
Formal Computational Skills

Lecture 9: Probability



Summary

By the end you will be able to:

• Calculate the probability of an event

• Calculate conditional probabilities with Bayes Theorem

• Use probability distributions and probability density functions

to calculate probabilities

• Calculate the entropy of a system – easier than people think

Motivation: used throughout Alife/AI: classification, data mining, 

stochastic optimisation (ie GAs etc), evolutionary theory, fuzzy 

systems  etc etc etc



Probability Definition 

Frequentist: probability is the number of times an event would 

occur if the conditions were repeated many times

Subjectivist: level of belief a rational being has that an event 

will occur 

Not really an issue here about which school one adheres to

We will use: Probability of an event A (written as P(A)) is the 

number of ways A can happen divided by the total number of 

possible outcomes

Often calculated by empirical experiment (counting events)

2 schools of thought:



Eg Suppose we throw 2 dice. Define a random variable A = 

sum of the 2 dice. 

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

P(A=10) = number of ways we can get 10/ number of outcomes

We get 10 if we get 

{5,5}, {6,4} or {4,6} 

and there are 36 

possible outcomes 

so:

P(A=10) = 3/36 = 1/12

What is the probability that A is 10 written as: P(A=10) ? 

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6



If 2 events are independent, the outcome of one has no 

bearing on the outcome of the other (eg tossing 2 dice)

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

The probability of 2 independent events A and B happening is:

P(A,B) = P(A) P(B)

= 1/361/6x1/6

A

B

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

eg P(1, 3) =



A B
A 

and

B

The probability of A or B happening is 

P(A or B) = P(A) + P(B) – P(A,B)

If not, must take away 

P(A, B) or it would be 

added twice: 

P(2 or 4)=

If events can’t happen together, they are mutually exclusive (eg 

P(B=1,B=2) =0) and thus get probabilities by adding probs. of 

each event eg get the marginal probabilities (prob. of each event 

separately) such as P(A=1) by adding 6 times 1/36 = 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6

1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1,6 1/6

2 2, 1 2, 2 2, 3 2, 4 2, 5 2,6 1/6

3 3, 1 3, 2 3, 3 3, 4 3, 5 3,6 1/6

4 4, 1 4, 2 4, 3 4, 4 4, 5 4,6 1/6

5 5, 1 5, 2 5, 3 5, 4 5, 5 5,6 1/6

6 6, 1 6, 2 6,3 6,4 6,5 6,6 1/6

1/6 1/6 1/6 1/6 1/6 1/6= 11/36

- 1/36+ 1/61/6



Conditional probabilities

Use conditional probability: P(A|B) where B represents throwing 

the first die

Probability of an event A happening if event B has already 

happened

read P(A|B) as probability of A given B

eg if we have already got a 5, probability that the sum is 10 is:

P(A=10|B=5) = 1/6

as we must now get a 5 with the second die 

What if we want P(A=10) where A is sum of 2 dice but we have 

already thrown one die? 



Eg: data classification. Classify person’s sex from their height 

male (m)

female (f)

height (cm)

frequency

<165 165-

175

175-

185

>180

x

P(m)? 7 out of 12 in sample so P(m) =7/12 and P(f) = 5/12

Similarly, P(h=165-175) = 3/12 

What sex is x?? if we didn’t know height would go for male 

as from our survey this is more likely: P(m)>P(f) 

However we know h = 167: 

P(m|h=167) = 1/3 < p(f|h=167) so go for female



Bayes Theorem
Very (very) useful theorem:  P(A|B) = P(B|A) P(A)/P(B)

eg P(m|h=167) = P(h=167|m) P(m)/P(h=167)

