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Abstract

More than thirty years ago, Amari and colleagues proposed a sta-
tistical framework for identifying structurally stable macrostates of
neural networks from observations of their microstates. We compare
their stochastic stability criterion with a deterministic stability crite-
rion based on the ergodic theory of dynamical systems, recently pro-
posed for the scheme of contextual emergence and applied to particu-
lar inter-level relations in neuroscience. Stochastic and deterministic
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stability criteria for macrostates rely on macro-level contexts, which
make them sensitive to differences between different macro-levels.

1 Introduction

One of the most important issues in neuroscience are relations between differ-
ent levels of description. In cognitive neuroscience, this refers to the relation-
ship between the brain states and their dynamics and mental states relevant
for phenomena such as cognition and even consciousness at a higher level.
Corresponding ideas have been put forward, e.g., by Smolensky (1988, 2006),
beim Graben (2004) and Atmanspacher and beim Graben (2007) for the rela-
tionship between neurodynamics on the one hand and cognitive computation
or mental states in general on the other.

In computational neuroscience, relations between microscopic states (of
ion channels, individual neurons, synapses), mesoscopic states (of neural as-
semblies, cortical columns) and macroscopic states (of functional networks as
observable by techniques such as EEG or fMRI) and their associated levels
of description are concerned. A recent review by Atmanspacher and Rotter
(2008) outlines numerous examples, achievements and problems for specific
inter-level relations between descriptions of the brain and its components.

Inter-level relations in general have been a topic of discussion for decades,
and key questions have not been ultimately resolved even today. Are higher-
level descriptions strongly reducible to lower-level descriptions? Do higher-
level descriptions supervene upon lower-level descriptions? Or do higher-level
descriptions emerge from lower-level descriptions?

Recently, Bishop and Atmanspacher (2006) suggested a classification of
inter-level relations in terms of necessary and sufficient conditions. If a lower-
level description bears both necessary and sufficient conditions for a higher-
level description, the higher level can be strongly reduced to the lower level.
If a lower-level description possesses sufficient but not necessary conditions
for a higher-level description, the latter supervenes upon the former. For
situations in which a lower-level description is necessary but not sufficient
for a higher-level description, Bishop and Atmanspacher (2006) propose the
term contextual emergence. The remaining, rather unattractive, case in which
the lower-level description provides neither necessary nor sufficient conditions
for the higher level description has been called radical emergence, resembling



a patchwork scenario with basically unrelated domains.

The idea of contextual emergence has been successfully used to clarify
inter-level relations between statistical mechanics and thermodynamics and
between quantum mechanics and physical chemistry (Primas 1998, Bishop
and Atmanspacher 2006). It has also been shown to be a viable tool to
formally address neural correlates of consciousness (Chalmers 2000) in terms
of partitioned neural state spaces (Atmanspacher and beim Graben 2007).
This methodology, which is based on the ergodic theory of deterministic
dynamical systems, can also be applied to study relations between the (lower-
level) dynamics of neural networks and the (higher-level) behavior of local

field potentials or the EEG (Allefeld et al. 2009).

It is the aim of this paper to demonstrate that elements of the same kind
of contextual emergence are applicable, and in fact have been applied earlier,
to inter-level relations between statistical descriptions of neural systems. Re-
markably, the basic ingredients for such an investigation have been worked
out more than thirty years ago by Amari (1974) and Amari et al. (1977) in
two influential papers on macrostates in random neural networks.

Referring to higher-level states as macrostates and lower-level states as
microstates, Amari (1974, p. 203) introduced a theory of statistical neurody-
namics in the following way:

“Statistical neurodynamics investigates such properties of ran-
dom nets that are possessed in common by almost all random
nets in an ensemble rather than those that are possessed on the
average. When random nets are composed of a sufficiently large
number of neurons, it is anticipated from the law of large num-
bers that such properties surely exist. These properties, if they
exist, do not depend on the precise values of net parameters but
only on their statistics. They are structurally stable in the sense
that a minor change of parameters do not destroy the properties.
These properties are analyzed in the following by introducing the
concept of macrostates.”

The paper is structured as follows: In Sect. 2 we review the contextual
emergence of (higher-level) macrostates and their associated properties from
(lower-level) microstates and their associated properties. Particular empha-
sis is placed on the issue of structural stability, referred to in the quotation



above. In Sect. 3 we demonstrate contextual emergence in neural networks
in three steps. In a first step (Sect. 3.1) we recapitulate Amari’s approach by
translating his original formalism in the light of algebraic statistical mechan-
ics (Sewell 2002) and dynamical system theory (Guckenheimer and Holmes
1983). In a second step (Sect. 3.2) we introduce the notion of contextual-
ity by epistemic observables in the sense of beim Graben and Atmanspacher
(2006). In a third step (Sect. 3.3) we show how Amari’s macrostate criteria
implement appropriate stability conditions for the contextual emergence of
macroscopic descriptions for a random neural network.

