
Formal Computational Skills

Lecture 10: Optimisation



Today: Optimisation also known as Search

Why? Lots of problems can be formulated as a set of 

parameters which must be found or explored to generate a 

behaviour/approximate a function etc

However: People also interested in search procedures 

themselves and especially evolutionary theory

Will focus on former (though also applicable to latter) and take 

view that each set (instantiation) of parameters defines a potential 

solution to the problem and we have a function which judges its 

performance and an (iterative) procedure to generate new 

solutions

Eg: neural network defined by its weights. Optimise weights until 

outputs match targets as judged by (output-target)2 via backprop



1. The space of potential parameters ie all the potential 

solutions

2. The error function used to judge solution performance

3. The iterative procedure used to generate new solutions 

from old solutions 

There are therefore 3 main elements: 

What we care about (in general) are: length of time taken 

to generate good solutions, how good solutions are and 

what regions of search space (ie potential solutions) our 

procedure allows us to explore



Will talk about: 
• Search spaces

• Search space properties

• Different classes of search procedure 

• Optimisation when evaluation is noisy

• (little bit of) statistical testing

May lapse into GA type language at times

Will not talk about:
• How to evaluate search space properties (not enough time 

and it varies on a case-to-case basis)

• Specific algorithms and operators: too many variants and 

will just give the general idea

• Solution Encoding – again not enough time

• Details of how statistical properties are evaluated



Search Space
The Search Space is the set of all possible solutions 

eg 2D binary string: 4 solutions, 2D real valued: a 2d plane

Thus search space is N-dimensional where N is (maximum!) 

number of parameters used

How we move through the search space is defined by our

search procedure

Search space can therefore be seen to be a connected graph 

where connected points are those that can be reached by the 

search procedure from current position in one iteration and 

depending on operators will be more likely to get to certain 

destinations

In general: If operators are well designed should be able to get 

to all nearby areas of space



Search Space as Landscape

In GAs referred to as fitness landscape:

Often search space viewed as an N+1 dimensional landscape

where extra dimension is the solution performance (fitness) eg 

2D real valued genotype gives us nice landscape below

Can be a useful metaphor but REMEMBER picture can be very

different in high dimensions

Eg GasNet search-space, average of 200 dimensions: are there 

really any local optima (peaks and valleys)? And genotype has 

variable length - ???



Error functions
Need an error function (fitness function) to evaluate solution’s 

performance

Clearly of central importance: if there is little chance of 

differentiating between good and bad solutions, the 

optimisation process cannot hope to succeed. 

Essentially it defines the search space and the type of solution 

one achieves 

Eg: if error is E=(output-target)2 neural network will favour 

solutions that try to get outputs to match large targets as a 1%

error for a target of 100 (ie E=12=1) will completely swamp a 

100% error in a target of size 0.1 (E=0.12=0.01)

Answer? Could use E=((output-target)/target)2 but depends on 

what characteristics we desire from our network output



Ideally, there should be smooth paths in the search space 

leading to optimal (or good) solutions but in reality may not be 

possible

Basically one should ensure that there is a gradient for 

evolution to follow and avoid having large local optima

However, this process is generally post-hoc eg making a 

fitness function for a GA

1. Design fitness function

2. Population gets stuck in local optimum 

3. Design new fitness function which avoids local optimum, 

population gets stuck again. 

4. Repeat ad nauseum till you regret ever criticising wonderful 

gradient-descent techniques and wonder why you bothered with 

nonsense evolutionary methods etc etc etc



Epistasis, ruggedness and local optimality

If fitness dependent on a non-linear combination of the solution 

parameters (genotype loci), the solution (genotype) is said to 

be epistatically-linked.

Ie individual locus fitnesses are dependent on the context of 

other loci values and inter-locus interactions

This will generally be the case for complex problems eg ANN 

robot controllers

Epistatically-linked solutions/genotypes give rise to the two 

major properties of search/fitness landscapes thought to 

influence search dynamics, ruggedness and local optimality. 



By contrast, local optimality is typically thought of in more global

terms, with landscapes containing numbers of deceptive peaks

Global vs

local optima

Smooth 

vs

rugged

Ruggedness is regarded as similar to evaluation/fitness noise, 

where direction to good solutions may be obscured by local noise

However no rigorous distinction between the two properties



Neutrality

Neutral landscapes are where one can move to points of equal 

fitness: moving along a neutral network

optimisation in landscapes with high levels of neutrality is 

characterised by periods when performance does not 

increase interspersed by short periods of rapid fitness 

increase (punctuated equilibria etc)

Adaptive evolution on neutral landscapes has shown that 

populations tend to move to areas of space which have more 

neutral neighbours ie the neutral evolution of robustness



Neutrality may be useful in escaping from local optima but in 

high dimensional spaces, hard to tell if one is moving neutrally 

or hovering around a local optimum

Indeed, often difficult to measure ANY of the aforementioned 

properties

One major reason is that in many spaces vast majority of 

scores are 0 so properties say space is homogeneous and 0

However, if networks evolve faster they must, in some sense, 

be making the space of solutions easier to search in 

(smoother? More densely packed with good solutions? Less 

local optima? More neutral?? Other properties?)

Analysis will hopefully tell us what the search space properties 

are like and what features of our networks are ‘good’ for 

search



Optimisation Procedures

Various flavours of search procedure, but mainly iterative ie:

Various types but distinctions blurry (and my own). Here’s a 

taste:

1. Gradient-based: calculate gradient of error wrt the 

adjustable parameters. Generate new solution by taking 

step in the direction of negative gradient eg w -> w – k 

dE/dw. Can augment with 2nd order info, momentum etc. But 

often can’t calculate gradient so... 

