
Formal Computational Skills

Lecture 10: Optimisation

Today: Optimisation also known as Search

Why? Lots of problems can be formulated as a set of

parameters which must be found or explored to generate a

behaviour/approximate a function etc

However: People also interested in search procedures

themselves and especially evolutionary theory

Will focus on former (though also applicable to latter) and take

view that each set (instantiation) of parameters defines a potential

solution to the problem and we have a function which judges its

performance and an (iterative) procedure to generate new

solutions

Eg: neural network defined by its weights. Optimise weights until

outputs match targets as judged by (output-target)2 via backprop

1. The space of potential parameters ie all the potential

solutions

2. The error function used to judge solution performance

3. The iterative procedure used to generate new solutions

from old solutions

There are therefore 3 main elements:

What we care about (in general) are: length of time taken

to generate good solutions, how good solutions are and

what regions of search space (ie potential solutions) our

procedure allows us to explore

Will talk about:
• Search spaces

• Search space properties

• Different classes of search procedure

• Optimisation when evaluation is noisy

• (little bit of) statistical testing

May lapse into GA type language at times

Will not talk about:
• How to evaluate search space properties (not enough time

and it varies on a case-to-case basis)

• Specific algorithms and operators: too many variants and

will just give the general idea

• Solution Encoding – again not enough time

• Details of how statistical properties are evaluated

Search Space
The Search Space is the set of all possible solutions

eg 2D binary string: 4 solutions, 2D real valued: a 2d plane

Thus search space is N-dimensional where N is (maximum!)

number of parameters used

How we move through the search space is defined by our

search procedure

Search space can therefore be seen to be a connected graph

where connected points are those that can be reached by the

search procedure from current position in one iteration and

depending on operators will be more likely to get to certain

destinations

In general: If operators are well designed should be able to get

to all nearby areas of space

Search Space as Landscape

In GAs referred to as fitness landscape:

Often search space viewed as an N+1 dimensional landscape

where extra dimension is the solution performance (fitness) eg

2D real valued genotype gives us nice landscape below

Can be a useful metaphor but REMEMBER picture can be very

different in high dimensions

Eg GasNet search-space, average of 200 dimensions: are there

really any local optima (peaks and valleys)? And genotype has

variable length - ???

Error functions
Need an error function (fitness function) to evaluate solution’s

performance

Clearly of central importance: if there is little chance of

differentiating between good and bad solutions, the

optimisation process cannot hope to succeed.

Essentially it defines the search space and the type of solution

one achieves

Eg: if error is E=(output-target)2 neural network will favour

solutions that try to get outputs to match large targets as a 1%

error for a target of 100 (ie E=12=1) will completely swamp a

100% error in a target of size 0.1 (E=0.12=0.01)

Answer? Could use E=((output-target)/target)2 but depends on

what characteristics we desire from our network output

Ideally, there should be smooth paths in the search space

leading to optimal (or good) solutions but in reality may not be

possible

Basically one should ensure that there is a gradient for

evolution to follow and avoid having large local optima

However, this process is generally post-hoc eg making a

fitness function for a GA

1. Design fitness function

2. Population gets stuck in local optimum

3. Design new fitness function which avoids local optimum,

population gets stuck again.

4. Repeat ad nauseum till you regret ever criticising wonderful

gradient-descent techniques and wonder why you bothered with

nonsense evolutionary methods etc etc etc

Epistasis, ruggedness and local optimality

If fitness dependent on a non-linear combination of the solution

parameters (genotype loci), the solution (genotype) is said to

be epistatically-linked.

Ie individual locus fitnesses are dependent on the context of

other loci values and inter-locus interactions

This will generally be the case for complex problems eg ANN

robot controllers

Epistatically-linked solutions/genotypes give rise to the two

major properties of search/fitness landscapes thought to

influence search dynamics, ruggedness and local optimality.

By contrast, local optimality is typically thought of in more global

terms, with landscapes containing numbers of deceptive peaks

Global vs

local optima

Smooth

vs

rugged

Ruggedness is regarded as similar to evaluation/fitness noise,

where direction to good solutions may be obscured by local noise

However no rigorous distinction between the two properties

Neutrality

Neutral landscapes are where one can move to points of equal

fitness: moving along a neutral network

optimisation in landscapes with high levels of neutrality is

characterised by periods when performance does not

increase interspersed by short periods of rapid fitness

increase (punctuated equilibria etc)

Adaptive evolution on neutral landscapes has shown that

populations tend to move to areas of space which have more

neutral neighbours ie the neutral evolution of robustness

Neutrality may be useful in escaping from local optima but in

high dimensional spaces, hard to tell if one is moving neutrally

or hovering around a local optimum

Indeed, often difficult to measure ANY of the aforementioned

properties

One major reason is that in many spaces vast majority of

scores are 0 so properties say space is homogeneous and 0

However, if networks evolve faster they must, in some sense,

be making the space of solutions easier to search in

(smoother? More densely packed with good solutions? Less

local optima? More neutral?? Other properties?)

Analysis will hopefully tell us what the search space properties

are like and what features of our networks are ‘good’ for

search

Optimisation Procedures

Various flavours of search procedure, but mainly iterative ie:

Various types but distinctions blurry (and my own). Here’s a

taste:

1. Gradient-based: calculate gradient of error wrt the

adjustable parameters. Generate new solution by taking

step in the direction of negative gradient eg w -> w – k

dE/dw. Can augment with 2nd order info, momentum etc. But

often can’t calculate gradient so...

