## Formal Computational Skills

Week 4: Differentiation

## Overview

Will talk about differentiation, how derivatives are calculated and its uses (especially for optimisation). Will end with how it is used to train neural networks

By the end you should:

- Know what dy/dx means
- Know how partial differentiation works
- Know how derivatives are calculated
- Be able to differentiate simple functions
- Intuitively understand the chain rule
- Understand the role of differentiation in optimisation
- Be able to use the gradient descent algorithm


## Derivatives

Derivative of a function: $y=f(x)$ is $d y / d x$ (or $d f / d x$ or $d f(x) / d x$ Read as: "dy by dx"

How a variable changes with respect to (w.r.t) other variables ie the rate of change y wrt x

It is a function of $x$ and for any given value of $x$ calculates the gradient at that point ie how much/fast $y$ changes as x changes

Examples: If x is space/distance, $\mathrm{dy} / \mathrm{dx}$ tells us the slope or steepness, If $x$ time, dy/dx tells us speeds and accelerations etc

Essential to any calculation in a dynamic world

If $d y / d x$ is $>0$ function is increasing


If $d y / d x$ is $<0$ function is decreasing




The bigger the absolute size of $d y / d x$ (written as $|d y / d x|$ ) the faster change is happening and $y$ is assumed to be more complex/difficult to work with

## Partial Differentiation

For functions of 2 variables ( $z=x \exp \left(-x^{2}-y^{2}\right)$ ), the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ tell us how $z$ varies wrt each parameter Thus partial derivatives go along the lines

And for a function of $n$ variables $\mathrm{y}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$, $\frac{\partial y}{\partial x_{i}}$ tells us how $y$ changes $\partial x_{i}$ if only $\mathrm{x}_{\mathrm{i}}$ varies


Calculated by treating the other variables as if they are constant
eg $\mathrm{z}=\mathrm{xy}$ : to get $\frac{\partial z}{\partial x}$ treat y as if it is a constant $\frac{\partial z}{\partial x}=y$ and $\frac{\partial z}{\partial y}=x$

## Higher Dimensions



In more dimensions, the gradient is a vector called grad (represented by an upside down triangle)
$\nabla E=\left(\frac{\partial E}{\partial w_{1}}, \frac{\partial E}{\partial w_{2}}, \cdots, \frac{\partial E}{\partial w_{n}}\right)$
Grad tells us steepness and direction

Elements are partial derivatives wrt each variable

Here $\quad \frac{\partial E}{\partial w_{1}}=0 \quad \frac{\partial E}{\partial w_{2}}=1$
so $\nabla E=\left(\frac{\partial E}{\partial w_{1}}, \frac{\partial E}{\partial w_{2}}\right)=\mathbf{0}, 1_{-}^{-}$

## Vector Fields

Since grad is a vector, often useful to view vectors as a field with vectors drawn as arrows



Note that grad points in the steepest direction up hill
Similarly minus grad points in the steepest direction downhill

## Calculating the Derivative

$d y / d x=$ rate of change of $y=$ change in $y /$ change in $x($ if $d y / d x$ remained constant)

For a straight line, $y=m x+c$ it is easy
Since y remains constant, divide change in $y$ by change in $x$
$E g y=2 x$


So: $d y / d x=\Delta y / \Delta x=4 / 2=2$
Thus $\mathrm{dy} / \mathrm{dx}$ is constant and equals m .

Aside: different sorts of d's $\Delta$ Means "a change in"
$\delta$ Means "a small change in"
d Means "an infinitesimally small change in"


However if derivative is not constant: we want gradient at a point ie gradient of a tangent to the curve at that point
A tangent is a line that touches the curve at that point

It is approximated by the gradient of a chord $=\delta y / \delta x$ (a chord is a straight line from one point to another on a curve)


The smaller the chord, the better the approximation.

