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Abstract

When presented with an item or a face, one might have a sense of

recognition without the ability to recall when or where the stimulus

has been encountered before. This sense of recognition is called ”famil-

iarity memory”. Following previous computational studies of famil-

iarity memory, we investigate the dynamical properties of familiarity
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discrimination, and contrast two different familiarity discriminators:

one based on the energy of the neural network, and the other is based

on the time derivative of the energy. We show how the familiarity

signal decays rapidly after stimulus presentation. For both discrimi-

nators we calculate the capacity using mean field analysis. Compared

to recall capacity (the classical associative memory in Hopfield nets),

both the energy and the slope discriminators have bigger capacity, yet

the energy-based discriminator has a higher capacity than one based

on its time-derivative. Finally, both discriminators are found to have

a different noise dependence.

Keywords: Recognition memory, Familiarity discrimination, Stor-

age capacity.

Abbreviations: SNR, Signal-to-Noise Ratio; FamE, Familiarity dis-

crimination based on Energy; FamS, Familiarity discrimination based

on Slope.

Introduction

It is believed that recognition memory is supported by at least two different

types of retrieval processes: recollection and familiarity, for a review see

(Yonelinas, 2002). While recollection requires detailed information about an

experienced event, familiarity just distinguishes whether or not the stimulus
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was previously encountered. A well known example is the encounter with a

colleague during a conference: one might recognize the person, but fail to

remember the time and place of an earlier meeting.

Familiarity memory is thought to have a very large capacity. Standing

tested the capacity in humans by presenting participants with a large num-

ber (10,000) of images. After just one presentation, i.e. one-shot learning,

participants were able to successfully recognize most of the previously seen

pictures (Standing, 1973). It is this type of familiarity that we model, in

contrast to neocortical models with slowly developing familiarity (Norman

and O’Reilly, 2003).

It appears that the medial temporal lobe, in addition to the prefrontal

cortex, plays a critical role in familiarity memory. One patient with an intact

prefrontal cortex but impaired medial temporal lobe revealed severe deficits

in familiarity processing (Bowles et al., 2007). For recent reviews on the

role of the medial temporal lobe in familiarity discrimination, including neu-

roimaging results, see (Eichenbaum et al., 2007; Mayes et al., 2007). Within

the medial temporal lobe, it seems that different brain areas are engaged

during recollection and familiarity processing (Brown and Aggleton, 2001).

Single item familiarity is believed to be processed in the perirhinal cortex,

whereas recollection is believed to involve the hippocampus. Indeed, electro-

physiological studies using single cell recordings in monkeys and rats (Brown
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et al., 1987; Brown and Xiang, 1998) report that about 30 percent of neu-

rons in the perirhinal cortex show increased activity upon presentation of a

novel as opposed to an old stimulus. These neurons have been interpreted

as novelty detectors and could form the basis for familiarity memory.

The association between memory processes and brain area is still how-

ever somewhat unclear and seems to depend on the nature of the stimulus

(Aggleton and Brown, 2005; Rugg and Yonelinas, 2003). For instance, a re-

cent study (Xiang and Brown, 2004) has reported greater neuronal response

in the prefrontal cortex for old as opposed to novel stimuli, suggesting that

familiarity processing might be supported by prefrontal regions, whilst nov-

elty detection is associated with the medial temporal lobe (in particular the

perirhinal cortex).

An important difference between familiarity and recollection memory is

that they have distinct temporal characteristics. In neuroimaging studies

using event-related potentials (ERPs) familiarity is linked to a frontal ERP

modulation that occurs around 300-500ms after stimulus presentation, whilst

recollection evokes a parietal ERP modulation 500-800ms after stimulus pre-

sentation (Rugg et al., 1998; Rugg and Yonelinas, 2003; Greve et al., 2009).

Hence, the speed of processing of familiarity discrimination is faster than rec-

ollection. Behavioral experiments provide further evidence for the difference

in timing. If only limited time is allowed for a recognition decision, subjects
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rely primarily on familiarity rather than recollection (Dosher, 1984).