1. Start with random solution

2. Generate a new one based on the current solution

and its performance

3. Repeat till success or boredom

3. Population-based such as a GA: maintain a population of

solutions. New population generated either as a whole or one

at a time. New individuals can be based on combinations of

several of the current members of the current population. Can

be easy to implement, don’t need much knowledge of the

problem, solves some of the problems of hill-climbers and can

be robust due to population. NOT a panacea for all search

problem ills: introduce a whole host of other problems (as do

hill-climbers etc) such as representational issues and

problems of getting good operators.

2. Hill-climbers: modify (mutate) current solution. Is it better

than current one? If so keep solution, if not mutate again.

Various modifications – accept neutral moves, accept

downwards with a certain probability (simulated annealing).

Can be biased by starting position so try multi-start which

leads us to ...

Movement/Neighbourhood

By specifying how new individuals are created, search process

also specifies what new solutions can be reached from current

one (its neighbourhood) and how likely each is to be generated

Eg: 3D binary string 000, mutation is 1 bit flip/individual, 3

destinations, 100, 010, 001, all with probability = 1/3

3D integer valued string range [0, 99]: 50 50 50, 0.1 probability

of mutating each bit. If bit mutated, moves a gaussian distance

with mean 0 sd 5. Can get to ANY point in space, BUT

probability of 0 0 0 is a lot less than probability of 48 50 50

(around 0.015)

3D integer valued string as before but also prob 0.01 of adding

a new variable to the string … ?????

To complicate things further, also often have noisy fitness, due

to eg not being evaluated over exactly the same conditions

(robot fitnesses are often highly dependent on the initial

conditions). Alternatively environment could be a source of

noise

Typically this noise will obscure differences between the

performances of neighbouring solutions (although sometimes

the noise can be helpful to eg allow search to escape from

local optima, or to smooth the search space)

Usually use scores taken over a small subset of different

conditions as potential sample sets for training are often huge

Noisy Evaluations

Question is, how can we say which solution better than the

other: can we say use average score??

Hypothesis Testing

Suppose we test 2 robot controllers A and B 10 times. A is

better than B 8 times. Which is better?

Assume the null hypothesis H0: controllers are identical and

differences can be explained by random fluctations.

So calculate the probability of getting observed results (or more

extreme ones) assuming controllers identical (and a certain

data distribution). Call this probability p, the significance level

If we reject H0 based on the evidence then we accept H1 the

alternative hypothesis that A is better than B.

However we can’t be sure that we are right and only know that

there is a probability p of us being wrong

trial 1 2 3 4 5 6 7 8 9 10 Probability

winner A A A A A A A A A A 1/1024

winner B A A A A A A A A A 1/1024

winner A B A A A A A A A A 1/1024

winner A A B A A A A A A A 1/1024

1 trial where A wins all 10

10 trials where A wins 9 and B wins 1

45 trials where A wins 8 and B wins 2

So 56 different ways of getting our result or more extreme one

given identical controllers. Probability of each is 1/1024.

Therefore probability of our result p = 56/1024 = 0.055

Eg if 2 contollers are identical, P(A>B) = 0.5. Assume binomial

data distribution

There are 210 = 1024 different outcomes each equally likely

Depends on your viewpoint or how exact you need to be:

basically roughly 5% of the time we run this experiment we

would get this result if controllers identical

ie if you accept the difference you will be wrong 1 in 20 times

Guidelines:

Is this a significant difference?

• pick a significance level beforehand

• say what p was and let readers decide

• more trials etc

Problems of biased reporting: we publish the one experiment

that worked and not the 5 that didn’t

Just described (vague) chi-squared test assuming a binomial

distribution. Proper one uses a smooth distribution and can be

expanded to use scores and expected scores so more info

t-test does similar but tests differences in means given scores

Both assume Gaussian distributed data: often not the case eg if

scores are capped at 1. Must use rank-based/parametric

methods (eg Wilcoxon) where scores are ranked in order of size:

eg A: 1 0.80 1 0.95 ranked scores: A = 2 8 2 4

B: 1 0.85 0.87 0.88 B = 2 7 6 5

if scores tied, assign mean rank to all points (other procedures

possible). Test has less power as we are losing info. Can use

more complex tests if we know we have data with heavy tails

Types of Test
Different tests appropriate for different situations/tasks

Summary
This lecture:

• discussed the concept of search space and its properties

• looked at some search procdures, their merits and their

behaviours

• discussed the problems noisy evaluations

• introduced hypothesis testing as a way of analysing data

And that’s it!!!!

Merry Christmas.

Questionnaires

Please fill in course assessment forms on-line: lecturers and

uni DO use them (both to improve courses and to evaluate

lecturers)

Where they say constructive comments do (if you like) what

you want me to stop doing, start doing and continue doing,

or what you enjoyed and what could be improved

Also important for me if you have any ideas about the peer

assessment side: I think it works but I’m not sure and could

well be improved

Feel free to be critical but try to be constructive with it. More

comments the better (but numbers also useful if you have no

comments).