For infinitesimally small chord:
$\delta y / \delta x=d y / d x$ and the approximation is exact

Now do this process mathematically;

$$
\begin{gathered}
\frac{d y}{d x} \approx \frac{\delta y}{\delta x}=\frac{y(x+h)-y(x)}{x+h-x} \\
\frac{d y}{d x} \approx \frac{y(x+h)-y(x)}{h}
\end{gathered}
$$


$\mathrm{Eg} \mathrm{y}=\mathrm{x}^{2} \quad y(x+h)=(x+h)^{2}=x^{2}+2 x h+h^{2}$

$$
\begin{aligned}
& \frac{d y}{d x} \approx \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\frac{2 x h+h^{2}}{h}=2 x+h \\
& \frac{d y}{d x}=\lim _{h \rightarrow 0}(2 x+h)=2 x
\end{aligned}
$$

Can get derivatives in this way but have rules for most

| Function | Derivative | Other useful rules: |
| :---: | :---: | :---: |
| $y=x^{n}$, | $\frac{d y}{d x}=n x^{n-1}$ | $y=$ constant eg $y=3, d y / d x=0$ as no change |
| $y=\sin x$, | $\frac{d y}{d x}=\cos (x)$ |  |
| $y=\cos x$, | $\frac{d y}{d x}=-\sin (x)$ | $y=k f(x)$ $d y / d x=k d f / d x$ <br> $e g y=3 \sin (x)$, $d y / d x=3 \cos (x)$ |
| $y=\ln x$, | $\frac{d y}{d x}=\frac{1}{x}$ | $y=f(x)+g(x), \quad d y / d x=d f / d x+d g / d x$ |
| $y=e^{x}$ | $\frac{d y}{d x}=e^{x}$ | $y=x^{3}+e^{x}, \quad d y / d x=3 x^{2}+e^{x}$ |

Can prove all eg why is $d y / d x$
$=e^{x}$ if $y=e^{x}$ ?

$$
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \quad \frac{d y}{d x}=\sum_{i=1}^{\infty} \frac{i x^{i-1}}{i!}=\sum_{i=1}^{\infty} \frac{x^{i-1}}{(i-1)!}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}
$$

NB $n!$ is $n$ factorial and means eg $5!=5 \times 4 \times 3 \times 2 \times 1$

Product Rule

$$
e g: y=x \sin (x)
$$

$$
\begin{array}{ll}
y=u(x) v(x) & \mathrm{u}=\mathrm{x}, \\
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} & \mathrm{du} / \mathrm{dx}=1 \mathrm{x}^{0}
\end{array}=1, \quad \mathrm{dv} / \mathrm{dx}=\sin (\mathrm{x}) \mathrm{cos}(\mathrm{x}) .
$$

Quotient Rule $\quad y=\frac{u(x)}{v(x)} \quad \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

## Chain Rule

Also known as function of a function

$$
\begin{aligned}
& y=u(v(x)) \\
& \frac{d y}{d x}=\frac{d u(v)}{d v} \frac{d v}{d x}
\end{aligned}
$$

$e g: y=\sin \left(x^{2}\right), \quad u=\sin (v), \quad v=x^{2}$
$d u / d v=\cos (v), \quad d v / d x=2 x$
$\frac{d y}{d x}=\frac{d u(v)}{d v} \frac{d v}{d x} \quad \mathrm{dy} / \mathrm{d} \mathrm{x}=\cos (\mathrm{v}) 2 \mathrm{x}=\cos \left(\mathrm{x}^{2}\right) 2 \mathrm{x}$

EASY IN PRACTICE (honestly)
The one you will see most

## Some examples:

$$
\mathrm{y}_{1}=3 \mathrm{x}_{1} \quad \frac{d y_{1}}{d x_{1}}=3 \quad \mathrm{y}_{1}=\mathrm{w}_{11} \mathrm{x}_{1} \quad \frac{\partial y_{1}}{\partial x_{1}}=\mathrm{w}_{11} \quad \frac{\partial y_{1}}{\partial w_{1}}=\mathrm{x}_{1}
$$

partial d's as y a function of 2 variables

$$
\begin{aligned}
& E=u^{2} d E / d u=2 u \quad E=u^{2}+2 u+20 \quad d E / d u=2 u+2 \\
& \mathrm{y}_{1}=\mathrm{w}_{11} \mathrm{x}_{1}+\mathrm{w}_{12} \mathrm{x}_{2} \quad \frac{\partial y_{1}}{\partial x_{1}}=\frac{\partial}{\partial x_{1}} \boldsymbol{v}_{11} x_{1}+\frac{\partial}{\partial x_{1}}<_{12} x_{2}{ }_{-}
\end{aligned}
$$

Similarly, if: $\mathrm{y}_{1}=\mathrm{w}_{11} \mathrm{x}_{1}+\mathrm{w}_{12} \mathrm{x}_{2}+\ldots+\mathrm{w}_{1 \mathrm{n}} \mathrm{x}_{\mathrm{n}} \quad \frac{\partial y_{1}}{\partial x_{6}}=w_{16}$
Sigmoid function: $\quad y=\frac{1}{1-e^{-a}}=\left(1-e^{-a}\right)^{-1} \quad$ Can show $\mathrm{dy} / \mathrm{da}=\mathrm{y}(1-\mathrm{y})$