In computational neuroscience, modeling of recollection via attractor neu-

ral networks has a long history using auto-associator Hopfield networks (Hop-

field, 1982; Amit, 1989). It is only more recently that familiarity discrimina-

tion has been studied (Bogacz and Brown, 2003; Metter et al., 2005; Yakovlev

et al., 2008; Greve et al., 2009). It has been found that the capacity for famil-

iarity discrimination in associative memory networks is much greater than

that for recollection. Under a wide range of conditions familiarity capacity

is proportional to the number of synapses within the network (Bogacz and

Brown, 2003; Greve et al., 2009), whereas the capacity for recollection is

merely proportional to the square root of the number of synapses (i.e. the

number of neurons in a fully connected network) (Amit, 1989). Intuitively

this difference in capacity is easily understood. Familiarity memory requires

just a single bit per pattern (familiar versus non-familiar), whereas recollec-

tion requires retrieval of the whole pattern (pattern completion).

This paper has the following related objectives: 1) To study the dynamics

of familiarity discrimination, which potentially could correlate the model to

the above findings concerning the timing of familiarity. 2) To explore how

well time derivative of the energy, or slope, discriminates familiarity. This

familiarity measure was originally suggested by Hopfield, but has not been

investigated since (Hopfield, 1982). 3) To calculate the capacity using a
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mean-field analysis as has been done for recollection capacity in Hopfield nets.

And finally, 4) to analyze how neural noise affects familiarity discrimination.

This paper is organized as follows: After introducing the network, we

compare two different familiarity discriminators: 1) one based on the energy,

previously introduced by Bogacz et al. (Bogacz and Brown, 2003); 2) one

based on the slope of the energy. We find that the signal from both famil-

iarity discriminators decays quickly after exposure to the stimulus. We then

investigate the robustness to noise of familiarity detection by studying the

effects of random fluctuations in the network activity. Finally, using a mean

field analysis, we compute the storage capacity for both discriminators, and

find that the energy based discriminator always outperforms the one based

on its time derivative. Only in the limit of high noise, they perform equally

well.

Network setup

We consider a network of N binary neurons, each with activity si(t) = ±1,

the two states corresponding respectively to firing and not firing. The com-

plete network activity is characterised by the vector s(t). Any two neurons

are connected by synaptic weights wij. As standard in artificial network

models (Amari, 1972; Hopfield, 1982), the network has a learning phase in
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which it encodes M stimuli xρ ≡ {xρ
i }N

i=1, (ρ = 1, . . . , M), in its weights

using a Hebbian learning rule

wij =
1

N

M∑

ρ=1

xρ
i x

ρ
j . (1)

It can be shown that of all local additive learning rules, rule (1) is op-

timal, as it provides the highest capacity in the limit of large N, M (Greve

et al., 2009). During the subsequent test phase, the network’s performance

is evaluated. At t = 0, either an old (learnt) or new (novel) probe stimulus

ρ̂ is loaded into the network, s(t = 0) = xρ̂. Next, the stimulus is removed

and the network evolves freely.

The Hopfield network dynamics assumes that each neuron is updated

precisely once, probabilistically and asynchronously, in each unit of time.

(The biological duration of a time unit in the model corresponds to is hard

to extract by comparing the model to, say, ERP data, given the additional

delays present in biology, but it probably is about 10-100ms.) As standard in

artificial neural networks, and in analogy with magnetic systems in physics,

random fluctuations are included through a temperature parameter T . These

so-called Glauber dynamics have been extensively studied in many different

stochastic systems (Marro and Dickman, 1999). After the update the prob-

ability distribution of the neuron’s activity is

P{si(t + 1) = ±1} =
1

1 + exp[∓2βhi(t)]
, (2)
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where β ≡ 1/T is the inverse temperature parameter, and hi(t) ≡ ∑N
j=1 wijsj(t)

is the total synaptic current received by neuron i. Accordingly, for low tem-

perature, the noise is small and there is a strong correlation between the

input current hi and the output si, whilst for high temperature the output

of a node is dominated by noise and as T →∞ the output is independent of

its input.

The energy in the network at time t is defined as

E(t) ≡ −∑

ij

wijsi(t)sj(t). (3)

In the absence of noise (zero temperature), the energy can only decrease or

stay the same, so that ultimately the activity reaches the attractor state that

corresponds to a memory. The energy can be thought of as a measure of the

correlation between input to a neuron and its output activity, with greater

correlation corresponding to lower energy. This can be seen by rewriting

the energy in terms of the inputs hi and the outputs si, yielding E(t) =

−∑
i hi(t)si(t).