The paper concludes with a discussion of similarities and differences of
the approaches. In addition, a particular example is addressed, contextual
emergence of macrostates in liquid state machines (Maass et al. 2002) that
might be relevant for the discussion of neural correlates of consciousness
(Chalmers 2000, Atmanspacher and beim Graben 2007).

2 Contextual Emergence: The Basic Idea

For the idea of contextual emergence it is assumed that the description of
features of a system at a particular level offers necessary but not sufficient
conditions to derive features at a higher level of description. In logical terms,
the necessity of conditions at the lower level of description means that higher-
level features imply those of the lower level of description. The converse —
that lower-level features also imply the features at the higher level of descrip-
tion — does not hold in contextual emergence. This is the meaning of the
absence of sufficient conditions at the lower level of description. Additional,
contingent contexts for the transition from the lower to the higher level of
description are required in order to provide such sufficient conditions.

For the contextual emergence of temperature, the notion of thermal equi-
librium represents such a context. Thermal equilibrium is not available at
the lower-level description of Newtonian or statistical mechanics. Imple-
menting thermal equilibrium in terms of a particular stability condition (the
Kubo-Martin-Schwinger (KMS) condition) and considering the thermody-
namic limit of infinitely many particles (N — o0o) at the level of statistical
mechanics, temperature can be obtained as an emergent property at a higher-
level thermodynamical description.! It is of paramount importance for this

'A non-technical presentation of the detailed argumentation can be found in At-



procedure that KMS states satisfy a stability condition that derives from
a context at the level of thermodynamics and implemented at the level of
statistical mechanics.

In addition to the contextual emergence of temperature as a new observ-
able that is not contained in the algebra of observables of statistical mechan-
ics, the concept of a thermal state differs substantially from the concept of a
statistical state. The introduction of KMS states in the phase space of statis-
tical mechanics entails a coarse graining (a change of topology) that leads to
equivalence classes of microstates with properties implying the same temper-
ature. These equivalent microstates are multiple realizations of one and the
same thermal state. In this sense, thermal states supervene on microstates,
although thermal properties emerge from properties of microstates.

The significance of contextual emergence in combination with superve-
nience as opposed to strict reduction in this example is clear. Of course,
it would be interesting to extend the general construction scheme outlined
above to other cases. More physical examples are indicated and discussed,
for example, in Primas (1998) and Batterman (2002). However, the concept
of stability, in the sense of stability against perturbations or fluctuations,
should serve as a key principle for the construction of a contextual topology
and an associated algebra of contextual observables in examples even beyond
physics.

As mentioned in the introduction, possible, and ambitious, cases refer
to emergent features in the framework of cognitive science and neuroscience
(Atmanspacher 2007). As the brain definitely operates far from equilibrium,
the general approach must be able to incorporate a non-equilibrium stabil-
ity criterion. Based on empirical material that suggests to consider neuro-
dynamics in terms of deterministic nonlinear dynamics, Atmanspacher and
beim Graben (2007) suggested a suitable implementation, based on ergodic
theory, of appropriate higher-level contexts as lower-level stability conditions.

Depending on the precise nature of the dynamics, basins of attraction
(e.g., for fixed points) or invariant hyperbolic sets (e.g., for chaotic attractors)
provide partitions of the phase space. These coarse-grainings are directly
prescribed by the deterministic dynamics of the system considered and can
be investigated in terms of ergodic Markov chains (see appendix). At the

manspacher (2007). The KMS condition induces a partition into equivalence classes of
mechanical states defining statistical states whose mean energy can be assigned a partic-
ular temperature.



higher level of description, the coarse grains or partition cells represent new
(macro-) states with new associated observables, respectively.

3 Emergence of Macrostates
in Neural Networks

In this section we demonstrate how Amari’s macrostate criteria for statistical
neurodynamics (Amari 1974, Amari et al. 1977) compares to macrostate
criteria for the contextual emergence of macroscopic descriptions for neural
networks.

3.1 Amari’s Macrostate Conditions

Amari (1974) and Amari et al. (1977) discussed ensembles of random (or
stochastic) networks of McCulloch-Pitts units.?> This can be formalized by
a phase space X,, C R" of n randomly connected model neurons, obeying a
nonlinear difference equation:

x(t+1)=d,(x(t)). (1)

Here x(t) € X,, is the activation vector (the microstate) of the network at
time ¢ and ¥, is a nonlinear map, parameterized by w. The network as a
dynamical system is then given by (X, ®,).