## EG: Networks



How does a change in $\mathrm{x}_{1}$ affect the network output? $\frac{\partial y_{1}}{\partial x_{1}}$

$$
\frac{\partial y_{1}}{\partial x_{1}}=\frac{\partial}{\partial x_{1}} \int_{11} x_{1} \mp+\frac{\partial}{\partial x_{1}} v_{12} x_{2}
$$

So $\frac{\partial y_{1}}{\partial x_{1}}=w_{11}$
Intuitively, the bigger the weight on the connection, the more effect a change in the input along that connection will make.


Similarly, $w_{12}$ affects $y_{1}$ by:

$$
\frac{\partial y_{1}}{\partial w_{12}}=\frac{\partial}{\partial w_{12}} \mathbf{w}_{11} x_{1}+\frac{\partial}{\partial w_{12}} \mathbf{w}_{12} x_{2}^{-}=x_{2}
$$

So intuitively, changing $w_{12}$ has a larger effect the stronger the signal travelling along it

Note also that by following the path of $x_{2}$ through the network, you can see which variables affect it

Now suppose we want to train the network so that it outputs a target $t_{1}$ when the input is $\underline{x}$. Need an error function $E$ to evaluate how far the output $y_{1}$ is from the target $t_{1}$


Now how does E change if the output changes? $\frac{d E}{d y_{1}}$
To calculate this we need the chain rule as E is a function of a function of $y_{1}$

$$
\begin{aligned}
& E=u\left(v\left(y_{1}\right)\right) \\
& \frac{d E}{d y_{1}}=\frac{d u}{d v} \frac{d v}{d y_{1}} \quad \begin{array}{c}
\text { where } \mathrm{v}=\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right) \\
\text { and } \mathrm{u}=\mathrm{v}^{2}
\end{array}
\end{aligned}
$$

Now $d v / d y_{1}=1$
and $d u / d v=2 v=2\left(y_{1}-t_{1}\right)$

$$
\text { so } \frac{d E}{d y_{1}}=1 \times 2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right)=2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right)
$$

We train the network by adjusting the weights, so we $\partial E$ need to know how the error varies if eg $w_{12}$ varies ie $\overline{\partial w_{12}}$


To calculate this note that $w_{12}$ affects $y_{1}$ by: $\frac{\partial y_{1}}{\partial w_{12}}=x_{2}$ which in turn affects E by: $\frac{\partial E}{\partial y_{1}}=2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right)$

The chain of events: $w_{12}$ affecting $y_{1}$ affecting $E$ indicates the chain rule so

$$
\frac{\partial E}{\partial w_{12}}=\frac{\partial E}{\partial y_{1}} \frac{\partial y_{1}}{\partial w_{12}}=\mathrm{x}_{2} 2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right)
$$

And in general: $\frac{\partial E}{\partial w_{i j}}=\frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial w_{i j}}=2 x_{j} \boldsymbol{y}_{i}-t_{i} \quad$ cf backprop $\Delta_{i j}$

Back to 2 (or even N outputs). Consider the route (or more accurately, the variables) by which a change in $w_{12}$ affects $E$ :


See that $w_{12}$ still affects $E$ via $x_{2}$ and $y_{1}$ so still have:
$\frac{\partial E}{\partial w_{12}}=\frac{\partial E}{\partial y_{1}} \frac{\partial y_{1}}{\partial w_{12}}=\mathrm{x}_{2} 2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right) \quad$ And: $\frac{\partial E}{\partial w_{i j}}=\frac{\partial E}{\partial y_{i}} \frac{\partial y_{i}}{\partial w_{i j}}=2 x_{j} \mathbf{y}_{i}-t_{i}-$
Visualise the partial derivatives working along the connections

How about how $E$ is changed by $x_{2}: \frac{\partial E}{\partial x_{2}}$


Again look at the route along which $\mathrm{x}_{2}$ travels:
$x_{2}$ changes $y_{1}$ along $w_{12}$ which changes $E$
$x_{2}$ also changes $y_{2}$ along $w_{22}$ which changes $E$
Therefore need to somehow combine the contributions along these 2 routes ...

