
1 Computer Music

Assessment: Computer Music

There are two parts to the assessment.

1. Task 1 (Sound Synthesizer with GUI) Programming project with 1000 word write-
up. Submitted Thursday Week 7 SPRING term (50%)
2. Task 2 (Algorithmic Composition) Programming project with 1000 word write-up.
Submitted Assessment Block 2 (50%)

All submissions will be electronic, via the Study Direct site for the module.

Programming Tasks:

You will have to submit everything required to compile and run the programs, with the
writeup. It is strongly suggested you zip everything up into one submission file. The time
of submission will be strictly adhered to as recorded on Study Direct.

When you submit your SuperCollider code, don’t forget to include any sound samples
and to indicate any third party dependencies! (do not use obscure third party libraries
unless you have cleared with me that I can get hold of them). You must either use Mac
OS X, or your work must be compatible in principle with cross-platform compilation.
Direct assessment will be undertaken of your code; it must run out of the box.

Note that there is an upload limit on Study Direct. If you need very large audio files as
part of the project, you should place them online within another zip (e.g. just one
download link) and provide a link to download this in a README document with your
submission. The only external data that will be accepted in this fashion is auxiliary audio
or video data; no programming code should be placed externally.

Each task should be accompanied by a 1000 word writeup in a PDF document (you can
export as PDF from Word, for example) detailing your solutions to the exercise. You will
be expected to contextualise your work with respect to the computer music literature as
necessary; do not forget to include evidence of your wider reading and the relationship of
your work to existing computer music projects.

2 Computer Music

Individual Task Details (to be further discussed during the module)

1. GUI based/interactive synth. Create a sound synthesizer with a GUI control panel
which demonstrates one or more of subtractive, additive, modulation, sample-based or
granular synthesis.

Example: Model a basic analogue synthesizer by providing a set of waveforms which can
be chosen or mixed in as sources. These are passed through a filter, with envelope
controls for the filter cutoff, and for amplitude over time. Notes are triggered by MIDI
input, or by a button.

Marks Breakdown:

Proportion of
marks out of
100

Being tested How to get high marks

10 Coding neat and commented 10 = industry level commenting and
formatting

10 Code runs out of the box and is
difficult to break, despite a
large codebase

10 = no problems, no crashes, easy
to get going, but a large codebase.
Note that a three line program will
not score well here since there is no
challenge in getting it to run!

20 Write-up describes the solution
accurately, and is well
contextualized, with
appropriate references

Show that you understand the sound
synthesis theory, and provide
evidence of wide ranging further
reading which places this system in
the context of computer music
research and projects.

20 Sound synthesis algorithms
correctly implemented and go
beyond basic examples

Your coding of the sound synthesis
shows you fully understand how to
implement the algorithms, and that
you have extended beyond the basic
components to a living synthesizer.

20 Fully functional and well laid
out GUI

The interface is neatly and sensibly
laid out, with a command of user
interface design and facilities
appropriate to the synthesizer’s
capabilities.

20 Overall user experience: how
inspiring is the synthesizer?

The marker will rate the quality and
range of output options allowed by
the system, and your overall creative
response to the task.

3 Computer Music

2. Algorithmic composition. Make an algorithmic composition using SuperCollider.
You may either do your own scheduling, perhaps via {}.fork, or make use of the Patterns
library. All sounds must also be created in SuperCollider, and one or more effects units
should be used in addition.

Example: Create an algorithmic drum machine for producing automatic techno.
Synthesized kick, snare and hihat sounds are created, with sample playback for the toms.
An accompanying bassline is synthesized with lead line and chord stabs. A reverberation
unit is used, taking differential amounts of each source part.

Marks Breakdown:
Proportion of
marks out of
100

Being tested How to get high marks

10 Coding neat and commented 10 = industry level commenting and
formatting

10 Code runs out of the box and is
difficult to break, despite a
large codebase

10 = no problems, no crashes, easy
to get going, but a large codebase.
Note that a three line program will
not score well here since there is no
challenge in getting it to run!

20 Write-up describes the solution
accurately, and is well
contextualized, with
appropriate references

Show that you understand the
possibilities of algorithmic
composition and its theory, and
provide evidence of wide ranging
further reading which places this
system in the context of computer
music research and projects.

20 Algorithmic composition
correctly implemented and
goes beyond basic examples

Your coding of the algorithmic
composition shows you fully
understand how to implement the
algorithms, and that you have
pushed the envelope in your
response.

20 Variation of musical output There is significant engagement with
a particular style, and exciting
musical outputs result which
substantially vary between program
runs

20 Sound synthesis and effects The choice of sound synthesis
techniques and effects will be
marked independently of the
algorithmic structure itself, rating
the quality of output sound and the
means used to obtain it.

4 Computer Music

Assessment criteria for exercises: UG

85-100% Original and exciting creative solutions showing significant effort in their
construction, which deeply acknowledge and analyse the network of prior art and
technology upon which they rest.
70-85% Individual solutions with some original and well-built code are presented which
are carefully contextualized with respect to other work, demonstrating competent
integration of computer music principles.
60-70% Good ideas are pursued, with a working practical instantiation and broad
appreciation of context.
50-60% The solutions show some evidence of an individual idea, without a fully
convincing realisation, and partial understanding of the computer music background.
40-50% Minimal functioning solutions are provided which are poorly contextualized,
with at least some redeeming feature of note.
30-40% Basic constructions are provided which show no real attempt to engage with the
creative task, little appreciation of context, and may not fully function.
15-30% Solutions are presented but are incomplete and do not function.
0-15% Little or nothing has been accomplished.