The map P, is often assumed to be of the form
P(x) =f(W-x-0), (2)

with synaptic weight matric W € R™, activation threshold vector 6 € R™,
and a nonlinear squashing function f = (f;)1<i<n : Xn — X, the activation
function of the network. For f; = © (where © denotes the Heaviside jump
function), equations (1, 2) describe a network of McCulloch-Pitts neurons
(McCulloch and Pitts 1943).

Another popular choice for the activation function is the logistic function
1
fi(x)

Cl4en
2Another important example are Hebbian auto-associator networks (Hopfield 1982)
trained with random patterns that have been investigated by Amari and Maginu (1988).
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describing firing rate models (cf., e.g., beim Graben (2008)). Replacing Eq.
(2) by the map

O, (x) =(1—-At)z + Atf(W - —0) (3)

yields a time-discrete leaky integrator network (Wilson and Cowan 1972,
beim Graben and Kurths 2008). For numerical simulations, At < 1 will be
the choice for the time step of the Euler method.

According to (2) and (3), the network parameters are given as
w=(W,0) eR” xR". (4)

In a random neural network, the parameters w are regarded as stochastic
variables drawn from a probability space €, = R™ x R" with measure

fin = B(S) — [0, 1] ()

for measurable sets from B(€2,,). We refer to a particular network realization
from this probability space as N(w).

In order to obtain limit theorems for random neural networks, one has to
assure that network realizations of different size n behave similarly. Thus, we
restrict ourselves to particular network topologies, such as directed Erdos-
Rényi graphs with fixed connectivity p (Bollobds 2001, beim Graben and
Kurths 2008, Maass et al. 2002) or networks with Gaussian synaptic weights
W ~ N(m,no?). For an Erd6s-Rényi network of size n the expected number
of connections is then np.

Amari (1974) and Amari et al. (1977) treat the network parameters w
as strictly stochastic variables, such that the evolution equations (2) and
(3) describe stochastic processes where w assumes another value after each
temporal iteration. Amari (1974, p. 203) concedes that such an “ensemble of
random nets is quite different to the Gibbs ensemble in statistical mechanics
in this respect, because the latter consists of dynamical systems of the same
structure but only in different states”.

Simplifying Amari’s treatment of networks, we follow Amari and Maginu
(1988) and Touboul et al. (2008) who describe a random neural network as
one particular realization of the stochastic variable w that is considered frozen
during the temporal evolution of the network states. This assumption does
not only facilitate the theory, it is also more plausible for certain scenarios.
The changes of network parameters during development usually take place
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at a larger time scale than the intrinsic network dynamics. Note, however,
that time scales related to synaptic plasticity cannot always be separated so
easily.

Touboul et al. (2008) also consider noise-driven networks, which would
again require a fully stochastic treatment. We will refrain from this com-
plication as well and study random neural networks in the original sense of
Gibbs ensembles, namely as ensembles of identical systems (characterized
by the same realization of the stochastic parameter w for a given network
size n). Such systems differ only in their initial conditions. This approach
is consistent with the treatment of deterministic dynamical systems where
initial conditions can be drawn according to probability distributions over
phase space. Particular distributions, so-called Sinai-Ruelle-Bowen (SRB)
measures (Guckenheimer and Holmes 1983), obey stability conditions that
are crucial for the contextual emergence of macrostates in dynamical systems.

A macro-observable of a neural network (X,,, ®,,) is a real-valued function
s : X,, — R that is measurable by suitable techniques. Such observables are,
e.g., local field potentials or the EEG (Freeman 2007). Let s;, : X, — R be
a family of m observables (for 1 < i < m) for a network of size n, such that
Y = 8p(x) = (Sin(T))1<i<m 1s a vector in m-dimensional space Y C R™. We
call Y = s,(X,,) the macrostate space generated by the family (s;.,)1<i<m-
Note that we are interested in a macrostate space Y that is the same for a
sequence of network realizations (X, @, )nen-

Amari (1974) and Amari et al. (1977) asked for conditions under which
the images y = s, (x) of a microstate  under the observables s,, can be re-
garded as macrostates obeying a macroscopic evolution law. In order to for-
mulate appropriate constraints, Amari (1974, p. 203) discussed two possible
conditions which should be fulfilled if the number n of network components
is sufficiently large:?

1. In order for s,(x) to represent a macrostate whose state-transition
law is identical for almost all nets, it is required that the values of
Y(1) = 8,(P,(x(0))) are identical for almost all nets in the ensemble,
even though the values of @, (x(0)) differ for different N(w)’s.

2. The value of the macrostate y(1) = s,,(P,,(x(0))) is required to depend
on x(0) not directly but only through the value of the initial macrostate

Y(0) = sn(2(0)).

3We present Amari’s proposal in our own notation here and in the following.