This equation also suggest a network that reads out the energy. One

could construct an additional set of neurons that each calculate the product

of hi and si, their activities are then summed in an output neuron to yield

the energy. Although this is not a very elegant solution as it requires a

multiplication operation and a duplication of the synaptic weights, it does
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show that the network energy is not a purely theoretical quantity. For other

network implementations that read out the network energy see e.g. (Bogacz

et al., 2001; Greve et al., 2009). The time-derivative of the energy can be

easily calculated in neural circuits once the energy has been extracted, for

instance using short term synaptic depression (Puccini et al., 2007).

Two familiarity discriminators

The energy E(t) at time t = 0, can be used to discriminate between old

and new stimuli (Bogacz and Brown, 2003). As shown below, the energy is

initially of order −(N +M) for old stimuli, and of order −M for new stimuli.

Because the energies differ by order N , while the standard deviation is
√

2M ,

they are macroscopically different. We call the discriminator that calculates

the difference in energy between old and new patterns, FamE.

The time derivative, or slope, of the energy S(t) = dE(t)
dt

can also be used

as a familiarity discriminator. It indicates how quickly the network’s energy

changes immediately after a stimulus is presented. Interestingly, this famil-

iarity measure was originally proposed in Hopfield’s seminal paper (Hopfield,

1982), but to the best of our knowledge it has never received further explo-

ration. We call the discriminator that calculates the difference in the slopes

for old and new patterns, FamS.
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We express the energy and its time-derivative as functions of the M -

dimensional vector m(t) ≡ {mρ(t)}M
ρ=1. Its components are the overlaps

between the current network activity and each of the stored patterns and are

defined by

mρ(t) ≡ 1

N

N∑

i=1

xρ
i si(t). (4)

Assuming the Hebbian learning rule (1), the energy Eq. (3) in terms of the

overlaps is

E(t) = −N
M∑

ρ=1

[mρ(t)]2 , (5)

whilst the time derivative of the energy is given by

S(t) = −2N
M∑

ρ=1

mρ(t)
dmρ(t)

dt
, (6)

and is thus proportional to the time derivative dmρ(t)/dt of the overlaps.

Dynamics of the familiarity discriminators

(FIGURE 1 HERE)

We compared the two discriminators, FamE and FamS, in simulations of

networks with Glauber dynamics, Eq. (2). The energy associated with old

stimuli is initially much lower than for new stimuli, Fig. 1A+B. However,

after a short transient of some 5 time units, the two signals become similar,

10



i.e. familiarity discrimination based on energy deteriorates rapidly post stim-

ulus presentation as the energy associated to new and old stimuli become of

the same order. The underlying reason is that the activity in the Hopfield

network will always reach an attractor state, irrespective of the initial activ-

ity pattern. As the energy of the different attractors is similar, the Signal To

Noise Ratio (below) is low and the discrimination poor. Small differences in

the energy can remain for low levels of noise (T = 0.20 in Fig. 1A), but they

tend to reduce for high noise (T = 0.6 in Fig.1B). In the next section we

specifically study how the discrimination is affected by the noise parameter

T .

Like the energy, its derivative also shows a transient signal when the

network is presented with a new rather than old stimulus, Fig. 1C+D. For

low temperature, the slope for old stimuli is practically zero. This can be

easily understood. An old stimulus corresponds to one of the local minima

(attractors) of the energy landscape. At low temperature, the system does

not receive any external perturbation, and so the energy does not change; its

time derivative is zero. The derivative associated with old and new stimuli

shows significant differences immediately after stimulus presentation, but

this diminishes shortly thereafter. Whatever the stimulus, the slope tends

to zero as time progresses because the network evolves towards a fixed point

and becomes stationary.
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To mathematically address the network dynamics we assume the mean

field approximation, i.e. si ≈ 〈si〉. Under this approximation one obtains

from Eq. (2), the dynamical equations for the overlaps

dmρ(t)

dt
= −mρ(t) +

1

N

N∑

i=1

xρ
i tanh[β

M∑

ν=1

xν
i m

ν(t)]. (7)

The mean field formulation provides an accurate description of the dynamics

of the system provided the temperature is not too high (see below). Indeed

the theory matches the simulation well, Fig. 1 (solid lines).

