
Directed Spectral Methods

Definition

Directed spectral measures quantify, in the frequency domain, directed statistical interactions be-
tween time-series variables. Most commonly, the various measures are computed based on a (linear)
multi-variate autoregressive (MVAR) model of the data. The various methods quantify in different
ways the strength of interaction terms in the Fourier transform of the MVAR model. While these
methods are sometimes referred to as capturing ‘causal’ or ‘effective’ connectivity, they are most
properly described as reflecting ‘directed functional connectivity’ (Friston et al. 2013).

Detailed description

For a multi-variate n-channel processX(t) = [X1(t), X2(t), . . . , Xn(t)]
T (with zero mean), the MVAR

model is given by

X(t) =

p∑
k=1

Ak ·X(t− k) + ϵ(t) , (1)

where the Ak are matrices of regression coefficients, p is the model order, and ϵ(t) are the residuals
(Lütkepohl 2007). The coefficients of this model are uniquely specified by imposing zero correlation
between the residuals and the regressors X(t − k), k = 1, . . . , p, and can be derived from the Yule-
Walker procedure (Ding et al. 2006). Ideally the model order should be sufficiently high to obtain
a good representation of the data, but not so high that overfitting and poor parameter estimation
occur. Commonly the model order is selected based on minimizing either the Akaike Information
Criterion, or the Bayes Information Criterion, both of which balance the residual variance against
the number of coefficients to be estimated (Ding et al. 2006).

Directed spectral measures are computed from the frequency domain representation of the MVAR
model:

A(ω) · X̃(ω) = ϵ̃(ω) , (2)

where explicitly in terms of the regression coefficients

A(ω) = I −
p∑

k=1

zkAk , (3)

z = e−2iπω∆t and ∆t is the time between observations. (Let tildes denote Fourier transform and
dagger the Hermitian conjugate.) The measures are written in terms of A(ω), the spectral density

(or power) S(ω) =: X̃(ω) · X̃†
(ω), the covariance matrix of the residuals Σ, and also the transfer

matrix H(ω) =: A−1(ω), which yields X̃(ω) when it acts on the Fourier transformed residuals:

X̃(ω) = H(ω) · ϵ̃(ω) . (4)

Non-parametric estimation. An alternative method for computing directed spectral measures
involves obtaining the transfer matrix directly from Fourier and wavelet transforms of the data,
obviating the need to explicitly fit an MVAR model (Dhamala et al. 2008; Percival and Walden
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2000). An advantage of this approach is that it bypasses the need for model order estimation;
however this is replaced with the task of choosing the wavelet prototype and number of tapers
appropriately.

Granger-Geweke causality (GGC)

For a pair of variables X(t) = [X1(t), X2(t)]
T, the Granger-Geweke causality GGC2→1(ω) from X2

to X1 at frequency ω quantifies the directed contribution of X2 to the power of X1 at frequency ω
(Ding et al. 2006; Geweke 1982). It does this by expressing the total power of X1 as the sum of
an ‘intrinsic’ term and a ‘causal’ term, and comparing the logarithms of the total power and the
intrinsic power. From an MVAR model of the two variables, the power can be expressed via (4) as

S(ω) = H(ω) · Σ ·H†(ω) . (5)

The decomposition of this into an intrinsic term and a causal term is obtained via the transformation
of variables X2 → X2 − (σ21/σ11)X1, which diagonalizes Σ and hence removes the cross-terms from
the RHS. (Since GGC is interested in the independent causal contribution from X2 to X1, it should
by definition be invariant under the addition of a multiple of X1 to X2.) After this transformation,
we have

S11(ω) = H11(ω)σ11H
∗
11(ω) +H12(ω)σ22H

∗
12(ω) . (6)

GGC is given (after the transformation) by

GGC2→1(ω) =: ln

{
S11(ω)

H11(ω)σ11H∗
11(ω)

}
. (7)

To analyse a system of n variables, one can compute the above pairwise GGC between each
pair of variables by fitting MVAR models successively to each pair of variables. There also exists:
(i) the more complicated GGCj→i|k1,...,kℓ , i.e. the conditional GGC from Xj to Xi conditional on
Xk1 , . . . , Xkℓ (Ding et al. 2006; Geweke 1984), which computes in the same fashion the causal con-
tribution of Xj to the power of Xi that is independent of the causal contributions of Xk1 , . . . , Xkℓ to
the power of Xi and the intrinsic power of Xi; (ii) ‘multivariate GGC’ from one group of variables
to another group of variables (Barrett et al. 2010; Geweke 1982).