Amari (1974, pp. 203f) proposed that these verbal criteria give rise to the
following formal macrostate condition (see also Amari et al. (1977, p. 98)):
The images y = s,(x) of microstates & under the sequence of observables
s, is called a macrostate if it fulfils, for every & € X,,, the following criteria:

1. There exists a function ¢ : Y — Y for which

lim B, (8n(Pu(2))) = ¢(sn(@)) - (6)
2. And, furthermore
Tim Vi, ([[sn(®u(2))]]) = 0. (7)

Here, E,, and V,,  denote, respectively, the ensemble mean and ensem-
ble variance (i.e., the expectation and variance of stochastic variables with
respect to the probability measure p,), and the Euclidian norm

lyll> = vt
i=1

The macrostate condition formulated by Eqs. (6,7) can be graphically
depicted as a diagram that is asymptotically (n — oco) commutative (Fig.
1). Note that a similar quasi-commutativity has been observed by Gaveau
and Schulman (2005) for the coarse-graining of Markov chains.



Figure 1: Illustration of Amari’s macrostate condition (Amari 1974, p. 204).
The observable s,, maps a microstate * € X,, onto a macrostate y = s,(x)
(upper row), and the time iterate @, (x) of x onto s, (P, (x)) (bottom row).
The asterisk indicates the expectation value due to Amari’s first criterion,
whereas the shaded area illustrates the dispersion due to the second.

If a sequence of observables s,, gives rise to a macrostate in the sense of
Egs. (6) and (7), one can construct another sequence of maps ¢, : Y — Y,
converging towards ¢ for n — oo, such that

Yt +1) = en(y(t)) + eu(x(t))

where e, (x(t)) is an error depending on the microstate x(t) (Amari 1974,
p. 204). In the limiting case of e, (x(t)) — 0 for n — oo, which is not guar-
anteed by the macrostate condition yet, one obtains the desired macrostate
evolution equation

y(t+1) =p(y()), (8)

for all times ¢ (Amari 1974, Amari et al. 1977). Equation (8) is non-determi-
nistic if network parameters fluctuate stochastically, or when the network is
exposed to stochastic forcing.

However, even for the simplified deterministic micro-dynamics discussed
here, e, (x(t)) does in general not converge towards zero for n — oo. The
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reason are temporal correlations in x(t). An illustrative example is a Hop-
field network trained on random patterns, discussed by Amari and Maginu
(1988). This makes Amari’s macrostate criteria (6) and (7) necessary but
not sufficient conditions for the macrostate dynamics (8). As a sufficient
condition Amari (1974, p. 204) postulates

lim Prob {sup 5. (® ((0)) — ¢! (@(0))]] > } —0 (9)
n—oo t
for arbitrary € > 0.

Since Eq. (9) refers to the images of microstates in macrostate space un-
der the observables s,, it can be regarded as a decorrelation condition. Amari
(1974) compares Eq. (9) with Boltzmann’s Stofizahlansatz in statistical me-
chanics. Amari et al. (1977) proved Eq. (9) under several assumptions about
the microscopic dynamics.

3.2 Contextual Observables

Any real-valued function s : X,, — R of a neural network (X, ®,) that can
be measured is an observable. Since observables are usually defined with
respect to a particular scientific or pragmatic context (Freeman 2007), we
refer to them as contextual observables. A context provides a reference frame
for the meaningful usage of observables.?

In general, the mapping s, : X,, — Y,x — y obtained from a family
Sim @ Xn — R of m observables (for 1 < ¢ < m) is not injective, such
that different neural microstates x, ' € X,, are mapped onto the same state
y € Y in macrostate space. Following beim Graben and Atmanspacher
(2006), we call the states @, o’ € X epistemically equivalent with respect
to the observables s;,,. Epistemic equivalence induces a partition of the
neural phase spaces X,, into disjoint classes such that all members of one
class are mapped onto the same point y in the macrostate space Y. Call
A, = s, (y) C X, the equivalence class of all pre-images of y.

Arbitrarily defined observables are unlikely to obey stability conditions
such as Amari’s macrostate condition. However, we can generally construct

4This situation resembles quantum mechanical complementarity where observables such
as the position and momentum of an electron refer to different, mutually excluding mea-
surement contexts. For a treatment of complementary observables in classical systems see
beim Graben and Atmanspacher (2006).
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a sequence of mappings @, : Y — p(Y), where p(Y') denotes the power set
of the macrostate space Y, by setting

Pn(y) = (8,09, 0 3;1)(?1) : (10)

These functions bring y € Y to a set ¢,(y) = 8,(P,(A4y)) C Y. Hence, the
deterministic microscopic dynamics given by &, at X,, is mapped onto a non-
deterministic dynamics in macrostate space. Figure 2 illustrates the mapping
(10). Amari’s macrostate conditions together with his decorrelation postulate
guarantee that this non-deterministic macroscopic dynamics converges to a
deterministic one in the thermodynamic limit n — oo.