In summary, both the FamE and FamS discriminators distinguish old

from new stimuli, but after a short transient of the order of five time units,

discrimination ability of both discriminators disappears.

Robustness of the familiarity discriminators to

noise

Next we study how the temperature parameter, which quantifies random

fluctuations in neural activity, affects the performance of the familiarity dis-

criminators. We study the effect of temperature at two different time points,

t = 0 and t = 1. As stated above, time is defined such that in one unit, all

neurons are asynchronously updated once. The choice of t = 1 is not special;

it is a convenient value somewhere between the initial and steady state.
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Immediately after presentation of the stimulus, the energy is independent

of temperature, Fig. 2A. The reason is that by definition the energy at t = 0

will be calculated before any activity updates have occurred. In contrast,

the slope has a non-linear relationship with temperature, Fig. 2C, and inter-

estingly performs best as a familiarity discriminator at high rather than low

temperature. The slope is proportional to the rate of change of the overlap

between the network activity and the stimulus. At low temperatures, the

slope associated with an old stimulus is approximately zero, as the overlap

with the stimulus is almost invariant. Contrarily, at high temperature, the

overlap with old stimuli changes very quickly. It decays approximately from

1 to 0 (the fully disordered state), and consequently the slope is high. As a

result FamS performs better at higher temperatures. Note that familiarity

discrimination is still possible for T > 1, but recollection is not. For T > 1

the only stable solution is m = 0, the so-called paramagnetic or non-memory

solution in associative networks (Amit, 1989). We do not study this regime

because the initial condition m = 1 after stimulus presentation is inconsistent

with the stationary paramagnetic solution m ≈ 0.

(FIGURE 2 HERE)

In contrast to time t = 0, at time t = 1 both discriminators show a

similar breakdown in performance, in particular at increased temperature,
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Fig. 2B+D+F. Our measure for performance is defined through the Signal

to Noise Ratio, which is introduced in the next section. In conclusion, in

particular at t = 0 the FamE and FamS discriminators work well, but the

slope works best at high noise.

Storage capacity

To examine the capacity of the two familiarity discriminators, we quantify

the discriminability between their responses to new and old stimuli by using

the signal-to-noise ratio (SNR). The SNR for FamE is defined as

SNR(FamE) =
|〈Enew〉 − 〈Eold〉|√

1
2
Var(Enew) + 1

2
Var(Eold)

, (8)

and analogous for the slope. The mean and variances are computed averag-

ing over many different configurations of patterns. In general, the energy and

slope distributions associated to both old and new stimuli are well described

by Gaussians. Numerically (using 100 trials), the 4th moment satisfies within

5% that 〈x4〉 =
∫

P (x)x4dx = µ4 + 6µ2σ2 + 3σ4, where µ = 〈x〉 denotes the

mean and σ2 = 〈x2〉 − 〈x〉2 the variance. In particular at low temperatures,

the slope distribution associated to old stimuli starts to deviate from a Gaus-

sian. In this case the slope is often zero, and sometimes positive. As a result

the distribution more sharply peaked at zero and has a positive skew.

When the number of stimuli encoded in the weights increases, the SNR
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decreases. We define the storage capacity (or maximum number of stim-

uli encoded in the learning rule and successfully discriminated) as the point

where the SNR drops below some constant, say unity. This gives the max-

imum number of stimuli Mmax that can be encoded in the network. Next,

we present analytical calculations for the capacity of both discriminators at

time t = 0.

Storage capacity of FamE, the energy discriminator

Let ρ = ρ̂ label an old stimulus presented to the network. As is common

in these calculations (Hertz et al., 1991), we separate the sum appearing in

Eq. (5) into signal (ρ = ρ̂) and noise (ρ 6= ρ̂) contributions. At t = 0 and

for many neurons N , applying the overlap definition Eq. (4) yields that the

overlap mρ̂ has mean 1 and variance 0. The overlaps with ρ 6= ρ̂ have mean

0 and variance 1/N . Thus, the noise term in Eq. (5) can be written using

a χ-square with M − 1 degrees of freedom with mean (M − 1) and variance

2(M − 1). Using that the patterns mρ̂ and mρ 6=ρ̂ are uncorrelated, one finds

for large M , 〈Eold〉 = −(N + M) and Var(Eold) = 2 M . Analogously, but

with no signal term, the energy for new stimuli satisfies 〈Enew〉 = −M and

Var(Enew) = 2 M . Directly from Eq. (8) we obtain SNR =
√

N2/(2M), in

agreement with our simulations, Fig. 2E. The storage capacity is found by
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solving SNR = 1 for M , which gives