## Chain rule for partial differentiation

 If y is a function of u and v which are both functions of x then:$$
\frac{d y}{d x}=\frac{\partial y}{\partial u} \frac{d u}{d x}+\frac{\partial y}{\partial v} \frac{d v}{d x}
$$

Quite intuitive: sum the contributions along each path affecting E


So: $\quad \frac{\partial E}{\partial x_{2}}=\frac{\partial E}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{2}}+\frac{\partial E}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{2}}=2\left(\mathrm{y}_{1}-\mathrm{t}_{1}\right) \mathrm{w}_{12}+2\left(\mathrm{y}_{2}-\mathrm{t}_{2}\right) \mathrm{w}_{22}$

$$
=2 \sum_{\text {Outputs }}\left(y_{i}-t_{i}\right) w_{i 2}
$$

What about another layer?


We need to know how E changes wrt the v's and w's. The calculation for the w's is the same but what about the v's?
v's affect x's which affect y's which affect $E$.
So we need: $\frac{\partial E}{\partial v_{j i}} \quad$ which involves finding $\frac{\partial E}{\partial x_{j}}$ and $\frac{\partial x_{j}}{\partial v_{j i}}$
Thus: $\frac{\partial E}{\partial v_{j i}}=\frac{\partial E}{\partial x_{j}} \frac{\partial x_{j}}{\partial v_{j i}}=\left(\sum_{k=1}^{2} \frac{\partial E}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{j}}\right) u_{i} \quad \begin{aligned} & \text { Seems complicated but can } \\ & \text { do via matrix multiplication }\end{aligned}$

## Finding Maxima/Minima (Optima)

At a maximum or minimum (optimum, stationary point etc) the gradient is flat ie $d y / d x=0$
global maximum


To find $\mathrm{max} / \mathrm{min}$ calculate $\mathrm{dy} / \mathrm{dx}$ and solve $\mathrm{dy} / \mathrm{dx}=0$
Eg: $y=x^{2}, d y / d x=2 x$ so at optima: $d y / d x=0=>2 x=0$ ie $x=0$
Similarly for a function of $n$ variables $y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, at optima $\frac{\partial y}{\partial x_{i}}=0$

Why do we want to find optima? Error minimisation
In neural network training have the error function $E=\Sigma\left(y_{i}-t_{i}\right)^{2}$ At the global minimum of $E$, outputs are close as possible to targets, so network is 'trained'

Therefore to train a network 'simply' set $\mathrm{dE} / \mathrm{dw}=0$ and solve
However, In many cases (especially neural network training) cannot solve $\mathrm{dy} / \mathrm{dx}=0$.

In such cases can use gradient descent to change the weights in such a way that the error decreases

## Gradient Descent

Analogy is being on a foggy hillside where we can only see the area around us.
To get to the valley floor a good plan is to take a step downhill. To get there quickly, take a step in the steepest direction downhill ie in the direction of -grad.
As we can't see very far and only know the gradient locally only take a small step

## Algorithm

- Start at a random position in space, $\underline{\mathrm{w}}$
- Calculate $\nabla E(\underline{w})$
- Update $\underline{\mathrm{w}}$ via: $\underline{\mathrm{w}}_{\text {new }}=\underline{\mathrm{w}}_{\text {old }}-\eta \nabla E(\underline{w})$
- Repeat from 2
$\eta$ is the learning rate and governs the size of the step taken. It is set to a low value and often changed adaptively eg if landscape seems 'easy' (not jagged or steep) increase step-size etc


Problems of local minima. Gradient descent goes to the closest local minimum and stays there:


Other problems: length of time to get a solution especially if there are flat regions in the search space; Can be difficult to calculate grad

Many variations which help with these problems eg:

- Introduce more stochasticity to 'escape' local minima
- use higher order gradients to improve convergence
- Approximate grad or use a proxy eg take a step, see if lower down or not and if so, stay there eg hill-climbing etc


## Higher order derivatives

Rates of rates of change. In 1 dimension $\frac{d^{3} y}{d x^{3}}$ In many dimensions a vector $\nabla^{n} y$
Eg velocity $\mathrm{dy} / \mathrm{dx}$ is 1 st order, acceleration: $\mathrm{d}^{2} \mathrm{y} / \mathrm{dx}^{2}$ is 2 nd order

The higher the order, the more information known about $y$ and so used eg improve gradient descent search

Also used to tell whether a function (eg mapping produced by a network) is smooth as it calculates the curvature at a point


$\sum_{x}\left|\nabla^{2} y\right|$ is greater for the first mapping than the $2^{\text {nd }}$