Figure 2: Construction of a non-deterministic dynamics ¢ in macrostate
space. Upper row: the pre-image of a macrostate y under the observable s,
is an equivalence class of microstates, A, = s, '(y) C X,,. Bottom row: The
temporal iterates of epistemically equivalent microstates, ®,(A,), belong to
a set @, (y) = sn(Pu(Ay)) C Y in macrostate space.

The observable macro-dynamics (10) inherits an important property from
its microscopic counterpart Eq. (1). Since the latter is described by a first-
order difference equation, the former becomes a first-order Markov process
(Shalizi and Moore 2003). Thus, we can define transfer operators

nww={ o BErY (1)
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The transfer operators do not vanish if the state y’ € Y belongs to the image
of ¢n(y), fory € Y.

3.3 Structural Stability
3.3.1 Stochastic Structural Stability

In a first step, we show that Amari’s macrostate criterion entails a stochastic
condition for structural stability. To this aim, we formalize Amari’s first
verbal criterion “that the values of y(1) = s,(P,(x(0))) are identical for
almost all nets in the ensemble, even though the values of @, (x(0)) differ for
different N(w)’s” as follows:

For all €, > 0 there exists a k such that for all n > k, * € X,,,
Prob{||s,(Pu(x)) — sp(Pu(x))|| > €} <9 (12)

if w and W' are drawn from €, = R™ x R" using the probability measure
tn. Equation (12) expresses that, for two random realizations of the mi-
crostate dynamics, the macrostate dynamics will, with high probability, be
very similar if the number of neurons is large. (Note that the exact inter-
pretation of (12) is slightly different from Amari’s formulation in that the
values of y(1) = s,(P,(x(0))) are almost identical for almost all nets in the
ensemble.)

Amari’s second macrostate criterion is equivalent with the probabilistic
structural stability condition (12), provided that for all e > 0, there exists a
k such that for all n > k, ¢ € X,

Vi ([[8n(@u(®))]]) <€, (13)

This assertion is proved as follows: Consider a one-dimensional macrostate
obeying a Gaussian distribution. (Higher-dimensional macrostates are treated
similarly.) Suppose S, S’ are two one-dimensional stochastic variables, obey-
ing an N (m, o?) distribution. Then, for any e,

Prob{|S — | >e}:2(1—F(\/20>> , (14)
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where F' is the cumulative distribution function for a A(0,1) random vari-

able. Using
2f(2) f(z)
1—-F 1
T c1-re <12 (15)
where f is the probability density function of a N'(0, 1) random variable, two

inequalities follow:

2
Prob{|S — S| > ¢} < T me/ao? , (16)

/e

20¢€ e_€2/402
V(€2 + 202)
Assume now that Amari’s macrostate criterion, as given by (13), holds.
Choose any €,§ > 0. Then, by Amari’s condition (13), and the fact that

the RHS of (16) tends to zero as ¢ — 0, we can choose a k such that for any
n >k and any x € X,,, stochastic structural stability (12) holds.

Prob{|S — S| > ¢} > (17)

If, conversely, Amari’s macrostate criterion does not hold, then there is a
0 > 0 such that, for any n, we can find an & € X,, such that

Vi (80(Py(x))) > 0. (18)

Then, since the RHS of (17) increases with o, for any n, we can find an
x € X, such that

2\/56 —62/46
— =€ .
/(e + 20)

Hence, stochastic structural stability (12) fails in this case.

Prob{|s,(®,(x)) — s, (Pu(x))| > €} > (19)

3.3.2 Deterministic Structural Stability

Let us now assume that the contextual observables s, partition the phase
spaces X,, into a finite number ¢ € N of epistemic equivalence classes. Then,
the Markov process in macrostate space Y, described by (11), becomes a
finite-state Markov chain, or, in other words, a shift of finite type (Lind and
Marcus 1995). Such a non-deterministic dynamical system can be obtained
from a finite partition P, = {Ay,..., A} of X, into pairwise disjoint sub-
sets A; that cover the whole phase space X,,, by choosing the characteristic
functions s;,, = xa, as contextual observables. Then, y = s,(x) is the (-
dimensional canonical basis vector y = (0,...,0,1,0,...,0)T with 1 in the
1th position if & € A;.
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Structural stability ensures that, in the limit n — oo, there is a well-
defined transfer operator (11). For shifts of finite type this is a transition
matrix

1 for ®,(A)NA #0,

that can be regarded as an adjacency matrix of a transition graph. As in-
dicated in Sect. 4, Atmanspacher and beim Graben (2007) used stability
conditions for shifts of finite type to construct contextually emergent observ-
ables from neurodynamics. If the transition matrix T' = (7T}) is diagonal,
there are only transitions from every state to itself, indicating fixed points
in macrostate space. If a power T for ¢ € N is diagonal, the corresponding
Markov chain is periodic. In both cases, the observable dynamics possesses
invariant and ergodic states that are structurally stable.