Mmax[FamE] =
N2

2
, (9)

and thus the storage is of order N2, as found in previous models using the

energy discriminator (Bogacz and Brown, 2003; Greve et al., 2009).

Storage capacity of FamS, the slope discriminator

Directly by substitution of Eq. (7) in Eq. (6) the slope can be written as

S = 2(Ê − E) (10)

with Ê defined as

Ê = −N
M∑

ρ=1

mρ 1

N

N∑

i=1

ξρ
i tanh[β

M∑

ν=1

xν
i m

ν(t)]. (11)

From Eq. (10), the expected value is 〈S〉 = 2〈Ê〉 − 2〈E〉 and the variance

Var(S) = 4Var(Ê) + 4Var(E) − 8Cov(Ê, E). As a first approximation, we

will assume that both Var(Ê) and Cov(Ê, E) are equal to zero. In this case

the only contribution to the variance of S comes from the variance of E. The

mean value of Ê is computed in the appendix I. For old stimuli we obtain

〈Sold〉 = 2N (1− I1 − I2) + 2M

Var(Sold) = 8M, (12)

where I1 and I2 are defined below. While for new stimuli

〈Snew〉 = −2NI3 + 2M
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Var(Snew) = 8M. (13)

The integrals I1, I2 and I3 are given by

I1(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh

(
β + β

√
αz

)
,

I2(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh

(
β + β

√
αz

)√
αz,

I3(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh

(
β
√

αz
)√

αz, (14)

where β ≡ 1/T is the inverse temperature and α ≡ M/N is defined as the

network load. From Eqs. (12) and (13) it follows that

SNR(FamS) =
√

N2/(2M)[1− I1(α, β)− I2(α, β) + I3(α, β)]. (15)

This is plotted against temperature in Fig. 2E. For low temperature there

is good agreement with the simulation results, but for high temperatures

theory and simulation diverge. The theoretical mean values fit well with the

simulations, Fig. 2C, but the theoretical predictions for the variances of Sold

and Snew is incorrect. In the appendix II we describe how the mean field

approximation is affected by high temperatures.

(FIGURE 3 HERE)

The simulations we have presented thus far have a low network load

(α = 0.05). But familiarity discrimination remains possible for much larger

values of α. In Fig. 3 we store up to M = 4000 patterns in a network of

17



N = 1000 neurons. For FamE, theory and simulations are in full agreement.

For FamS, we observe a strong overestimation of the theory (Eq. 15, curve

SNR1 in Fig. 3) compared to simulation. The theoretical results were de-

rived assuming that Var(Ê) and Cov(Ê, E)0 are very small. For large α,

the approximation Var(Ê) ≈ 0 becomes invalid. Including corrections from

Var(Ê), we obtain at zero temperature

SNR2(FamS) =
SNR1(FamS)√

1 + 1
4
[α + 1] I4(α, β) + 1

2
αI5(α, β) + 1

4
I6(α, β)

, (16)

where SNR1(FamS) is given by Eq. (15). The new integrals are

I4(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh2

(
β + β

√
αz

)
,

I5(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh2

(
β + β

√
αz

)√
αz,

I6(α, β) ≡
∫ dz√

2π
exp

(
−z2/2

)
tanh2

(
β
√

αz
)
. (17)

