
Formal Computational Skills

Week 4: Differentiation



Overview

Will talk about differentiation, how derivatives are 

calculated and its uses (especially for optimisation). Will 

end with how it is used to train neural networks

By the end you should:

• Know what dy/dx means

• Know how partial differentiation works

• Know how derivatives are calculated

• Be able to differentiate simple functions

• Intuitively understand the chain rule

• Understand the role of differentiation in optimisation

• Be able to use the gradient descent algorithm



Derivatives
Derivative of  a function: y = f(x) is dy/dx (or df/dx or df(x)/dx

Read as: “dy by dx”

How a variable changes with respect to (w.r.t) other variables ie 
the rate of change y wrt x

It is a function of x and for any given value of x calculates the 
gradient at that point ie how much/fast y changes as x changes

Examples: If x is space/distance, dy/dx tells us the slope or 
steepness, If x time, dy/dx tells us speeds and accelerations etc

Essential to any calculation in a dynamic world  



If dy/dx is >0 function is increasing

The bigger the absolute size of dy/dx (written as |dy/dx|) the 
faster change is happening and y is assumed to be more 
complex/difficult to work with

If dy/dx is <0 function is decreasing

If dy/dx = 0 function is constant

In general, dy/dx changes as x 
changes x
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Partial Differentiation

For functions of 2 variables (z=x exp(-x2-y2)), the partial 
derivatives      and      tell us how z varies wrt each parameter 
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Thus partial derivatives go 

along the lines
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Calculated by treating the other 

variables as if they are constant

And for a function of n 

variables y=f(x1,x2, ...,xn),           
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tells us how y changes 

if only xi varies 

eg z=xy: to get treat y as if it is a constant and



Higher Dimensions
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In more dimensions, the 

gradient is a vector called 

grad (represented by an 

upside down triangle)

Grad tells us steepness 

and direction

Elements are partial 

derivatives wrt each variable
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Vector Fields
Since grad is a vector, often useful to view vectors as a field 

with vectors drawn as arrows

Note that grad points in the steepest direction up hill

Similarly minus grad points in the steepest direction downhill



Calculating the Derivative
dy/dx = rate of change of y = change in y/change in x (if dy/dx
remained constant)

Thus dy/dx is constant and equals m. 

y = 6-2 = 4

So: dy/dx = y/ x = 4/2 =2 
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x = 3-1 = 2

For a straight line, y=mx + c it is easy

Since y remains constant, divide change in y by change in x

Eg y=2x Aside: different sorts of d‟s

Means “a change in”

Means “a small change 

in”

d Means “an infinitesimally 

small change in”



However if derivative is not constant: we 
want gradient at a point ie gradient of a 
tangent to the curve at that point

A tangent is a line that touches the curve at 
that point

It is approximated by the gradient of a chord = y/ x (a chord 
is a straight line from one point to another on a curve) 

For infinitesimally 

small chord:

y/ x = dy/dx and 

the approximation is 

exact
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The smaller the 

chord, the better the 

approximation. 



Eg y = x2

y(x+h)

y(x)
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Function  |    Derivative
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y=constant   eg y=3, dy/dx = 0 as 

no change

NB n! is n factorial and means eg 5! = 5x4x3x2x1
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Can prove all 

eg why is dy/dx 

= ex if y = ex?

y= k f(x)            dy/dx = k df/dx 

eg y = 3sin(x),  dy/dx = 3cos(x)    

y=f(x) + g(x),  dy/dx = df/dx + dg/dx

y = x3 + ex,     dy/dx = 3x2 + ex

Other useful rules:



Product Rule

Quotient Rule
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dx

du
v

dx

dv
u

dx

dy

dy/dx=x sin(x)+ 1cos(x)

u= x,  v =  sin(x)

du/dx = 1x0 = 1,         dv/dx = cos(x)



Also known as 
function of a function

dx

dv

dv

vdu

dx

dy

xvuy

)(

))((

eg: y = sin(x2), 

EASY IN PRACTICE (honestly)

The one you will see most

Chain Rule

u= sin(v), v = x2

du/dv = cos(v), dv/dx = 2x

dy/dx=
dx
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Some examples:

y1= w11x1 + w12x2 
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partial d‟s as y a function of 2 variables
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How does a change in x1 affect the network output? 