If the transition matrix T is irreducible, i.e., if a power T? > 0 for ¢ € N,
the Markov chain is irreducible and aperiodic. In this case the observable
dynamics possesses invariant, ergodic and mixing states (Ruelle 1968, 1989).
They generalize the KMS states of algebraic statistical mechanics (Olesen
and Pedersen 1978, Pinzari et al. 2000, Exel 2004) to structurally stable
non-equilibrium SRB measures in the microscopic phase spaces X,,.

Now we can identify the kind of Markov chain that is obtained for an
observable dynamics obeying both of Amari’s macrostate conditions. Since
this condition assures the existence of the map ¢ : Y — Y, we obtain the
deterministic macrostate dynamics (8)

y(t+1) = e(y(t))

under our simplifications and in the limit n — oo. Thus, the pre-image
B = s, (p(y(t))) is again an equivalence class in phase space. This means
that cells of the partition P = {Ay, ..., Ay} are faithfully mapped onto cells
of the partition. The resulting shift of finite type is therefore a deterministic
Markov chain where every vertex in the transition graph is the source of
one link at most. Hence, there must be a positive integer number ¢ making
T diagonal. Therefore, the macroscopic dynamics is either multistable or
periodic.

We see that the restriction to deterministic microscopic dynamics yields,
under Amari’s macrostate condition, a deterministic macroscopic dynamics
which is a shift of finite type for a finite number of distinct macrostates. As
a consequence we obtain structurally stable fixed points or limit tori in the
macrostate space as contextually emergent macro-features.
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However, it is straightforward to relax Amari’s macrostate condition to
Markovian macrostate dynamics by demanding Markov partitions in the mi-
croscopic neural phase spaces (Sinai 1968, Ruelle 1989), but keeping the
structural stability condition. For the simplified case of expanding maps,
Markov partitions have the property that cells are mapped onto joins of
cells; i.e. cell bounderies are mapped onto cell bounderies, without necessar-
ily mapping cells onto cells — which was actually the result of this section
for deterministic Markov chains — (for hyperbolic maps things are slightly
more involved), such that ®,(A;) N A; # () implies A; C ®,(Ax). Markov
partitions entail aperiodic, irreducible Markov chains, which in turn possess
invariant, ergodic and mixing SRB measures, i.e., structurally stable chaotic
attractors, in the macrostate space.

3.3.3 DMacrostates in a Random Neural Network

Consider a random network of n randomly connected McCulloch-Pitts units,
described by Equations (1) and (2) with Heaviside activation function,

ri(t+1) =0 (i w;;x;(t) — hn) , (21)

where 0 < h < 1. Let the synaptic weights w;; be independently identically
distributed random normal variables with mean m and variance no?, that is

wi; ~ N (m,no?). (22)

Following Amari (1974), we can define the activity level

) =5 > (23)

of the network that serves as a kind of “model EEG”. Given an appropriately
chosen constant 7y satisfying 0 < ry < 1, a contextual observable may be
defined by

(24)
1-— To

In order to prove that s yields a macrostate satisfying the previously
defined stability condition (13), we first determine the probability that unit
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x; is active at time ¢t + 1 as

Prob{z;(t +1) =1} = Prob {@ (i w;;xi(t) — hn> = 1}
= Prob {z”: w;;x;(t) — hn > 0}
= Prob {i w;;x;(t) > hn} :

Since x;(t) € {0,1} for all times ¢, the weighted sum

n
Z wi;z(t) = Zwijk ;
=1 i

when z;,(t) = 1. Now, the number of active units j, at time ¢ is given
through the activity level as nr(t). Because the synaptic weights w;; are nor-
mally distributed according to N'(m, no?), their sum is normally distributed
according to N'(mnr(t),n?c?r(t)). Thus,

_ 1} = Pro h—mr(t)
Prob{z;(t+1) =1} =P b{N(O,1)> o) }

On the other hand, the activity level (23) is described by a Bernoulli
process obeying a binomial distribution

nr(t+1) ~ B(n,q(t)),

where B(n,q(t)) denotes the binomial distribution with n trials and proba-
bility ¢ for a positive outcome in each trial, with

h — mr(t)
q(t) = 7(r(t)) =1 ( (D) )

with F' being the cumulative standard normal distribution function as above.
Note that = : [0,1] — [0, 1] satisfies 7(0) = 0, w(r) > 0 for r > 0, and
7'(r) — +oo as r — 0. See Figure 3 for typical plots of 7 against r for
positive and negative m.