= 1/7 x 7/12 / 3/12 = 1/3

Used since it can be easier to evaluate P(B|A) (eg here we 

don’t need to know anything about females’ heights)

male (m)

female (f)

height (cm)

frequency

<165 165-

175

175-

185

>180

x



Note for classification, just need whether P(m|h)>P(f|h) so 

compare P(h|m) P(m)  with P(h|f) P(f) as P(h) just normalises 

the probabilities 

P(m) known as prior probability (or just prior) as it is the 

probability prior to getting any evidence/data

P(m|h) known as the posterior probability

Biggest problem in Bayesian inference is estimating the priors 

correctly and often they are simply assumed to be equal eg 

P(m)=P(f)=1/2

Very important as they encapsulate our prior knowledge of the 

problem and can have a very big impact on the outcome

Often priors estimated iteratively (eg in SLAM) starting with no 

assumptions and incorporating evidence at each time-step



Probability Distributions
Suppose we have a 2d binary random variable X (random 

variables written with a capital letter) where each dimension has 

equal probability of being 0 or 1. 

What are the different states (written as a small letter ie x)?

B1 B2 X=(B1,B2) P(B1,B2)

0 0 (0,0) 0.5x0.5 = 0.25

0 1 (0,1) 0.25

1 0 (1,0) 0.25

1 1 (1,1) 0.25

The 3rd and 4th columns form the probability distribution of X

What are the probabilities of each state (written as P(X=x))?



EG suppose Y  = B1+B2. What are the different states of Y?

B1 B2 Y=(B1+B2) P(B1,B2)

0 0 ? 0.25

0 1 ? 0.25

1 0 ? 0.25

1 1 ? 0.25

What is the probability distribution?

Probability distribution tells us the probability of each state of 

X occurring 

Where possible it is given as a function



EG suppose Y  = B1+B2. What are the different states?

B1 B2 Y=(B1+B2) P(B1,B2)

0 0 0 0.25

0 1 1 0.25

1 0 1 0.25

1 1 2 0.25

so the probability distribution of Y is

Y=(B1+B2) P(Y=y)

0 0.25

1 0.5

2 0.25



Often view probability distributions graphically:

Probability distribution of X 

X
(0, 0) (0,1) (1,0) (1,1)

P(X=x)

0.25

Probability distribution of Y 

Y
0 1 2

P(Y=y)

0.25

0.5

Note that probabilities sum to 1.



Also, if we make each state (ie bar) width one, and put them 

together, can draw as a graph

Y
0 1 2

P(Y=y)

0.25

0.5

Y
0 1 2

P(Y=y)

0.25

0.5

Probability of one or many states is 

area of bars ie area under graph 

Eg P(Y = 1 or 2) = 0.75 



Probability Density Functions

In the previous eg’s, both X and Y are discrete random 

variables as the states are discrete 

170 171 172 173 174 175 176 177 178 179 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Again use a function but 

a continuous one 

Function known as a 

probability density

function (pdf) 

Value f(x) indicates the 

likelihood of each height 

eg 175 is the 

commonest height  

What about continuous variables such as people’s heights?? 



As with discrete variables area under the curve gives the 

probability so if pdf is f(x)

However, probability of anyone’s height being exactly 175 is 0. 

Instead get probability height is in a range of values eg between 

173 and 175

170 171 172 173 174 175 176 177 178 179 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

175

173

)()175173( dxxfXP

Again area under curve must sum to 1



Properties/Parameters of 

Distributions

Distributions and pdfs are often described/specified by 

parameters, commonly mean and variance

The mean is the average value and is also known as the 

expected value E(X) or <X>

Variance governs the spread of the data and is the square of 

the standard deviation

For n-dimensional data, also have the nxn covariance matrix

where the ij’th element specifies the variance between the i’th 

and j’th dimensions



Common Distributions
Have met the 2 most common: uniform and gaussian or normal

Often used as the mutation operators in a GA, hill climbing etc

0.1

2010

Other distributions include binomial, multinomial, poisson etc

Uniform distribution has the same probability for each point. 