Intuitively, the bigger the weight on the connection, the more 

effect a change in the input along that connection will make. 
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So intuitively, changing w12 has a larger effect the stronger 

the signal travelling along it
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Similarly, w12 affects y1 by:

Note also that by following the path of x2 through the network, 

you can see which variables affect it

= x2



x1

x2 y1= w11x1 + w12x2 
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Now how does E change if the output changes?

Now suppose we want to train the network so that it outputs a 

target t1 when the input is x. Need an error function E to 

evaluate how far the output y1 is from the target t1

E = (y1 – t1)
2

To calculate this we need 

the chain rule as E is a 

function of a function of y1
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x2 y1= w11x1 + w12x2 
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We train the network by adjusting the weights, so we 

need to know how the error varies if eg w12 varies ie

E = (y1 – t1)
2

The chain of events: w12 affecting y1 affecting E indicates the 

chain rule  so
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To calculate this note that  w12 affects y1 by:

which in turn affects E   by:
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Back to 2 (or even N outputs). Consider the route (or more 

accurately, the variables) by which a change in w12 affects E:
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Visualise the partial derivatives working along the connections



How about how E is changed by x2: 
2x

E

Therefore need to somehow combine the contributions along 

these 2 routes …
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x2 also changes y2 along w22 which changes E

Again look at the route along which x2 travels:
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Chain rule for partial differentiation
If y is a function of u and v which are both functions of x then:

Quite intuitive: sum the contributions along each path affecting E
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What about another layer?  
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We need to know how E changes wrt the v‟s and w‟s. The 

calculation for the w‟s is the same but what about the v‟s?
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Seems complicated but can 

do via matrix multiplication

v‟s affect x‟s which affect y‟s which affect E. 

So we need:



Finding Maxima/Minima (Optima)
At a maximum or minimum (optimum, stationary point etc) the 
gradient is flat ie dy/dx =0

To find max/min calculate dy/dx and solve dy/dx =0

maxima

minima

Global minimum 

= lowest point

global maximum 

= highest point

Similarly for a function of n variables y=f(x1,x2, ...,xn), at 

optima                  for i = 1, …, n0
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Local minima

Eg: y = x2 ,  dy/dx = 2x  so at optima: dy/dx = 0  => 2x =0 ie x=0
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Why do we want to find optima? Error minimisation

In neural network training have the error function E = (yi – ti)
2

At the global minimum of E, outputs are close as possible to 
targets, so network is „trained‟ 

Therefore to train a network „simply‟ set dE/dw=0 and solve

However, In many cases (especially neural network 

training) cannot solve dy/dx=0. 

In such cases can use gradient descent to change the 

weights in such a way that the error decreases



Gradient Descent
Analogy is being on a foggy hillside where we can only see 

the area around us. 

To get to the valley floor a good plan is to take a step downhill. 

To get there quickly, take a step in the steepest direction 

downhill ie in the direction of –grad. 

As we can‟t see very far and only know the gradient locally 

only take a small step

Algorithm

• Start at a random position in space, w

• Calculate 

• Update w via: wnew = wold –

• Repeat from 2
)(wE

)(wE

is the learning rate and governs the size of the step taken. It is 
set to a low value and often changed adaptively eg if landscape 
seems „easy‟ (not jagged or steep) increase step-size etc
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Original point in

weight space: w

New point in
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Many variations which help with these problems eg: 

• Introduce more stochasticity to „escape‟ local minima 

• use higher order gradients to improve convergence

• Approximate grad or use a proxy eg take a step, see if 
lower down or not and if so, stay there eg hill-climbing etc

Problems of local minima. Gradient descent goes to the 

closest local minimum and stays there:

Start here Start here

End up here

End up here

Other problems: length of time to get a solution especially if 

there are flat regions in the search space; Can be difficult to 

calculate grad

E



Higher order derivatives

Rates of rates of change. 

Also used to tell whether a function (eg mapping produced by 
a network) is smooth as it calculates the curvature at a point 

is greater for the first mapping than the 2nd
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In 1 dimension

The higher the order, the more information known about y and 
so used eg improve gradient descent search

In many dimensions a vector

Eg velocity dy/dx is 1st order, acceleration: d2y/dx2 is 2nd order