In the case m > 0, let * be the larger solution of

m(r)=r,
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while we define for m < 0

Choose now ¢ > 0 and § > 0, and let us consider the uncertainty in
s(t 4+ 1) given s(t). Suppose that s(¢) = 0 initially, which is consistent with
r(t) < rg. Then, for n sufficiently large,

Prob{s(t+1) > €} = Prob{nr(t+1)> n(ro+e(l—ry))}
= Prob{B(n,n(r(t))) > n(ro+e(1 — 1))}
Prob {N(O, 1) > ypr ) el — o) }

V()L —=(r(t))]
< 0, (25)

Q

under the condition
ro >r*. (26)

Moreover, if r(t) > rg, then for n sufficiently large,

Prob{|s(t+1) —E,. [s(t+1)]| > e} < Prob{|s(t+1)—E,, [s(t+1)]] >e(l—ry)}

— 2Prob {/\/(0, 1) > Ve

V(r(®)[L = m(r(#))] }

< 0.
Combining these inequalities, we deduce that there exists a k such that
for all n > k, and all possible initial microstates (t) € X,,
Prob{|s(t+1) — E,, [s(t+ 1)]| > €} <. (28)

This is sufficient for the observable s to yield well-defined macrostates ac-
cording to Amari’s stability criteria.

For another coarse-grained contextual observable

i) = { 0, r@) <o, (29)

1, r(x)>rg,

the same argument holds for all possible initial microstates x(t) € X,.
The observable § provides a Markov chain that is periodic (either mono-
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or bistable) if Amari’s stability criteria hold. This confirms a result of Amari
(1974) regarding the dynamics of the activity level of a random neural net-
work.

r

Figure 3: 7(r) against r, the activity level, for m = +0.5 (solid) and m =
—0.5 (dashed-dotted). Since 7 gives the next time-step iterate of an initial r
value, there are two stable points for r (indicated by the intersections with
the identity (dotted)).

4 Discussion

In this paper we have conceptually and formally analyzed a “method of sta-
tistical neurodynamics”, suggested by Amari and colleagues more than thirty
years ago (Amari 1974, Amari et al. 1977). Rephrasing their ideas in terms
of algebraic statistical mechanics (Sewell 2002) and dynamical system theory
(Guckenheimer and Holmes 1983), we are able to demonstrate that Amari’s
criteria for identifying macrostates in random neural networks resemble sta-
bility criteria for the contextual emergence of a higher-level macroscopic de-
scription, implemented at the lower level of network dynamics.

Contextual emergence is a non-reductive way to address inter-level rela-
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tions. It was suggested by Bishop and Atmanspacher (2006) and success-
fully applied to problems in computational and cognitive neuroscience (At-
manspacher and beim Graben 2007, Atmanspacher and Rotter 2008, Allefeld
et al. 2009). The scheme of contextual emergence expresses that a lower-level
description comprises necessary but not sufficient conditions for a higher-level
description of a system. The lacking sufficient conditions can be provided
by a contingent higher-level context that imposes stability conditions on the
system’s dynamics. Such contexts usually distinguish between different epis-
temic frameworks® and give rise to conteztual observables (beim Graben and
Atmanspacher 2006).

Contextual observables in Amari’s statistical neurodynamics are map-
pings from a microscopic state space of a random neural network to a macro-
scopic state space, providing a suitable coarse-graining of the dynamics.
In a first step, a sequence of observables s, for a random neural network
(Xn, ®,) with parameters w € €, is chosen with respect to a context of
the desired macroscopic description. These observables span the macrostate
space Y = s,(X,,). Secondly, the criteria given by equations (6) and (7), or
given by Eq. (12), implements a condition for structural stability of the con-
textual macroscopic level at the level of microscopic dynamics. However, this
is only a necessary condition for the existence of a deterministic macroscopic
evolution law (8). The decorrelation postulate (9) serves as a sufficient con-
dition which cannot be derived from (lower-level) properties of microstates
and needs to be selected (postulated) with respect to a chosen context.

As Amari’s criteria for identifying proper macrostates implement stabil-
ity conditions upon the microstates, macrostates are contextually emergent.
His macrostate criteria, representing necessary conditions at the lower-level
description, are supplemented by a sufficient (higher-level) condition imple-
mented as a decorrelation criterion yielding the macro-dynamics according
to Eq. (8). For a finite number of macrostates, the coarse-graining partitions
the microscopic state space into a finite number of classes of epistemically
equivalent states. The resulting macroscopic dynamics is a Markov chain
that can be studied by means of ergodic theory. We have shown that Amari’s
criteria directly lead to periodic Markov chains, possessing invariant and er-
godic — but not mixing — Sinai-Ruelle-Bowen (SRB) equilibrium measures
(Guckenheimer and Holmes 1983).

