equations

This seminar introduces numerical integration of differential equations using Euler’s method and gives an
intuition of 1st order dynamical systems and their analysis. By the end you should be able to:

1. Use the Euler method of numerical integration to solve differential equations

2. Numerically integrate a 1st order differential equation such as the equation governing a Continuous
Time Recurrent Neural Network (CTRNN).

3. Numerically integrate a system of differential equations such as predator-prey models

I will now present some differential equations to be integrated numerically using Euler’s method for initial
value problems (IVPs), which proceeds as follows. If we have a variable x(t) which varies over time as
specified by dx

dt
then:

x(t + h) = x(t) + h
dx

dt
(1)

where dx

dt
is evaluated at time t ie using x(t) and t. As this is an IVP the initial value of x (usually x(0) ie

x at t = 0) must be specified, as must the size of the time-step (otherwise known as step-size) h.

1. We will start with an equation exhibiting exponential population growth

dx

dt
= kx (2)

where x is the population size and the parameter k > 0 governs the rate of growth. We want to code
the following algorithm:

OldX = initial value

for TStep = 1:NumTimeSteps

Calculate NewX at an advanced time-step using OldX, h and growth rate

plot the new point

Pause and view the graph

OldX = NewX

end

Tips:

(a) Write a sub-function which takes x, time-step h and growth rate and returns x at the advanced
time-step using Euler integration specified in equation 1 and dx

dt
specified in equation 2.

(b) If you ‘hold’ the plots as you go along, you can plot the new point using ‘plot([TStep-1,
TStep]*h,[OldX, x])’. Note that t*h is how much time has elapsed as t counts the number of
time-steps of size h taken. As a corollary, the number of time steps needed is the length of the
simulation divided by the time-step. If you want the axes to remain constant throughout use the
‘axis’ command (see help axis for details).

(c) Pass the time-step size h, growth-rate, length of simulation and initial value from the command
line by writing your function so that it takes arguments.

Run the algorithm with a time-step h = 0.05s, a growth-rate of k = 6, a simulation length of 2s and
an initial value at t = 0 of x(0) = 0.1. What happens to x? What if you start with x(0) = 0? Perturb
x a little from 0 and see what happens. What does this tell you about the stationary point of the
system? [2 marks]

2. Now implement exponential decay:
dx

dt
= −kx

where again k > 0, starting at x(0) = 0.8 and k = 1 with a simulation length of 2 and a time-step of
h = 0.05 (you can use the function you used for exponential growth if you pass in a negative k).

Repeat for k = 4. What if you start with x(0) = 0? Perturb x a little from 0 and see what happens
this time. What does this tell you about the stationary point of the system? [1 mark]



3. Next use the following equation which introduces a limit on the population size (as would be seen if
there was a limit on food etc):

dx

dt
= 4x(1 − x)

start with x(0) = 0.1, a simulation length of 2, a time-step of h = 0.05 and see what happens to x.
Start at x(0) = 0 and x(0) = 1. Perturb x a little from these points and see what happens. Comment
on the results. [2 marks]

4. The equation:
dx

dt
=

1

τ
(−x + I(t))

represents a single ctrnn style neuron with, time-dependent input I(t). Run this equation with x(0) = 0,
τ = 1, time-step h = 0.05, simulation length of 4 and:

I(t) =

{

1 t ≤ 2
0 else

}

where t is the time that has elapsed since the system is started and NOT the time-step. What happens
for τ = 5? What about if τ is set to be equal to the length of the time-step h? Before running this,
try to predict what will happen by putting τ = h into the numerical integration equations and solving.
Finally, set τ = h/2. What happens to the system? Can you explain your results by examining the
numerical integration equations? [3 marks]

5. Bonus marks: The following question deals with 2 competing populations, one predator (represented
by y) and one prey (represented by x). The population dynamics are represented by the following
equations:

dx

dt
= rx − axy (3)

dy

dt
= faxy − qy (4)

The prey population size x is governed by 2 factors: the amount of prey born and the amount lost
to predation. The number of prey born increases at a rate equal to the product of the population
size (since the more prey there are, the more are born) and r, the prey growth rate. Similarly, the
amount lost to predation is proportional to the prey population size, but it is also proportional to the
number of predators and a, the attack efficiency of the predators. This factor is negative as the effect
of predation will clearly be negative. These elements make up the 2 factors on the right-hand side of
equation 3.

The predator population size y is also affected by 2 factors, one positive and one negative, which can
be seen on the right-hand side of equation 4. It is affected by the a similar predation factor to the
prey, though it is now positive and its effect is lessened by the factor f, the rate at which predators
turn prey into offspring. The second factor affecting the predator population is a self-limiting factor
which is the product of the number of predators and q, the starvation rate for predators.

Write a new function which takes an x and y value and returns values at an advanced time-step, using
Euler integration to solve equations 3 and 4. Run the simulation for 30 seconds with a time-step of
h = 0.01, starting with x(0) = 100 and y(0) = 5, r = 0.6, a = 0.05, f = 0.1 and q = 0.4. Plot x and y
on the same graph over time and see what happens. On a separate graph, plot x against y to see the
phase-plane behaviour. Finally, see what happens to the population if a time-step of 0.5 is used. [2
marks]