1. Start with random solution

2. Generate a new one based on the current solution 

and its performance

3. Repeat till success or boredom



3.   Population-based such as a GA: maintain a population of 

solutions. New population generated either as a whole or one 

at a time. New individuals can be based on combinations of 

several of the current members of the current population. Can 

be easy to implement, don’t need much knowledge of the 

problem, solves some of the problems of hill-climbers and can 

be robust due to population. NOT a panacea for all search 

problem ills: introduce a whole host of other problems (as do 

hill-climbers etc) such as representational issues and 

problems of getting good operators.

2. Hill-climbers: modify (mutate) current solution. Is it better 

than current one? If so keep solution, if not mutate again. 

Various modifications – accept neutral moves, accept 

downwards with a certain probability (simulated annealing). 

Can be biased by starting position so try multi-start which 

leads us to ...



Movement/Neighbourhood

By specifying how new individuals are created, search process 

also specifies what new solutions can be reached from current 

one (its neighbourhood) and how likely each is to be generated

Eg: 3D binary string 000, mutation is 1 bit flip/individual, 3 

destinations, 100, 010, 001, all with probability = 1/3

3D integer valued string range [0, 99]: 50 50 50, 0.1 probability 

of mutating each bit. If bit mutated, moves a gaussian distance 

with mean 0 sd 5. Can get to ANY point in space, BUT 

probability of 0 0 0 is a lot less than probability of 48 50 50 

(around 0.015)

3D integer valued string as before but also prob 0.01 of adding 

a new variable to the string … ?????



To complicate things further, also often have noisy fitness, due 

to eg not being evaluated over exactly the same conditions 

(robot fitnesses are often highly dependent on the initial 

conditions). Alternatively environment could be a source of 

noise

Typically this noise will obscure differences between the 

performances of neighbouring solutions (although sometimes 

the noise can be helpful to eg allow search to escape from 

local optima, or to smooth the search space)

Usually use scores taken over a small subset of different 

conditions as potential sample sets for training are often huge

Noisy Evaluations

Question is, how can we say which solution better than the 

other: can we say use average score??



Hypothesis Testing

Suppose we test 2 robot controllers A and B 10 times. A is 

better than B 8 times. Which is better? 

Assume the null hypothesis H0: controllers are identical and 

differences can be explained by random fluctations. 

So calculate the probability of getting observed results (or more 

extreme ones) assuming controllers identical (and a certain 

data distribution). Call this probability p, the significance level

If we reject H0 based on the evidence then we accept H1 the 

alternative hypothesis that A is better than B. 

However we can’t be sure that we are right and only know that 

there is a probability p of us being wrong 



trial 1 2 3 4 5 6 7 8 9 10 Probability

winner A A A A A A A A A A 1/1024

winner B A A A A A A A A A 1/1024

winner A B A A A A A A A A 1/1024

winner A A B A A A A A A A 1/1024

1 trial where A wins all 10

10 trials where A wins 9 and B wins 1

45 trials where A wins 8 and B wins 2

So 56 different ways of getting our result or more extreme one 

given identical controllers. Probability of each is 1/1024. 

Therefore probability of our result  p = 56/1024 = 0.055

Eg if 2 contollers are identical, P(A>B) = 0.5. Assume binomial

data distribution

There are 210 = 1024 different outcomes each equally likely



Depends on your viewpoint or how exact you need to be: 

basically roughly 5% of the time we run this experiment we 

would get this result if controllers identical 

ie if you accept the difference you will be wrong 1 in 20 times

Guidelines: 

Is this a significant difference? 

• pick a significance level beforehand

• say what p was and let readers decide 

• more trials etc

Problems of biased reporting: we publish the one experiment 

that worked and not the 5 that didn’t



Just described (vague) chi-squared test assuming a binomial 

distribution. Proper one uses a smooth distribution and can be 

expanded to use scores and expected scores so more info

t-test does similar but tests differences in means given scores

Both assume Gaussian distributed data: often not the case eg if 

scores are capped at 1. Must use rank-based/parametric

methods (eg Wilcoxon) where scores are ranked in order of size:

eg  A: 1 0.80   1    0.95 ranked scores: A = 2 8 2 4

B: 1 0.85 0.87 0.88 B = 2 7 6 5

if scores tied, assign mean rank to all points (other procedures 

possible). Test has less power as we are losing info. Can use 

more complex tests if we know we have data with heavy tails

Types of Test
Different tests appropriate for different situations/tasks



Summary
This lecture:

• discussed the concept of search space and its properties 

• looked at some search procdures, their merits and their 

behaviours

• discussed the problems noisy evaluations

• introduced hypothesis testing as a way of analysing data

And that’s it!!!! 

Merry Christmas.



Questionnaires

Please fill in course assessment forms on-line: lecturers and 

uni DO use them (both to improve courses and to evaluate 

lecturers)

Where they say constructive comments do (if you like) what 

you want me to stop doing, start doing and continue doing, 

or what you enjoyed and what could be improved

Also important for me if you have any ideas about the peer 

assessment side: I think it works but I’m not sure and could 

well be improved

Feel free to be critical but try to be constructive with it. More 

comments the better (but numbers also useful if you have no 

comments). 