In Fig. 3, the curve SNR1 corresponds to assuming Var(Ê) = Cov(Ê, E) = 0,

ie. Eq. 15, and SNR2 to the case of Cov(Ê, E) = 0, Eq. (16). The SNR1 is

valid for very low α, cf. 0.05 in fig 2.E, but it fails for intermediate and large

values of α. The SNR2 improves the prediction of the SNR for high loads of

the network. Note that due to the existence of a critical point in the retrieval

phase in Hopfield nets, mean field approximation of Eq. (7) and hence our

results fail around α ≈ 0.14 (Amit et al., 1987; Amit, 1989). In contrast to

the theory the SNR found in simulation peaks around this point.
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To compute the capacity for FamS we proceed similarly to FamE. We

use the approximation of Eq. (16), which is valid for high α. The storage

capacity for FamS is again obtained by solving SNR= 1, and this yields

Mmax[FamS] =
N2

2

(1− I1(αmax, β)− I2(αmax, β) + I3(αmax, β))2

1 + 1
4
[α + 1] I4(α, β) + 1

2
αI5(α, β) + 1

4
I6(α, β)

. (18)

This can not readily be solved, because the integrals depend on M through

α. Interestingly, the capacity of FamS is also dependent on the tempera-

ture, whilst that of FamE is completely independent of temperature, recall

Fig. 2A+C.

(FIGURE 4 HERE)

In the two limits T = 0 and T →∞ we can solve the integrals in Eq. (18)

to obtain the storage capacity. For T = 0, we use

lim
β→∞

∫ dz√
2π

exp
(
−z2/2

)
tanh (β [az + b]) = erf

(
b√
2a

)
,

lim
β→∞

∫ dz√
2π

exp
(
−z2/2

)
tanh (β [az + b]) z =

√
2

π
exp

(
− b2

2a2

)

lim
β→∞

tanh2 (β [az + b]) = 1, (19)

giving limβ→∞ I1(α, β) = erf
(

1√
2α

)
, limβ→∞ I2(α, β) =

√
2α
π

exp
(
− 1

2α

)
, limβ→∞ I3(α, β) =

√
2α
π

, limβ→∞ I4(α, β) = 1, limβ→∞ I5(α, β) = 0 and limβ→∞ I6(α, β) = 1,

where erf (x) ≡ 2√
π

∫ x
0 exp (−u2) du is the error function.
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Thus at T = 0, Eq. (18) becomes

Mmax =
N2

2

(
1− erf

(√
N

2Mmax

)
+

√
2Mmax

πN

[
1− exp

(
− N

2Mmax

)])2

1 + 1
4
[Mmax/N + 1] + 1

4

. (20)

Solving this self-consistent equation yields Mmax ∝ N3/2 as N → ∞. This

is smaller than storage achieved by the energy (∝ N2) but still it is much

higher than the recall capacity (∝ N).

Fitting the simulation results to a curve with form SNR ∝ √
Nα−γ,

yields γ = 0.50 and γ = 1.2, respectively. This corresponds to a capacity

Mmax ∝ N2 for FamE and Mmax ∝ N1.42 for FamS, which is close to the

analytical result. In Fig. 4 we plot, as a function of N , the storage capacity

ratio of FamS and FamE at zero temperature.

In the other limit that T → ∞, random fluctuations in neural activity

dominate the network dynamics. All the integrals in Eqs. (14) and (17)

are zero, and hence Mmax[FamS] ≈ Mmax[FamE] ≈ N2/2. In this high noise

limit, the theoretical storage capacity is the same for both discriminators. For

arbitrary temperatures the capacity can be obtained by numerical evaluation

of the integrals.

Unfortunately, the mean field analysis can not be used for times other

than t = 0. This regime would require more advanced techniques such as

generating functional analysis (Coolen, 2001). Network simulations for t = 1

were shown in Fig. 2B+D+F.
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Discussion

Familiarity describes a retrieval process that supports recognition memory.

Numerous empirical studies have investigated familiarity processes in hu-

mans (Yonelinas, 2002) and mammals (Brown and Xiang, 1998). Recently,

neuronal networks modeling familiarity discrimination have been proposed

(Bogacz and Brown, 2003; Yakovlev et al., 2008). This study extends these

previous results in a number of directions: First we analyzed an alterna-

tive familiarity discriminator, FamS. Secondly we examined the dynamics of

the familiarity signal and, finally, we show how familiarity memory can be

analyzed in a mean field framework.