The spectral GGC is related to its time-domain formulation (Ding et al. 2006; Geweke 1982;
Granger 1969). The time-domain GGC from X2 to X1 quantifies the extent to which the past
of X2 helps predict the future of X1 over and above the extent to which the past of X1 predicts
its own future. Specifically, it is given by the logarithm of the ratio of the residual variance in a
restricted regression of X1 on its past to the residual variance σ11 in the (unrestricted) MVAR model
of [X1, X2]

T. The mean spectral GGC over all frequencies up to the Nyquist frequency is equal to
the corresponding time-domain GGC.

Partial Directed Coherence (PDC)

The partial directed coherence PDCj→i(ω) is defined as (Baccalá and Sameshima 2001)

PDCj→i(ω) =:
Aij(ω)√∑n
k=1 |Akj(ω)|2

. (8)
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This measure represents the relative coupling strength of the interaction from Xj to Xi, as compared
to all of Xj ’s interactions as a source with other structures. The PDC ranks the relative interaction
strengths with respect to a given signal source, and the normalization is such that

0 ≤ |PDCj→i(ω)|2 ≤ 1 , (9)∑n
i=1 |PDCj→i(ω)|2 = 1 . (10)

Directed Transfer Function (DTF)

The directed transfer function DTFj→i(ω) is defined as (Kaminski and Blinowska 1991)

DTFj→i(ω) =:
Hij(ω)√∑n
k=1 |Hik(ω)|2

. (11)

This measure represents the coupling strength of the interaction from Xj to Xi, as compared to the
sum of those from all variables to Xi. Similar to PDC the normalization is such that

0 ≤ |DTFj→i(ω)|2 ≤ 1 , (12)∑n
j=1 |DTFj→i(ω)|2 = 1 . (13)

Since it makes use of the inverse of the regression matrix, the DTF measure is a linear combination
of direct and indirect couplings. The ‘direct DTF’ (dDTF) variant is an alternative that emphasizes
direct connections (Korzeniewska et al. 2003). Note that, unlike for GGC, there is no corresponding
time-domain connectivity map for PDC or DTF.

Limitations and extensions

Stationarity. These measures assume that the time-series are covariance stationary. Non-stationary
data should be divided into windows that by themselves are approximately stationary (Bressler and
Seth, 2011).
Dependence on variables. The measures reflect directed statistical dependencies amongst the
particular set of variables chosen, and should not be interpreted as directly reflecting physical causal
chains.
Linearity. The linear formulation of these measures can obviously only give information about linear
features of signals. Extension to non-linear cases can however present further problems. Marinazzo et
al. (2011) review some non-linear approaches to GGC. Note that for (stationary) Gaussian variables,
interactions are necessarily linear, and time-domain GGC is equivalent to transfer entropy, enabling
an interpretation of GGC in terms of Shannon information flow (Barnett et al. 2009; Barrett et
al. 2010).

Neurobiological application

The above limitations should always be kept in mind when applying these measures to neurobiolog-
ical data. A general principle is that shorter data segments are more stationary than longer data
segments, but yield poorer parameter estimates. Thus a trade-off must be made in choosing the
segment length; the most appropriate choice will depend on whether the data are ‘event-related’
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or ‘steady-state’, and on the estimated model order (Barrett et al. 2012; Cohen 2014). Typically
segment lengths range from 500-2000ms (Cohen 2014). These measures are applicable to continuous
variables, and therefore to M/EEG or local field potential data, as opposed to spiking data. The
sampling rate should be sufficiently high for the Nyquist frequency to be substantially greater than
the highest frequency of interest, but not so high that the model order becomes too large; 200-250Hz
is typical (Cohen 2014). fMRI typically has too slow a sampling rate to make use of these measures,
although novel ultra-rapid acquisition sequences potentially enable access to low frequency interac-
tions (Seth et al. 2013). For M/EEG, pre-processing should include some form of spatial filtering
or source localization in order to minimize volume conduction artefacts (Bressler and Seth, 2011;
Cohen 2014). Bandpass temporal filtering should be avoided as this smears the data in time and
can increase model orders, thus leading to poorer estimates of the measures (although notch filtering
to remove line-noise will not contaminate frequencies that are far away from the stop-band; Barnett
and Seth 2011).

Summary and comparison of measures

GGCj→i is a measure of the directed functional effect that Xj has on Xi, and compares ‘intrinsic’
and ‘causal’ contributions to the power in a bivariate autoregressive model (conditional versions of
GGC are used if one wants to separate out direct and indirect causal effects). PDCj→i captures
the relative strength of the direct pairwise coupling from Xj to Xi, compared to the total coupling
from Xj to other variables in the frequency domain MVAR model for the set of variables. DTFj→i

compares the coupling from Xj to Xi with the total coupling from all variables to Xi in the transfer
matrix for the set of variables; as such it is a measure of the combined strength of direct and indirect
couplings from Xj to Xi. These measures, of which GGC is the most common and perhaps best
founded, hold great promise in moving beyond functional localization towards the important problem
of dissecting the functional circuits underlying cognition, perception, and behaviour.
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