Thus probability is governed by the range of the data R and pdf 

f(x) = 1/R = 1/10 = 0.1



Gaussian is governed by mean and variance 2 with pdf:

2

2

2 2

)(
exp

2

1
)(

x
xf

It is centred on and width (and height) are governed by 2

170 171 172 173 174 175 176 177 178 179 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

red has 2 =1

blue has 2 =4



Properties of the Gaussian

Gaussian may look nasty but has lots of nice properties 

including:

• Sum of gaussians is gaussian

• Conditional densities are gaussian

• Linear transformation is gaussian

• Easy to work with mathematically

• For a given mean and variance, entropy (see later) is 

maximised by gaussian distribution

• Central Limit theorem: sum/mean of m uniform random 

variables is gaussian 



Entropy

Doesn’t depend on values of X but how probability is spread

Entropy can be formulated in many ways but can be seen as a  

measure of smoothness of a distribution

Xx

xXPxXPXS ))(ln()()(

Xx

dxxfxfXS ))(ln()()(

For a discrete

distribution, entropy is:

and for continuous:

Heavily used in information theory: the average amount of 

information needed to specify a variable’s value is the entropy



Can also be formulated as  degree of surprise

suppose probability of one state is 1 and all others = 0. Entropy 

is 0 as log(1) = 0 and 0 log (0) = 0

Intuitively makes sense as event MUST happen, so no 

information is passed and similarly no surprise in hearing it has 

happened

Conversely, if variable is entirely random, entropy is large as we 

must specify all variables

Xx

dxxfxfXS ))((log)()( 2

If log is to the base e information measured in nats, if log is to 

base 2 ie 

info is measured in bits



If X is a 1d binary variable, how many bits of information 

needed to specify it?

So S(X)= -(0.5 (-1) + 0.5 (-1)) = 1

X P(X=x) log2(P(X=x))

0 0.5 = 2-1 -1

1 0.5 = 2-1 -1

Ans =1. 

What is entropy? remember that log2(2
-n) = -n 

Xx

xXPxXPXS ))((log)()( 2



If X is a 2D binary variable, how many bits are needed to 

specify each state?

S(X) = -(0.25 (-2) + 0.25 (-2) + 0.25 (-2) + 0.25 (-2) ) 

= -4(0.25 (-2)) = 2

For nD binary variable, have 2n states what is probability of each? 

Ans =2. 

What is entropy? 

remember that 

log2(2
-n) = -n 

Xx

xXPxXPXS ))((log)()( 2

B1 B2 X=(B1,B2) P(B1,B2)

0 0 (0,0) 0.25 = 2-2

0 1 (0,1) 0.25 = 2-2

1 0 (1,0) 0.25 = 2-2

1 1 (1,1) 0.25 = 2-2

S(X) = -2n (2-n (-n)) = n

Ans 2-n. What about entropy/ no. of bits to specify state?



What about Y = B1+B2. Will entropy of Y be more or less than 

X?
Y=(B1+B2) P(Y=y)

0 0.25 = 2-2

1 0.5 = 2-1

2 0.25 = 2-2

Ans: S(X) = -(0.25(-2) + 0.5(-1) + 0.25(-2))

= 1.5 

Less entropy than X as more order as more predictable

eg if you had to guess Y you would say 1: 50:50 chance of 

being right whereas for X 2D random binary, only 25% chance 

What is entropy?



Which of X and Y will have higher entropy?

Entropy of 

Y = 2.12

P(X=x) log2(P(X=x)) P(Y=y) log2(P(Y=y))

1 0.05 -4.3 0.1 -3.3

2 0.1 -3.3 0.2 -2.3

3 0.7 -0.5 0.4 -1.3

4 0.1 -3.3 0.2 -2.3

5 0.05 -4.3 0.1 -3.3

Notice that the steeper 

distribution has less entropy

Entropy of 

X= 1.45          

0.4

0.2

0.6

1        2        3        4        5

X

Y



For a given mean and variance, entropy is maximised by 

gaussian distribution

gaussian

Super-gaussian