We have compared the energy discriminator used by (Bogacz and Brown,

2003) to a discriminator based on its time derivative, or slope. The lat-

ter discriminator was suggested by Hopfield in his seminal study (Hopfield,

1982), but had not been explored before. Here we have shown that the slope

indeed works well as a familiarity discriminator and is a good indicator of

whether the stimulus has been presented during learning, or is novel. Thus,

interestingly, the same Hopfield network can be used for both recollection

(stationary properties of the retrieval dynamics) and familiarity (transient

dynamics after the stimulus presentation) (Greve et al., Hippocampus, in

press).
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For both discriminators, the signal decays quickly after stimulus presen-

tation. This can be compared to the speed of recollection. Assuming that

recollection memories correspond to reaching an attractor in the Hopfield

model, recollection information only becomes available once activity has set-

tled. By that time, the slope signal is zero, and the energy signal is also very

weak (although not necessarily zero). Human familiarity is likely very com-

plicated and our model is an extreme simplification. As a result it is hard to

justify mapping our findings to experimental studies. Nevertheless, the ex-

perimentally observed timing difference between familiarity and recollection

is consistent with our model.

The storage capacity for familiarity memory is always larger than the

recall capacity of memories in Hopfield nets (proportional to the number of

neurons N), consistent with the observed high capacity of familiarity memory

(Standing, 1973). The capacity depends on the noise. In the low noise

limit, FamE has a storage proportional to N2 and FamS has a capacity

proportional to N3/2. In the high noise limit, the storage capacities of both

FamE and FamS is approximately N2/2. Interestingly, this means that the

slope performance improves as one goes to the high noise regime, Fig. 2.E.

This stand in stark contrast with how noise affects recollection in Hopfield

nets, where noise decreases the recollection performance (Amit, 1989).

It is worth noting that we only considered storage of uncorrelated pat-
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terns. This means that the local memory attractors are deep and well-

separated (Amit, 1989). In simulation with correlated patterns we found

that the performance of both discriminators decreases similarly (not shown).

In this study a single stimulus presentation of a stimulus during training

is sufficient for a subsequent familiarity memory. In contrast to (Norman and

O’Reilly, 2003) and (Yakovlev et al., 2008), the model does need repeated

presentation of stimuli to enable familiarity discrimination. Although the

main purpose of this paper is not to explore how repeated stimuli presentation

affects the familiarity performance, one could still use the synaptic matrix

Eq. (1). The effect of repeating a stimulus is to simply increase its energy in

proportion to the number of repetitions. Thus repeated stimuli will be more

familiar than stimuli presented only once and the strength of the memory

can be used to distinguish whether a stimulus has been presented just once

or many times, allowing for a flexible, high capacity familiarity system.
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Appendix I: Mean and Variance of Ê

According to Eq. (10), Ê defined in Eq. (11) gives a relationship between

slope and energy. Similar to (Amit et al., 1987) expectations of Ê can be

computed, for large N , approximating the sum over the different sites i of the

noise terms
∑

ρ6=ρ̂ xρ
i m

ρ appearing inside the tanh function with an integral

over a Gaussian measure with mean 0 and variance α = M/N . Separating

the signal (ρ = ρ̂) from the noise (ρ 6= ρ̂) in the case of presenting an old

stimulus and with no signal for new stimuli, one obtains after some algebra

〈Êold〉 = −N〈〈tanh
(
β + β

√
αz

)
〉〉 −N〈〈√αz tanh

(
β + β

√
αz

)
〉〉

〈Ênew〉 = −N〈〈√αz tanh
(
β
√

αz
)
〉〉 (21)

where we have denoted 〈〈f(z)〉〉 ≡ ∫ dz√
2π

exp (−z2/2) f (z). To compute the

variance, first one has to derive the second moment, squaring Eq. (11) and

considering four different terms, i = j & ρ = ρ′, i = j & ρ 6= ρ′, i 6= j & ρ =

ρ′ and i 6= j & ρ 6= ρ′. Separating signal and noise contributions we obtain

〈(Êold)
2〉 = −〈Eold〉〈〈tanh2

(
β + β

√
αz

)
〉〉+ N2〈〈tanh

(
β + β

√
αz

)
〉〉2 +

+2N〈〈√αz tanh2
(
β + β

√
αz

)
〉〉+

+2N2〈〈tanh
(
β + β

√
αz

)
〉〉〈〈√αz tanh

(
β + β

√
αz

)
〉〉+
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+N2〈〈√αz tanh
(
β + β

√
αz

)
〉〉2

〈(Ênew)2〉 = −〈Enew〉〈〈tanh2
(
β
√

αz
)
〉〉+ N2〈〈√αz tanh

(
β
√

αz
)
〉〉2 (22)

Eventually, by the definition of variance one gets

Var(Êold) = −〈Eold〉〈〈tanh2
(
β + β

√
αz

)
〉〉+

+2N〈〈√αz tanh2
(
β + β

√
αz

)
〉〉

Var(Ênew) = −〈Enew〉〈〈tanh2
(
β
√

αz
)
〉〉, (23)

which leads to SNR of FamS.