In order to obtain equilibrium states at the macroscopic level, the macro-

5An illustrative example is the particle-wave dualism in quantum mechanics: An elec-
tron behaves as a particle in one particular measurement context and as a wave in another.
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scopic Markov chain must be aperiodic and irreducible. A sufficient condi-
tion for this is that the emergent observables arise from a Markov partition
of the microscopic state space. In this case, the approach by Atmanspacher
and beim Graben (2007) suggests to replace Amari’s criteria by demanding a
Markov partition that leads to aperiodic, irreducible Markov chains. The rel-
evant equivalence classes of microstates are derived from a spectral analysis
of the matrix of transition probabilities between microstates (cf. Allefeld et
al. (2009) for details). The obtained partition is stable under the dynamics,
i.e. the resulting macrostates are dynamically robust in this sense.

Our results could be of particular significance for research at the interface
between cognitive and computational neuroscience. High-dimensional (and
in the limit n — oo infinite-dimensional) random neural networks have been
suggested by Maass et al. (2002) as a new paradigm for neural computation,
called liquid computing. Liquid state machines are large-scale neural net-
works with random connectivity that are perturbed by input signals. Their
high-dimensional, transient trajectories are measured by so-called read-out
neurons, that can be trained to perform particular computational tasks, es-
pecially for signal classification.

These read-out neurons implement particular observables upon the mi-
croscopic state space. By training different assemblies of read-out neurons
on different tasks, one can impose different contexts for how to interpret
the high-dimensional dynamics of the liquid state machine. Convergence of
the macroscopic read-out states toward a classification task finally supplies
a stability criterion in terms of deterministic Markov chains. Thus, liquid
computing is a way to implement contextual emergence.

To conclude with a rather speculative idea, one could think of read-out
neurons for neural correlates of consciousness (Chalmers 2000), interpreting
the high-dimensional, transient dynamics of “liquid” cortical networks by
low-dimensional, contextually given mental states. A similar idea has been
discussed by Atmanspacher and beim Graben (2007).

Appendix: Stability of Markov Chains

Let us consider two simple examples of Markov chains, resulting from coarse-
grainings of the state spaces of dynamical systems. Figure 4 displays the
transition graphs of two simple 3-state Markov chains. The numbered nodes
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denote the distinct states of the processes, referring to cells of a state space
partition. The lines connecting two nodes represent permitted transitions.
(For a more detailed treatment, the lines are labeled with transition proba-

bilities.)

(a) (b)

Figure 4: Transition graphs of two Markov chains with (a) only one periodic
orbit and (b) an invariant, ergodic and mixing equilibrium state.

Each finite state Markov chain can be characterized by its transition
matrix

T, 1 if there is an arc connecting node k& with node 1,
*7 0 0 otherwise

The matrix T = (T};) is thus the adjacency matrix of the corresponding
transition graph. For the Markov chain from Fig. 4(a) we obtain

T, =

O = O
_ o O
O O =

while the Markov chain in Fig. 4(b) is characterized by

11
T,=11 0
01

— = O

Paths through a transition graph correspond to integer powers of the
transition matrix. Two cases are important: (1) there is an integer ¢ such
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that T is a diagonal matrix, and (2) there is an integer ¢ such that T is
positive. Consider the matrix T with ¢ = 3,

1 00
T°=(0 1 0},
0 01
which is the identity matrix in three-dimensional space. It indicates a closed
path of length three through the graph shown in Fig. 4(a), corresponding
to three period-three orbits (distinguished only by their initial conditions)
of the Markov chain. Periodic orbits for Markov chains can be related to
stationary and ergodic — but not mixing — probability distributions over
state space.

On the other hand, we find that all elements of
2 11
T: =1 2 1
11 2

are positive, such that Tg is positive, i.e. contains no zeros. This means that
every node in the transition graph shown in Fig. 4(b) can be reached from
every other node through a path of length two, which is not a periodic orbit.
The corresponding Markov chain is thus irreducible and aperiodic.

For the normalized transition matrix

1
N=_-T,
A1
where \; is the largest eigenvalue of T, one gets by virtue of the Frobenius
Perron theorem a unique eigenstate of IV for eigenvalue one, i.e. an invariant
equilibrium state (Norris 1998).

Further properties of this equilibrium state are due to the features of the
transition graph. The fact that every state is accessible from every other
state through a path of sufficient length is known as ergodicity. Moreover,
as paths of sufficient length intersect with each other, the system exhibits
decaying temporal correlations, which is known as the mizing property.

To conclude, two interesting cases for finite state Markov chains can be
distinguished. If an integer power of the transition matrix is diagonal, the
Markov chain possesses invariant and ergodic, but not mixing, equilibrium
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states. If, on the other hand, an integer power of the transition matrix is
strictly positive, the Markov chain has invariant, ergodic and mixing equi-
librium states corresponding to thermal equilibrium states according to the
KMS criterion. For more details see the relevant literature, for instance Nor-
ris (1998).
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