Appendix II: Temperature dependence of accuracy of

mean field approximation

To compute S from Eq. (6), we need an analytic expression for dmρ/dt,

or equivalently, given the definition (4), we have to compute the derivative

dsi/dt. Given si(t), the Glauber dynamics give an uncertainty in si(t + 1)

such that (Marro and Dickman, 1999)

Var[si(t + 1)|{sj(t)}] = sech2(βhi(t)) , (24)

which implies

dsi

dt
= tanh(βhi)− si +O(sech(βhi)) . (25)

We use this result to find the error induced in our calculation of Snew. When

a new pattern is presented, the mρ are all of order N−1/2. This implies that
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the local fields, hi ≡ ∑
ρ xρ

i m
ρ, are of order

√
α. Hence, by Eqs. (4) and (25),

the error in our calculation of dmρ/dt is given by

Error

(
dmρ

dt

)
= O

(
1√
N

sech
(
β
√

α
))

, (26)

for each ρ. Thus, by Eq. (6), we conclude that

Error (Snew) = O

√M sech


 1

T

√
M

N





 . (27)

Since sech(x) decays exponentially with large x, but is of order 1 for small x,

the error in our calculation of Snew, coming from the mean field approxima-

tion, is only going to be negligible in the limit in which (1/T )
√

M/N is large,

i.e. low temperatures. The error in our calculation of Sold is similar. This

analysis explains the growing discrepancy between theory and simulation as

the temperature is increased, Fig. 2E.
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Figure 1: Temporal profile of familiarity discrimination. Simulation

of a network with N = 1000 neurons storing M = 50 uncorrelated patterns

for different values of the temperature, T = 0.20 on the left (A,C) and

T = 0.60 on the right (B,D). Both the energy (A-B) and the slope (C-D) can

discriminate between new and old stimuli during a short period post stimulus

presentation. In graphs C-D the slope rapidly tends to zero, indicating that

the activity has converged to one of the stored stimuli. This is due to the well-

known pattern completion dynamics that occurs in attractor neural networks.

Solid lines correspond to the mean field theory. Dashed and dotted lines

correspond to simulations for old and new patterns respectively (note that

the theory and simulation for old patterns overlap very closely). One unit of

time is defined as the time taken to update all neurons in the network once.
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Figure 2: Robustness of familiarity discrimination to noise. Immedi-

ately after stimulus presentation, the energy is independent of temperature

for both old (circles) and new (triangles) stimuli (graph A), whereas the

slope is temperature dependent (graph C). After one time-step, both energy

(graph B) and slope (graph D) are temperature dependent. Circles and tri-

angles (shown with standard deviation) represent responses to old and new

stimuli respectively. The bottom row show the SNR of the familiarity dis-

criminators against temperature. Simulations averaging over 100 runs of a

network with N = 1000 neurons and M = 50 stored patterns. Only for graph

F, the number of runs is 500. Black solid lines are the theoretical predictions

(not available for t = 1, see text). 32



Figure 3: The effect of memory load on familiarity discrimination.

The performance (SNR) decreases with increasing memory load (α = M/N).

Triangles (energy) and circles (slope) correspond to simulations of a network

of N = 1000 neurons at zero temperature, 100 trials. The SNR of the energy-

based discriminator scales as α−0.50 and the SNR of slope-based discriminator

as α−1.2. The two curves SNR1 and SNR2 correspond to two different ap-

proximations valid respectively for low and high α (see text).
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Figure 4: Ratio of storage capacities at zero temperature. The storage

of slope discriminator is obtained by numerical solution of Eq. (20) as a

function of the number of neurons N . This is divided by capacity of the

energy-based discriminator storage Eq. (9) to obtain the capacity ratio of

the two discriminators.
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